1
|
Suchá D, Bohte AE, van Ooij P, Leiner T, Schrauben EM, Grotenhuis HB. Fetal Cardiovascular Magnetic Resonance: History, Current Status, and Future Directions. J Magn Reson Imaging 2025; 61:2357-2375. [PMID: 39578988 PMCID: PMC12063768 DOI: 10.1002/jmri.29664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Fetal cardiovascular magnetic resonance imaging (MRI) has emerged as a complementary modality for prenatal imaging in suspected congenital heart disease. Ongoing technical improvements extend the potential clinical value of fetal cardiovascular MRI. Ascertaining equivocal prenatal diagnostics obtained with ultrasonography allows for appropriate parental counseling and planning of postnatal surgery. This work summarizes current acquisition techniques and clinical applications of fetal cardiovascular MRI in the prenatal diagnosis and follow-up of fetuses with congenital heart disease. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Dominika Suchá
- Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Anneloes E. Bohte
- Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pim van Ooij
- Department of Pediatric CardiologyWilhelmina Children's HospitalUtrechtThe Netherlands
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Tim Leiner
- Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Eric M. Schrauben
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Heynric B. Grotenhuis
- Department of Pediatric CardiologyWilhelmina Children's HospitalUtrechtThe Netherlands
| |
Collapse
|
2
|
Hergert B, Tavares de Sousa M, Herrmann J, Bannas P, Huber L, Götz S, Hecher K, Adam G, Dargahpour Barough M, Schoennagel BP. A comparative study of fetal cardiovascular assessment: utilizing Doppler ultrasound gated MRI and echocardiography with detailed analysis using five axial views. Front Cardiovasc Med 2024; 11:1408071. [PMID: 39376620 PMCID: PMC11457166 DOI: 10.3389/fcvm.2024.1408071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Objectives To investigate the diagnostic performance of fetal cardiovascular magnetic resonance imaging (MRI) using Doppler ultrasound (DUS) gating for the evaluation of the standardized five axial views in comparison with fetal echocardiography. Methods In this prospective study 29 pregnant women (median: 34.4 weeks of gestation) underwent fetal cardiovascular MRI using DUS gating at 3 Tesla. The standardized five axial views in prenatal screening (fetal abdomen, four-chamber view, left ventricular outflow tract, right ventricular outflow tract, and three-vessel view) were independently assessed and analysed by both fetal MRI and fetal echocardiography on the same day. Image analysis included qualitative assessment and quantitative measurements of cardiovascular structures. MR image quality was assessed using a 4-point scale (from 1 = low to 4 = excellent). Postnatal echocardiography was performed for validation. Results 17/28 fetuses (60.7%) had pathological findings [16 congenital heart defect (CHD), one diaphragmatic hernia] in prenatal echocardiography. One fetus was excluded due to severe motion. Overall sensitivity and specificity in detecting fetal cardiac abnormalities was 88% and 100%, respectively, for fetal MRI and 100% and 100% for fetal echocardiography. MR image quality for evaluation of cardiac structures was high with a mean score of 2.8 (±0.8) (score 4: 15.9%, score 3: 53.8%, score 2: 19.3%, score 1: 11%). Quantitative measurements did not differ between fetal cardiovascular MRI and fetal echocardiography (all p > 0.05). Conclusion Diagnostic performance of fetal cardiovascular MRI using DUS gating was comparable to fetal echocardiography. Fetal cardiovascular MRI using DUS gating might be a valuable diagnostic adjunct for the prenatal evaluation of CHD.
Collapse
Affiliation(s)
- B. Hergert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M. Tavares de Sousa
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J. Herrmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P. Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L. Huber
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S. Götz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K. Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G. Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M. Dargahpour Barough
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B. P. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Maher S, Seed M. Fetal Cardiovascular MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:479-487. [PMID: 38944435 DOI: 10.1016/j.mric.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal diagnosis of congenital heart disease allows for appropriate planning of delivery and an opportunity to inform families about the prognosis of the cardiac malformation. On occasion, prenatal therapies may be offered to improve perinatal outcomes. While ultrasound is the primary diagnostic method, advances have led to interest in fetal MRI for its potential to aid in clinical decision-making. This review explores technical innovations and the clinical utility of fetal cardiovascular magnetic resonance (CMR), highlighting its role in diagnosing and planning interventions for complex heart conditions. Future directions include the prediction of perinatal physiology and guidance of delivery planning.
