1
|
Paran Y, David D, Rudoler N, Ingbir M, Khoury N, Halutz O, Ben-Ami R, Berkowitz A, Sol A. Human Infection With IsrRAPXV: A Novel Zoonotic Bat-Derived Poxvirus. J Infect Dis 2025; 231:495-500. [PMID: 39186536 DOI: 10.1093/infdis/jiae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Bats are recognized as the natural reservoir of several zoonotic viruses that pose a threat to public health worldwide. In our recent reports, we describe the identification of a novel poxvirus, IsrRAPXV, in Egyptian fruit bats. This poxvirus is associated with high morbidity and mortality in bats. METHODS Herein, we describe the identification of a poxvirus in a female patient hospitalized with systemic symptoms and severe painful skin lesions on her hands. We performed quantitative polymerase chain reaction, whole genome sequencing, and phylogenetic analysis to identify and characterize this poxvirus as the etiologic agent. RESULTS The patient interacted with wounded and sick bats as a volunteer in a bat shelter run by an Israel bat sanctuary organization. Samples collected from the patient's skin lesions were positive for the presence of IsrRAPXV by polymerase chain reaction. Additionally, phylogenetic analysis showed that this virus is identical to IsrRAPXV, originally described by us as the causative agent of skin lesions in fruit bats. CONCLUSIONS Our finding suggest that IsrRAPXV is zoonotic; therefore, veterinarians and volunteers working in bat shelters should meticulously follow the guidelines of working with bats and use required personal protective equipment.
Collapse
Affiliation(s)
- Yael Paran
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center
- Sackler Faculty of Medicine, Tel Aviv University
| | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan
| | - Nir Rudoler
- Department of Virology, Kimron Veterinary Institute, Bet Dagan
| | - Merav Ingbir
- Sackler Faculty of Medicine, Tel Aviv University
- Internal Medicine Tel Aviv Sourasky Medical Center
| | - Nardeen Khoury
- Sackler Faculty of Medicine, Tel Aviv University
- Internal Medicine Tel Aviv Sourasky Medical Center
| | - Ora Halutz
- Department of Clinical Laboratories, Tel Aviv Sourasky Medical Center
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center
- Sackler Faculty of Medicine, Tel Aviv University
| | - Asaf Berkowitz
- Department of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Asaf Sol
- Department of Virology, Kimron Veterinary Institute, Bet Dagan
| |
Collapse
|
2
|
Perdrizet UG, Hill JE, Fernando C, Sobchishin L, Misra V, Bollinger TK. Eptesipox virus-associated lesions in naturally infected big brown bats. Vet Pathol 2024; 61:541-549. [PMID: 38366808 PMCID: PMC11264557 DOI: 10.1177/03009858241231556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Bats have many unique qualities amongst mammals; one of particular importance is their reported tolerance to viruses without developing disease. Here, the authors present evidence to the contrary by describing and demonstrating viral nucleic acids within lesions from eptesipox virus (EfPV) infection in big brown bats. One hundred and thirty bats submitted for necropsy from Saskatchewan, Canada, between 2017 and 2021 were screened for EfPV by polymerase chain reaction (PCR); 2 had amplifiable poxvirus DNA. The lesions associated with infection were oral and pharyngeal ulcerations and joint swelling in 2/2 and 1/2 cases, respectively. These changes were nonspecific for poxvirus infection, although intracytoplasmic viral inclusion bodies within the epithelium, as observed in 2/2 bats, are diagnostic when present. Viral nucleic acids, detected by in situ hybridization (ISH), were observed in the epithelium adjacent to ulcerative lesions from both cases and within the joint proliferation of 1 case. A new isolate of EfPV was obtained from 1 case and its identity was confirmed with electron microscopy and whole genome sequencing. Juxtanuclear replication factories were observed in most cells; however, rare intranuclear virus particles were also observed. The significance of the presence of virus particles within the nucleus is uncertain. Whole genome assembly indicated that the nucleotide sequence of the genome of this EfPV isolate was 99.7% identical to a previous isolate from big brown bats in Washington, USA between 2009 and 2011. This work demonstrates that bats are not resistant to the development of disease with viral infections and raises questions about the dogma of poxvirus intracytoplasmic replication.
Collapse
Affiliation(s)
| | | | | | | | - Vikram Misra
- University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
3
|
Valenza LD, Bishop T, Cramieri S, Wang J, Ploeg RJ. Pteropox infection in a juvenile grey-headed flying fox (Pteropus poliocephalus). Aust Vet J 2024; 102:222-225. [PMID: 38342493 DOI: 10.1111/avj.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/13/2024]
Abstract
A juvenile grey-headed flying fox (GHFF) (Pteropus poliocephalus) presented to the Australia Zoo Wildlife Hospital after a wildlife carer found the animal hanging on the outside of an aviary. On presentation, the animal was emaciated and moribund with disseminated, multifocal, depigmented and proliferative lesions on the wing membranes and skin of the neck. Histopathology revealed multiple, well-circumscribed proliferative epidermal lesions with intracytoplasmic inclusion bodies. A poxvirus was identified via transmission electron microscopy and next-generation sequencing (NGS). Analysis of sequences obtained demonstrated 99% nucleotide identity to Pteropox virus strain Australia (GenBank KU980965). To the authors' knowledge, this paper describes the first case of Pteropox virus infection in a GHFF.