Collapse
Affiliation(s)
- Samer Maher
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mike Seed
- Cardiology, The Hospital for Sick Children, University of Toronto, 170 Elizabeth Street, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Vollbrecht TM, Bissell MM, Kording F, Geipel A, Isaak A, Strizek BS, Hart C, Barker AJ, Luetkens JA. Fetal Cardiac MRI Using Doppler US Gating: Emerging Technology and Clinical Implications. Radiol Cardiothorac Imaging 2024; 6:e230182. [PMID: 38602469 PMCID: PMC11056758 DOI: 10.1148/ryct.230182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Fetal cardiac MRI using Doppler US gating is an emerging technique to support prenatal diagnosis of congenital heart disease and other cardiovascular abnormalities. Analogous to postnatal electrocardiographically gated cardiac MRI, this technique enables directly gated MRI of the fetal heart throughout the cardiac cycle, allowing for immediate data reconstruction and review of image quality. This review outlines the technical principles and challenges of cardiac MRI with Doppler US gating, such as loss of gating signal due to fetal movement. A practical workflow of patient preparation for the use of Doppler US-gated fetal cardiac MRI in clinical routine is provided. Currently applied MRI sequences (ie, cine or four-dimensional flow imaging), with special consideration of technical adaptations to the fetal heart, are summarized. The authors provide a literature review on the clinical benefits of Doppler US-gated fetal cardiac MRI for gaining additional diagnostic information on cardiovascular malformations and fetal hemodynamics. Finally, future perspectives of Doppler US-gated fetal cardiac MRI and further technical developments to reduce acquisition times and eliminate sources of artifacts are discussed. Keywords: MR Fetal, Ultrasound Doppler, Cardiac, Heart, Congenital, Obstetrics, Fetus Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Thomas M. Vollbrecht
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Malenka M. Bissell
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Fabian Kording
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Annegret Geipel
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alexander Isaak
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Brigitte S. Strizek
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Christopher Hart
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alex J. Barker
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Julian A. Luetkens
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| |
Collapse
|
5
|
Faruk Topaloğlu Ö, Koplay M, Kılınçer A, Örgül G, Sedat Durmaz M. Quantitative measurements and morphological evaluation of fetal cardiovascular structures with fetal cardiac MRI. Eur J Radiol 2023; 163:110828. [PMID: 37059007 DOI: 10.1016/j.ejrad.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Fetal cardiac magnetic resonance imaging (FCMR) can be used as an imaging modality in fetal cardiovascular evaluation as studied in recent years. We aimed to evaluate cardiovascular morphology using FCMR and to observe the development of cardiovascular structures according to gestational age (GA) in pregnant women. METHOD In our prospective study, 120 pregnant women between 19 and 37 weeks of gestation in whom absence of cardiac anomaly could not be excluded by ultrasonography (US) or, who were referred to us for magnetic resonance imaging (MRI) for suspected non-cardiovascular system pathology, were included. According to the axis of the fetal heart, axial, coronal, and sagittal multiplanar steady-state free precession (SSFP) and 'real time' untriggered SSFP sequence, respectively, were obtained. The morphology of the cardiovascular structures and their relationships with each other were evaluated, and their sizes were measured. RESULTS Seven cases (6.3%) contained motion artefacts that did not allow the assessment and measurement of cardiovascular morphology, and three (2.9%) cases with cardiac pathology in the analysed images were excluded from the study. The study included a total of 100 cases. Cardiac chamber diameter, heart diameter, heart length, heart area, thoracic diameter, and thoracic area were measured in all fetuses. The diameters of the aorta ascendens (Aa), aortic isthmus (Ai), aorta descendens (Ad), main pulmonary artery (MPA), ductus arteriosus (DA, superior vena cava (SVC), and inferior vena cava (IVC) were measured in all fetuses. The left pulmonary artery (LPA) was visualised in 89 patients (89%). The right PA (RPA) was visualised in 99 (99%) cases. Four pulmonary veins (PVs) were seen in 49 (49%) cases, three in 33 (33%), and two in 18 (18%). High correlation values were found for all diameter measurements performed with GW. CONCLUSION In cases where US cannot achieve adequate image quality, FCMR can contribute to diagnosis. The very short acquisition time and parallel imaging technique with the SSFP sequence allow for adequate image quality without maternal or fetal sedation.
Collapse
Affiliation(s)
| | - Mustafa Koplay
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Abidin Kılınçer
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Gökçen Örgül
- Department of Obstetrics and Gynecology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Mehmet Sedat Durmaz
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
6
|
Moerdijk AS, Claessens NH, van Ooijen IM, van Ooij P, Alderliesten T, Grotenhuis HB, Benders MJNL, Bohte AE, Breur JMPJ, Charisopoulou D, Clur SA, Cornette JMJ, Fejzic Z, Franssen MTM, Frerich S, Geerdink LM, Go ATJI, Gommers S, Helbing WA, Hirsch A, Holtackers RJ, Klein WM, Krings GJ, Lamb HJ, Nijman M, Pajkrt E, Planken RN, Schrauben EM, Steenhuis TJ, ter Heide H, Vanagt WYR, van Beynum IM, van Gaalen MD, van Iperen GG, van Schuppen J, Willems TP, Witters I. Fetal MRI of the heart and brain in congenital heart disease. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:59-68. [PMID: 36343660 DOI: 10.1016/s2352-4642(22)00249-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Antenatal assessment of congenital heart disease and associated anomalies by ultrasound has improved perinatal care. Fetal cardiovascular MRI and fetal brain MRI are rapidly evolving for fetal diagnostic testing of congenital heart disease. We give an overview on the use of fetal cardiovascular MRI and fetal brain MRI in congenital heart disease, focusing on the current applications and diagnostic yield of structural and functional imaging during pregnancy. Fetal cardiovascular MRI in congenital heart disease is a promising supplementary imaging method to echocardiography for the diagnosis of antenatal congenital heart disease in weeks 30-40 of pregnancy. Concomitant fetal brain MRI is superior to brain ultrasound to show the complex relationship between fetal haemodynamics in congenital heart disease and brain development.
Collapse
Affiliation(s)
- Anouk S Moerdijk
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nathalie Hp Claessens
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The Evolution and Developing Importance of Fetal Magnetic Resonance Imaging in the Diagnosis of Congenital Cardiac Anomalies: A Systematic Review. J Clin Med 2022; 11:jcm11237027. [PMID: 36498602 PMCID: PMC9738414 DOI: 10.3390/jcm11237027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a reliable method, with a complementary role to Ultrasound (US) Echocardiography, that can be used to fully comprehend and precisely diagnose congenital cardiac malformations. Besides the anatomical study of the fetal cardiovascular system, it allows us to study the function of the fetal heart, remaining, at the same time, a safe adjunct to the classic fetal echocardiography. MRI also allows for the investigation of cardiac and placental diseases by providing information about hematocrit, oxygen saturation, and blood flow in fetal vessels. It is crucial for fetal medicine specialists and pediatric cardiologists to closely follow the advances of fetal cardiac MRI in order to provide the best possible care. In this review, we summarize the advance in techniques and their practical utility to date.
Collapse
|
8
|
Ruiz-Solano E, Mitchell M. Rings and Slings: Not Such Simple Things. Curr Cardiol Rep 2022; 24:1495-1503. [PMID: 36190599 PMCID: PMC9556351 DOI: 10.1007/s11886-022-01764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Vascular rings are congenital malformations resulting from abnormal development of the great vessels, with the consequent encircling and compression of the trachea, esophagus, or both. We conducted a review of the current literature to identify the different management strategies that can be implemented based on the prognosis of each of these anomalies. RECENT FINDINGS Although most vascular rings occur in isolation, they can also be associated with other congenital cardiac and/or respiratory diseases; therefore, thorough investigation is necessary before definitive surgical repair. Clinical presentation varies from asymptomatic to severe, with both respiratory and digestive symptoms. Although early surgical results are acceptable, the long-term outcome is variable; therefore, there is still controversy regarding the appropriate timing of treatment. This is especially true with regard to the Kommerell diverticulum (KD) and in patients without symptoms at the time of initial surgical evaluation. As more sophisticated diagnostic tools have become available and more studies on adults affected by this condition have been published, understanding of this condition and its additional clinical implications has grown and appears to be tilting management toward earlier intervention.
Collapse
Affiliation(s)
- Elyan Ruiz-Solano
- Department of Surgery, Children’s Hospital Colorado, University of Colorado, Aurora, CO USA
| | - Michael Mitchell
- Herma Heart Institute, Children’s Wisconsin and Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
9
|
The role of ultrasound and MRI in diagnosing of obstetrics cardiac disorders: A systematic review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Sun L, Lee FT, van Amerom JFP, Freud L, Jaeggi E, Macgowan CK, Seed M. Update on fetal cardiovascular magnetic resonance and utility in congenital heart disease. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart disease (CHD) is the most common birth defect, affecting approximately eight per thousand newborns. Between one and two neonates per thousand have congenital cardiac lesions that require immediate post-natal treatment to stabilize the circulation, and the management of these patients in particular has been greatly enhanced by prenatal detection. The antenatal diagnosis of CHD has been made possible through the development of fetal echocardiography, which provides excellent visualization of cardiac anatomy and physiology and is widely available. However, late gestational fetal echocardiographic imaging can be hampered by suboptimal sonographic windows, particularly in the setting of oligohydramnios or adverse maternal body habitus.
Main body
Recent advances in fetal cardiovascular magnetic resonance (CMR) technology now provide a feasible alternative that could be helpful when echocardiography is inconclusive or limited. Fetal CMR has also been used to study fetal circulatory physiology in human fetuses with CHD, providing new insights into how these common anatomical abnormalities impact the distribution of blood flow and oxygen across the fetal circulation. In combination with conventional fetal and neonatal magnetic resonance imaging (MRI) techniques, fetal CMR can be used to explore the relationship between abnormal cardiovascular physiology and fetal development. Similarly, fetal CMR has been successfully applied in large animal models of the human fetal circulation, aiding in the evaluation of experimental interventions aimed at improving in utero development. With the advent of accelerated image acquisition techniques, post-processing approaches to correcting motion artifacts and commercial MRI compatible cardiotocography units for acquiring gated fetal cardiac imaging, an increasing number of CMR methods including angiography, ventricular volumetry, and the quantification of vessel blood flow and oxygen content are now possible.
Conclusion
Fetal CMR has reached an exciting stage whereby it may now be used to enhance the assessment of cardiac morphology and fetal hemodynamics in the setting of prenatal CHD.
Collapse
|
11
|
Cho SKS, Darby JRT, Saini BS, Lock MC, Holman SL, Lim JM, Perumal SR, Macgowan CK, Morrison JL, Seed M. Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep. J Physiol 2020; 598:2557-2573. [PMID: 32378201 DOI: 10.1113/jp279054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. ABSTRACT The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r2 = 0.926; P < 0.0001; Bias = -4.7 ± 10.5 ml min-1 kg-1 ; 95% limits of agreement: -15.9 to 25.2 ml min-1 kg-1 ). This study validates fetal VV by CMR in a large animal model of human pregnancy and provides preliminary reference values of fetal sheep right and left ventricles in late gestation.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jessie Mei Lim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Abstract
Magnetic resonance imaging (MRI) is an appealing technology for fetal cardiovascular assessment. It can be used to visualize fetal cardiac and vascular anatomy, to quantify fetal blood flow, and to quantify fetal blood oxygen saturation and hematocrit. However, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the human fetus, the lack of conventional cardiac gating methods to synchronize data acquisition, and the potential corruption of MRI data due to maternal respiration and unpredictable fetal movements. In this review, we discuss recent technical advances in accelerated imaging, image reconstruction, cardiac gating, and motion compensation that have enabled dynamic MRI of the fetal heart.
Collapse
|
13
|
Roy CW, Marini D, Lloyd DFA, Mawad W, Yoo SJ, Schrauben EM, Jaeggi E, Seed M, Macgowan CK. Preliminary Experience Using Motion Compensated CINE Magnetic Resonance Imaging to Visualise Fetal Congenital Heart Disease. Circ Cardiovasc Imaging 2019; 11:e007745. [PMID: 30558501 DOI: 10.1161/circimaging.118.007745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recent advances in cardiovascular magnetic resonance (CMR) imaging have facilitated CINE imaging of the fetal heart. In this work, a preliminary investigation of the utility of multislice CINE CMR for assessing fetal congenital heart disease is performed and compared with echocardiography. METHODS AND RESULTS Multislice CINE CMR and echocardiography images were acquired in 25 pregnant women wherein the fetus had a suspected congenital heart defect based on routine obstetric ultrasound. Pathognomonic images were identified for each subject for qualitative comparison of CMR and echocardiography. Quantitative comparison of CMR and echocardiography was then performed by 2 reviewers using a binary scoring of 9 fetal cardiac anatomic features (identifiable/not-identifiable). Pathognomonic images demonstrated the ability of CMR to visualize a variety of congenital heart defects. Overall CMR was able to identify the majority of the 9 assessed fetal cardiac anatomic features (reviewer 1, 7.1±2.1; reviewer 2, 6.7±2.3). Although both reviewers identified more anatomic features with echocardiography (reviewer 1, 7.8±2.3; reviewer 2, 7.5±2.4; P=0.01), combining information from both modalities enabled identification of additional anatomic features across subjects (reviewer 1, 8.4±1.3; reviewer 2, 8.4±1.2). The primary limiting factor for CMR was inadequate coverage of the fetal cardiac anatomy or noncontiguous slices because of gross fetal movement. CONCLUSIONS CINE CMR enables visualization of fetal congenital heart disease. This work demonstrates the potential of CMR for diagnosing congenital heart disease in utero in conjunction with echocardiography during late gestation.
Collapse
Affiliation(s)
- Christopher W Roy
- Department of Medical Biophysics, University of Toronto, Canada (C.W.R., C.K.M.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| | - Davide Marini
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - David F A Lloyd
- Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (D.F.A.L.).,Departments of Paediatric and Fetal Cardiology, Evelina Children's Hospital, London, United Kingdom (D.F.A.L.)
| | - Wadi Mawad
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Shi-Joon Yoo
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Eric M Schrauben
- Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| | - Edgar Jaeggi
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Mike Seed
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Canada (C.W.R., C.K.M.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| |
Collapse
|
14
|
Affiliation(s)
- Luke G Eckersley
- Fetal and Neonatal Cardiology Program, Echocardiography Laboratory, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Canada (L.G.E., L.K.H.)
| | - Lisa K Hornberger
- Fetal and Neonatal Cardiology Program, Echocardiography Laboratory, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Canada (L.G.E., L.K.H.).,Department of Obstetrics and Gynecology, Women and Children's Health Research, Mazankowski Alberta Heart Institutes, University of Alberta, Edmonton, Canada (L.K.H.)
| |
Collapse
|
15
|
van Amerom JFP, Lloyd DFA, Deprez M, Price AN, Malik SJ, Pushparajah K, van Poppel MPM, Rutherford MA, Razavi R, Hajnal JV. Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI. Magn Reson Med 2019; 82:1055-1072. [PMID: 31081250 PMCID: PMC6617816 DOI: 10.1002/mrm.27798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/24/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
Purpose To develop an MRI acquisition and reconstruction framework for volumetric cine visualization of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods Four‐dimensional (4D) depiction was achieved using a highly‐accelerated multi‐planar real‐time balanced steady‐state free precession acquisition combined with retrospective image‐domain techniques for motion correction, cardiac synchronization and outlier rejection. The framework was validated using a numerical phantom and evaluated in a study of 20 mid‐ to late‐gestational age human fetal subjects (23‐33 weeks gestational age). Reconstructed MR data were compared with matched ultrasound. A preliminary assessment of flow‐sensitive reconstruction using the velocity information encoded in the phase of real‐time images is included. Results Reconstructed 4D data could be visualized in any two‐dimensional plane without the need for highly specific scan plane prescription prior to acquisition or for maternal breath hold to minimize motion. Reconstruction was fully automated aside from user‐specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Evaluation suggested the reconstructed framework has the potential to be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusions The proposed methods show promise as a framework for motion‐compensated 4D assessment of the fetal heart and great vessels.
Collapse
Affiliation(s)
- Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Shaihan J Malik
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Tavares de Sousa M, Hecher K, Yamamura J, Kording F, Ruprecht C, Fehrs K, Behzadi C, Adam G, Schoennagel BP. Dynamic fetal cardiac magnetic resonance imaging in four-chamber view using Doppler ultrasound gating in normal fetal heart and in congenital heart disease: comparison with fetal echocardiography. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 53:669-675. [PMID: 30381848 DOI: 10.1002/uog.20167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the diagnostic performance of dynamic fetal cardiac magnetic resonance imaging (MRI), using a MR-compatible Doppler ultrasound (DUS) device for fetal cardiac gating, in differentiating fetuses with congenital heart disease from those with a normal heart, and to compare the technique with fetal echocardiography. METHODS This was a prospective study of eight fetuses with a normal heart and four with congenital heart disease (CHD), at a median of 34 (range, 28-36) weeks' gestation. Dynamic fetal cardiac MRI was performed using a DUS device for direct cardiac gating. The four-chamber view was evaluated according to qualitative findings. Measurements of the length of the left and right ventricles, diameter of the tricuspid and mitral valves, myocardial wall thickness, transverse cardiac diameter and left ventricular planimetry were performed. Fetal echocardiography and postnatal diagnoses were considered the reference standards. RESULTS Direct cardiac gating allowed continuous triggering of the fetal heart, showing high temporal and spatial resolution. Both fetal cardiac MRI and echocardiography in the four-chamber view detected pathological findings in three of the 12 fetuses. Qualitative evaluation revealed overall consistency between echocardiography and MRI. On both echocardiography and MRI, quantitative measurements revealed significant differences between fetuses with a normal heart and those with CHD with respect to the length of the right (P < 0.01 for both) and left (P < 0.01 for both) ventricles and transverse cardiac diameter (P < 0.05 and P < 0.01, respectively). Tricuspid valve diameter on cardiac MRI was found to be significantly different in healthy fetuses from in those with CHD (P < 0.05). CONCLUSIONS For the first time, this study has shown that dynamic fetal cardiac MRI in the four-chamber view, using external cardiac gating, allows evaluation of cardiac anatomy and diagnosis of congenital heart disease in agreement with fetal echocardiography. Dynamic fetal cardiac MRI may be useful as a second-line investigation if conditions for fetal echocardiography are unfavorable. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Tavares de Sousa
- University Medical Center Hamburg-Eppendorf, Department of Obstetrics and Fetal Medicine, Hamburg, Germany
| | - K Hecher
- University Medical Center Hamburg-Eppendorf, Department of Obstetrics and Fetal Medicine, Hamburg, Germany
| | - J Yamamura
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - F Kording
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - C Ruprecht
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - K Fehrs
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - C Behzadi
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - G Adam
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - B P Schoennagel
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| |
Collapse
|
17
|
Lloyd DFA, Pushparajah K, Simpson JM, van Amerom JFP, van Poppel MPM, Schulz A, Kainz B, Deprez M, Lohezic M, Allsop J, Mathur S, Bellsham-Revell H, Vigneswaran T, Charakida M, Miller O, Zidere V, Sharland G, Rutherford M, Hajnal JV, Razavi R. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet 2019; 393:1619-1627. [PMID: 30910324 PMCID: PMC6484696 DOI: 10.1016/s0140-6736(18)32490-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Two-dimensional (2D) ultrasound echocardiography is the primary technique used to diagnose congenital heart disease before birth. There is, however, a longstanding need for a reliable form of secondary imaging, particularly in cases when more detailed three-dimensional (3D) vascular imaging is required, or when ultrasound windows are of poor diagnostic quality. Fetal MRI, which is well established for other organ systems, is highly susceptible to fetal movement, particularly for 3D imaging. The objective of this study was to investigate the combination of prenatal MRI with novel, motion-corrected 3D image registration software, as an adjunct to fetal echocardiography in the diagnosis of congenital heart disease. METHODS Pregnant women carrying a fetus with known or suspected congenital heart disease were recruited via a tertiary fetal cardiology unit. After initial validation experiments to assess the general reliability of the approach, MRI data were acquired in 85 consecutive fetuses, as overlapping stacks of 2D images. These images were then processed with a bespoke open-source reconstruction algorithm to produce a super-resolution 3D volume of the fetal thorax. These datasets were assessed with measurement comparison with paired 2D ultrasound, structured anatomical assessment of the 2D and 3D data, and contemporaneous, archived clinical fetal MRI reports, which were compared with postnatal findings after delivery. FINDINGS Between Oct 8, 2015, and June 30, 2017, 101 patients were referred for MRI, of whom 85 were eligible and had fetal MRI. The mean gestational age at the time of MRI was 32 weeks (range 24-36). High-resolution (0·50-0·75 mm isotropic) 3D datasets of the fetal thorax were generated in all 85 cases. Vascular measurements showed good overall agreement with 2D echocardiography in 51 cases with paired data (intra-class correlation coefficient 0·78, 95% CI 0·68-0·84), with fetal vascular structures more effectively visualised with 3D MRI than with uncorrected 2D MRI (657 [97%] of 680 anatomical areas identified vs 358 [53%] of 680 areas; p<0·0001). When a structure of interest was visualised in both 2D and 3D data (n=358), observers gave a higher diagnostic quality score for 3D data in 321 (90%) of cases, with 37 (10%) scores tied with 2D data, and no lower scores than for 2D data (Wilcoxon signed rank test p<0·0001). Additional anatomical features were described in ten cases, of which all were confirmed postnatally. INTERPRETATION Standard fetal MRI with open-source image processing software is a reliable method of generating high-resolution 3D imaging of the fetal vasculature. The 3D volumes produced show good spatial agreement with ultrasound, and significantly improved visualisation and diagnostic quality compared with source 2D MRI data. This freely available combination requires minimal infrastructure, and provides safe, powerful, and highly complementary imaging of the fetal cardiovascular system. FUNDING Wellcome Trust/EPSRC Centre for Medical Engineering, National Institute for Health Research.
Collapse
Affiliation(s)
- David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - John M Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Alexander Schulz
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Bernard Kainz
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Computing (BioMedIA), Imperial College London, London, UK
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Maelene Lohezic
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joanna Allsop
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Sujeev Mathur
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Hannah Bellsham-Revell
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Trisha Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Marietta Charakida
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Owen Miller
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Vita Zidere
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gurleen Sharland
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mary Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
18
|
Kording F, Yamamura J, de Sousa MT, Ruprecht C, Hedström E, Aletras AH, Ellen Grant P, Powell AJ, Fehrs K, Adam G, Kooijman H, Schoennagel BP. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 2018; 20:17. [PMID: 29530064 PMCID: PMC5846256 DOI: 10.1186/s12968-018-0440-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fetal cardiovascular magnetic resonance (CMR) imaging may provide a valuable adjunct to fetal echocardiography in the evaluation of congenital cardiovascular pathologies. However, dynamic fetal CMR is difficult due to the lack of direct in-utero cardiac gating. The aim of this study was to investigate the effectiveness of a newly developed Doppler ultrasound (DUS) device in humans for fetal CMR gating. METHODS Fifteen fetuses (gestational age 30-39 weeks) were examined using 1.5 T CMR scanners at three different imaging sites. A newly developed CMR-compatible DUS device was used to generate gating signals from fetal cardiac motion. Gated dynamic balanced steady-state free precession images were acquired in 4-chamber and short-axis cardiac views. Gating signals during data acquisition were analyzed with respect to trigger variability and sensitivity. Image quality was assessed by measuring endocardial blurring (EB) and by image evaluation using a 4-point scale. Left ventricular (LV) volumetry was performed using the single-plane ellipsoid model. RESULTS Gating signals from the fetal heart were detected with a variability of 26 ± 22 ms and a sensitivity of trigger detection of 96 ± 4%. EB was 2.9 ± 0.6 pixels (4-chamber) and 2.5 ± 0.1 pixels (short axis). Image quality scores were 3.6 ± 0.6 (overall), 3.4 ± 0.7 (mitral valve), 3.4 ± 0.7 (foramen ovale), 3.6 ± 0.7 (atrial septum), 3.7 ± 0.5 (papillary muscles), 3.8 ± 0.4 (differentiation myocardium/lumen), 3.7 ± 0.5 (differentiation myocardium/lung), and 3.9 ± 0.4 (systolic myocardial thickening). Inter-observer agreement for the scores was moderate to very good (kappa 0.57-0.84) for all structures. LV volumetry revealed mean values of 2.8 ± 1.2 ml (end-diastolic volume), 0.9 ± 0.4 ml (end systolic volume), 1.9 ± 0.8 ml (stroke volume), and 69.1 ± 8.4% (ejection fraction). CONCLUSION High-quality dynamic fetal CMR was successfully performed using a newly developed DUS device for direct fetal cardiac gating. This technique has the potential to improve the utility of fetal CMR in the evaluation of congenital pathologies.
Collapse
Affiliation(s)
- Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Tavares de Sousa
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anthony H. Aletras
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - P. Ellen Grant
- Departments of Radiology and Medicine, Boston Children’s Hospital, and Harvard Medical School, Boston, MA USA
| | - Andrew J. Powell
- Department of Cardiology and Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kai Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Bjoern P. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
19
|
Abstract
Fast magnetic resonance imaging (MRI) led to the emergence of 'cine MRI' techniques, which enable the visualization of the beating heart and the assessment of cardiac morphology and dynamics. However, established cine MRI methods are not suitable for fetal heart imaging in utero, where anatomical structures are considerably smaller and recording an electrocardiogram signal for synchronizing MRI data acquisition is difficult. Here we present a framework to overcome these challenges. We use methods for image acquisition and reconstruction that robustly produce images with sufficient spatial and temporal resolution to detect the heart contractions of the fetus, enabling a retrospective gating of the images and thus the generation of images of the beating heart. To underline the potential of our approach, we acquired in utero images in six pregnant patients and compared these with their echocardiograms. We found good agreement in terms of diameter and area measurements, and low inter- and intra- observer variability. These results establish MRI as a reliable modality for fetal cardiac imaging, with a substantial potential for prenatal evaluation of congenital heart defects.
Collapse
|
20
|
Abstract
This study aimed to evaluate the diagnostic accuracy of fetal magnetic resonance imaging (MRI) for persistent left superior vena cava (LSVC). Prenatal echocardiography (echo) and/or ultrasound (US) and MRI data for 49 fetuses with persistent LSVC, confirmed via postnatal diagnoses between January 2010 and October 2015, were retrospectively reviewed. All prenatal MRI was performed at 1.5 T. Imaging sequences included steady-state free-precession (SSFP), single-shot turbo spin echo (SSTSE), and other sequences. All 49 cases of fetal persistent LSVC were correctly diagnosed via MRI, but only 34 cases (69.4%) were correctly diagnosed via an initial US and/or echo before MRI. Of the 15 cases that were not correctly diagnosed via US and/or echo, 8 had congenital heart diseases (CHDs) and 7 were without CHDs; however, they were associated with extracardiac abnormalities or maternal obesity. Thirty-five cases were associated with other cardiovascular abnormalities; 8, with extracardiac abnormalities; and 6, with no associated condition. In 44 (89.8%) cases, the innominate veins were absent; the remaining cases had innominate veins. In 14.3% of patients (7 cases), the persistent LSVC drained directly into the atrium. Fetal MRI can detect persistent LSVC and play an adjunctive role along with US in the evaluation of persistent LSVC.
Collapse
|
21
|
van Amerom JFP, Lloyd DFA, Price AN, Kuklisova Murgasova M, Aljabar P, Malik SJ, Lohezic M, Rutherford MA, Pushparajah K, Razavi R, Hajnal JV. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magn Reson Med 2017; 79:327-338. [PMID: 28370252 PMCID: PMC5763466 DOI: 10.1002/mrm.26686] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion. METHODS The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image-based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user-defined region of interest delineating the fetal heart. The method was evaluated in 30 mid- to late gestational age singleton pregnancies scanned without maternal breath-hold. RESULTS The combination of complementary acquisition/reconstruction and correction/rejection steps in the pipeline served to improve the quality of the reconstructed 2D cine images, resulting in increased visibility of small, dynamic anatomical features. Artifact-free cine images successfully were produced in 36 of 39 acquired data sets; prolonged general fetal movements precluded processing of the remaining three data sets. CONCLUSIONS The proposed method shows promise as a motion-tolerant framework to enable further detail in MRI studies of the fetal heart and great vessels. Processing data in image-space allowed for spatial and temporal operations to be applied to the fetal heart in isolation, separate from extraneous changes elsewhere in the field of view. Magn Reson Med 79:327-338, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Joshua F P van Amerom
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - David F A Lloyd
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Anthony N Price
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Maria Kuklisova Murgasova
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Paul Aljabar
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Shaihan J Malik
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Maelene Lohezic
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Kuberan Pushparajah
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Reza Razavi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Joseph V Hajnal
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Lloyd DFA, van Amerom JFP, Pushparajah K, Simpson JM, Zidere V, Miller O, Sharland G, Allsop J, Fox M, Lohezic M, Murgasova M, Malamateniou C, Hajnal JV, Rutherford M, Razavi R. An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenat Diagn 2016; 36:916-925. [PMID: 27521762 PMCID: PMC5082528 DOI: 10.1002/pd.4912] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Fetal cardiovascular magnetic resonance imaging (MRI) offers a potential alternative to echocardiography, although in practice, its use has been limited. We sought to explore the need for additional imaging in a tertiary fetal cardiology unit and the usefulness of standard MRI sequences. METHODS Cases where the diagnosis was not fully resolved using echocardiography were referred for MRI. Following a three-plane localiser, fetal movement was assessed with a balanced steady-state free precession (bSSFP) cine. Single-shot fast spin echo and bSSFP sequences were used for diagnostic imaging. RESULTS Twenty-two fetal cardiac MRIs were performed over 12 months, at mean gestation of 32 weeks (26-38 weeks). The majority of referrals were for suspected vascular abnormalities (17/22), particularly involving the aortic arch (n = 10) and pulmonary vessels (n = 4). Single-shot fast spin echo sequences produced 'black-blood' images, useful for examining the extracardiac vasculature in these cases. BSSFP sequences were more useful for intracardiac structures. Real-time SSFP allowed for dynamic assessment of structures such as cardiac masses, with enhancement patterns also allowing for tissue characterisation in these cases. CONCLUSIONS Fetal vascular abnormalities such as coarctation can be difficult to diagnose by using ultrasound. Fetal MRI may have an adjunctive role in the evaluation of the extracardiac vascular anatomy and tissue characterisation. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- David F A Lloyd
- Evelina Children's Hospital, London, UK. .,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Joshua F P van Amerom
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Kuberan Pushparajah
- Evelina Children's Hospital, London, UK.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | | | | | | | - Joanna Allsop
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Matthew Fox
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Maelene Lohezic
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Maria Murgasova
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Christina Malamateniou
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jo V Hajnal
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Mary Rutherford
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Reza Razavi
- Evelina Children's Hospital, London, UK.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
23
|
Li X, Li X, Hu K, Yin C. The value of cardiovascular magnetic resonance in the diagnosis of fetal aortic arch anomalies. J Matern Fetal Neonatal Med 2016; 30:1366-1371. [DOI: 10.1080/14767058.2016.1214126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Bensemlali M, Stirnemann J, Le Bidois J, Lévy M, Raimondi F, Hery E, Stos B, Bessières B, Boudjemline Y, Bonnet D. Discordances Between Pre-Natal and Post-Natal Diagnoses of Congenital Heart Diseases and Impact on Care Strategies. J Am Coll Cardiol 2016; 68:921-30. [DOI: 10.1016/j.jacc.2016.05.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
25
|
Yang L, Pei QY, Li YT, Yang ZJ. The Application of an Anatomical Database for Fetal Congenital Heart Disease. Chin Med J (Engl) 2016; 128:2583-7. [PMID: 26415794 PMCID: PMC4736863 DOI: 10.4103/0366-6999.166045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Fetal congenital heart anomalies are the most common congenital anomalies in live births. Fetal echocardiography (FECG) is the only prenatal diagnostic approach used to detect fetal congenital heart disease (CHD). FECG is not widely used, and the antenatal diagnosis rate of CHD varies considerably. Thus, mastering the anatomical characteristics of different kinds of CHD is critical for ultrasound physicians to improve FECG technology. The aim of this study is to investigate the applications of a fetal CHD anatomic database in FECG teaching and training program. Methods: We evaluated 60 transverse section databases including 27 types of fetal CHD built in the Prenatal Diagnosis Center in Peking University People's Hospital. Each original database contained 400–700 cross-sectional digital images with a resolution of 3744 pixels × 5616 pixels. We imported the database into Amira 5.3.1 (Australia Visage Imaging Company, Australia) three-dimensional (3D) software. The database functions use a series of 3D software visual operations. The features of the fetal CHD anatomical database were analyzed to determine its applications in FECG continuing education and training. Results: The database was rebuilt using the 3D software. The original and rebuilt databases can be displayed dynamically, continuously, and synchronically and can be rotated at arbitrary angles. The sections from the dynamic displays and rotating angles are consistent with the sections in FECG. The database successfully reproduced the anatomic structures and spatial relationship features of different fetal CHDs. We established a fetal CHD anatomy training database and a standardized training database for FECG. Ultrasound physicians and students can learn the anatomical features of fetal CHD and FECG through either centralized training or distance education. Conclusions: The database of fetal CHD successfully reproduced the anatomic structures and spatial relationship of different kinds of fetal CHD. This database can be widely used in anatomy and FECG teaching and training.
Collapse
Affiliation(s)
| | - Qiu-Yan Pei
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | | | | |
Collapse
|
26
|
Yang ZJ, Pei QY, Li YT, Gao JX. Continuous transverse scanning of the fetal heart using a cross-sectional image database of common fetal congenital heart deformities. Taiwan J Obstet Gynecol 2016; 55:176-82. [DOI: 10.1016/j.tjog.2016.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 10/21/2022] Open
|
27
|
Trobo Marina D, Bravo C, Lancharro Á, Gámez Alderete F, Marín C, de León-Luis J. Neonatal magnetic resonance imaging in double aortic arch diagnosed prenatally by ultrasound. J OBSTET GYNAECOL 2016; 36:526-8. [PMID: 26979672 DOI: 10.3109/01443615.2015.1110125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital double aortic arch (DAA) is an uncommon vascular anomaly; however, its prenatal detection is associated with congenital heart defects and chromosomal abnormalities, including 22q11 deletion. We present a case of DAA diagnosed prenatally. DAA can be diagnosed by prenatal ultrasound in the transverse three vessel-trachea view, which shows a trident image formed by a complete vascular ring and the ductus arteriosus. Postnatal magnetic resonance images in this view correlate well with prenatal ultrasound images and help in confirmation of diagnosis, evaluation of the risk of airway or esophageal compression, and planning of surgery.
Collapse
Affiliation(s)
- Duna Trobo Marina
- a Department of Obstetrics and Gynecology , Hospital General Gregorio Marañón, Universidad Complutense de Madrid , Madrid , Spain
| | - Coral Bravo
- a Department of Obstetrics and Gynecology , Hospital General Gregorio Marañón, Universidad Complutense de Madrid , Madrid , Spain .,b Department of Obstetrics and Gynecology , Hospital Central de La Defensa Gómez Ulla, Universidad de Alcalá de Henares , Madrid , Spain , and
| | - Ángel Lancharro
- c Department of Radiology , Hospital General Gregorio Marañón, Universidad Complutense de Madrid , Madrid , Spain
| | - Francisco Gámez Alderete
- a Department of Obstetrics and Gynecology , Hospital General Gregorio Marañón, Universidad Complutense de Madrid , Madrid , Spain
| | - Carlos Marín
- c Department of Radiology , Hospital General Gregorio Marañón, Universidad Complutense de Madrid , Madrid , Spain
| | - Juan de León-Luis
- a Department of Obstetrics and Gynecology , Hospital General Gregorio Marañón, Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
28
|
Abstract
Fetal magnetic resonance imaging (MRI) is currently offered in a limited number of centers but is predominantly used for suspected fetal central nervous system abnormalities. This article concentrates on the role of the different imaging sequences and their value to clinical practice. It also discusses the future of fetal MRI.
Collapse
Affiliation(s)
- Elspeth Whitby
- Academic Unit of Reproductive and Developmental Medicine, Sheffield, UK.
| | - Peter Wright
- Medical Imaging and Medical Physics, Radiology, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
29
|
Dong SZ, Zhu M. Pattern-based approach to fetal congenital cardiovascular anomalies using the transverse aortic arch view on prenatal cardiac MRI. Pediatr Radiol 2015; 45:743-50. [PMID: 25149162 DOI: 10.1007/s00247-014-3131-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022]
Abstract
Fetal echocardiography is the imaging modality of choice for prenatal diagnosis of congenital cardiovascular anomalies. However, echocardiography has limitations. Fetal cardiac magnetic resonance imaging (MRI) has the potential to complement US in detecting congenital cardiovascular anomalies. This article draws on our experience; it describes the transverse aortic arch view on fetal cardiac MRI and important clues on an abnormal transverse view at the level of the aortic arch to the diagnosis of fetal congenital cardiovascular anomalies.
Collapse
Affiliation(s)
- Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | | |
Collapse
|
30
|
Merz WM, Gembruch U. Old tool - new application: NT-proBNP in fetal medicine. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 44:377-385. [PMID: 24919683 DOI: 10.1002/uog.13443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Affiliation(s)
- W M Merz
- Department of Obstetrics and Prenatal Medicine, University Bonn Medical School, Bonn, Germany
| | | |
Collapse
|
31
|
Wielandner A, Mlczoch E, Prayer D, Berger-Kulemann V. Potential of magnetic resonance for imaging the fetal heart. Semin Fetal Neonatal Med 2013; 18:286-97. [PMID: 23742821 DOI: 10.1016/j.siny.2013.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significant congenital heart disease (sCHD) affects 3.6 per 1000 births, and is often associated with extracardiac and chromosomal anomalies. Although early mortality has been substantially reduced and the rate of long-term survival has improved, sCHD is, after preterm birth, the second most frequent cause of neonatal infant death. The prenatal detection of cardiac and vascular abnormalities enables optimal parental counselling and perinatal management. Echocardiography (ECG) is the first-line examination and gold standard by which cardiac malformations are defined. However, adequate examination by an experienced healthcare provider with modern technical imaging equipment is required. In addition, maternal factors and the gestational age may lower the image quality. Fetal magnetic resonance imaging (MRI) has been implemented over the last several years and is already used in the clinical routine as a second-line approach to assess fetal abnormalities. MRI of the fetal heart is still not routinely performed. Nevertheless, fetal cardiac MRI has the potential to complement ultrasound in detecting cardiovascular malformations and extracardiac lesions. The present work reviews the potential of MRI to delineate the anatomy and pathologies of the fetal heart. This work also deals with the limitations and continuing developments designed to overcome the current problems in cardiac imaging, including fast fetal heart rates, the lack of ECG-gating, and the presence of fetal movements.
Collapse
Affiliation(s)
- Alice Wielandner
- Department of Radiology, Medical University of Vienna, AKH, Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Gregg CL, Butcher JT. Translational paradigms in scientific and clinical imaging of cardiac development. ACTA ACUST UNITED AC 2013; 99:106-20. [PMID: 23897595 DOI: 10.1002/bdrc.21034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 01/25/2023]
Abstract
Congenital heart defects (CHD) are the most prevalent congenital disease, with 45% of deaths resulting from a congenital defect due to a cardiac malformation. Clinically significant CHD permit survival upon birth, but may become immediately life threatening. Advances in surgical intervention have significantly reduced perinatal mortality, but the outcome for many malformations is bleak. Furthermore, patients living while tolerating a CHD often acquire additional complications due to the long-term systemic blood flow changes caused by even subtle anatomical abnormalities. Accurate diagnosis of defects during fetal development is critical for interventional planning and improving patient outcomes. Advances in quantitative, multidimensional imaging are necessary to uncover the basic scientific and clinically relevant morphogenetic changes and associated hemodynamic consequences influencing normal and abnormal heart development. Ultrasound is the most widely used clinical imaging technology for assessing fetal cardiac development. Ultrasound-based fetal assessment modalities include motion mode (M-mode), two dimensional (2D), and 3D/4D imaging. These datasets can be combined with computational fluid dynamics analysis to yield quantitative, volumetric, and physiological data. Additional imaging modalities, however, are available to study basic mechanisms of cardiogenesis, including optical coherence tomography, microcomputed tomography, and magnetic resonance imaging. Each imaging technology has its advantages and disadvantages regarding resolution, depth of penetration, soft tissue contrast considerations, and cost. In this review, we analyze the current clinical and scientific imaging technologies, research studies utilizing them, and appropriate animal models reflecting clinically relevant cardiogenesis and cardiac malformations. We conclude with discussing the translational impact and future opportunities for cardiovascular development imaging research.
Collapse
Affiliation(s)
- Chelsea L Gregg
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
33
|
Pekkan K, Keller BB. Guest Editorial: Special Issue on Fetal Hemodynamics : Developmental Fetal Cardiovascular Biomechanics in the 21st Century: Another Tipping Point. Cardiovasc Eng Technol 2013; 4:231-233. [PMID: 29637505 DOI: 10.1007/s13239-013-0152-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Kerem Pekkan
- Pediatric Cardiovascular Fluid Mechanics Laboratory, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA, 15219, USA. .,Mechanical Engineering Department, Koç University, Rumeli feneri Yolu, Istanbul, 34450, Turkey.
| | - Bradley B Keller
- Department of Pediatrics, University of Louisville, 302 East Muhammad Ali Blvd, Louisville, KY, 40202, USA
| |
Collapse
|
34
|
Truong UT, Kutty S, Broberg CS, Sahn DJ. Multimodality Imaging in Congenital Heart Disease: an Update. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 5:481-490. [PMID: 24900167 PMCID: PMC4032470 DOI: 10.1007/s12410-012-9160-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increasing number of survivors of congenital heart disease (CHD) has been paralleled by advancement of imaging modalities used for the ongoing assessment of these patients. There has been a large body of literature describing new approaches to non-invasive assessment of CHD. We will review new applications of well established as well as novel techniques for the management and understanding of CHD.
Collapse
Affiliation(s)
- Uyen T. Truong
- />Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO USA
| | - Shelby Kutty
- />Children’s Hospital and Medical Center, University of Nebraska Medical Center/Creighton University, Omaha, NE USA
| | | | - David J. Sahn
- />L608, Pediatric Cardiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098 USA
| |
Collapse
|
35
|
|