Collapse
Affiliation(s)
- L D Valenza
- Australia Zoo Wildlife Hospital, 1638 Steve Irwin Way, Beerwah, Queensland, 4519, Australia
| | - T Bishop
- Australia Zoo Wildlife Hospital, 1638 Steve Irwin Way, Beerwah, Queensland, 4519, Australia
| | - S Cramieri
- Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, Victoria, 3219, Australia
| | - J Wang
- Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, Victoria, 3219, Australia
| | - R J Ploeg
- Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, Victoria, 3219, Australia
| |
Collapse
|
4
|
Pfaff F, Kramer K, King J, Franzke K, Rosenberger T, Höper D, König P, Hoffmann D, Beer M. Detection of Novel Poxvirus from Gray Seal (Halichoerus grypus), Germany. Emerg Infect Dis 2023; 29:1202-1205. [PMID: 37209672 DOI: 10.3201/eid2906.221817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
We detected a novel poxvirus from a gray seal (Halichoerus grypus) from the North Sea, Germany. The juvenile animal showed pox-like lesions and deteriorating overall health condition and was finally euthanized. Histology, electron microscopy, sequencing, and PCR confirmed a previously undescribed poxvirus of the Chordopoxvirinae subfamily, tentatively named Wadden Sea poxvirus.
Collapse
|
5
|
Rissmann M, Friedrichs V, Kley N, Straube M, Sadeghi B, Balkema-Buschmann A. Baseline of Physiological Body Temperature and Hematological Parameters in Captive Rousettus aegyptiacus and Eidolon helvum Fruit Bats. Front Physiol 2022; 13:910157. [PMID: 36105294 PMCID: PMC9465388 DOI: 10.3389/fphys.2022.910157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The discovery of bats as reservoir hosts for a number of highly pathogenic zoonotic agents has led to an increasing interest of infectious disease research in experimental studies with bats. Therefore, we established breeding colonies of Rousettus aegyptiacus and Eidolon helvum fruit bats, which both have been identified as reservoir hosts for relevant zoonotic disease agents, such as Marburg virus and Lagos bat virus. Since 2013, individuals of both species have been recruited to the Friedrich-Loeffler-Institut (FLI) from zoological gardens in Europe, to where these species had been introduced from the wild several decades ago. The aviaries have been designed according to national recommendations published by the Federal Ministry of Agriculture. Under these conditions, both species have been reproducing for years. To better understand the physiology of these animals, and to generate baseline knowledge for infection experiments, we monitored the body core temperatures of R. aegyptiacus bats in the aviaries, and found a circadian variation between 34°C and 41.5°C. We also determined the hematological parameters of both species, and detected specific differences between both bat species. For values of clinical chemistry, no correlation to age or sex was observed. However, species-specific differences were detected since ALT, BUN and CREA were found to be significantly higher in R. aegyptiacus and GLU and TP were significantly higher in E. helvum bats. A higher hematocrit, hemoglobin and red blood cell level was observed in subadult R. aegyptiacus, with hemoglobin and red blood cells also being significantly increased compared to E. helvum. Lymphocytes were found to be the dominant white blood cells in both species and are higher in female E. helvum. Neutrophil granulocytes were significantly higher in E. helvum bats. This underlines the necessity to define baseline profiles for each bat species prior to their use in experimental challenge.
Collapse
Affiliation(s)
- Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Nils Kley
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Martin Straube
- Landratsamt Ortenaukreis, Amt für Veterinärwesen und Lebensmittelüberwachung, Offenburg, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
- *Correspondence: Anne Balkema-Buschmann,
| |
Collapse
|
6
|
Cholleti H, de Jong J, Blomström AL, Berg M. Characterization of Pipistrellus pygmaeus Bat Virome from Sweden. Viruses 2022; 14:v14081654. [PMID: 36016275 PMCID: PMC9415950 DOI: 10.3390/v14081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing amounts of data indicate that bats harbor a higher viral diversity relative to other mammalian orders, and they have been recognized as potential reservoirs for pathogenic viruses, such as the Hendra, Nipah, Marburg, and SARS-CoV viruses. Here, we present the first viral metagenomic analysis of Pipistrellus pygmaeus from Uppsala, Sweden. Total RNA was extracted from the saliva and feces of individual bats and analyzed using Illumina sequencing. The results identified sequences related to 51 different viral families, including vertebrate, invertebrate, and plant viruses. These viral families include Coronaviridae, Picornaviridae, Dicistroviridae, Astroviridae, Hepeviridae, Reoviridae, Botourmiaviridae, Lispviridae, Totiviridae, Botoumiaviridae, Parvoviridae, Retroviridae, Adenoviridae, and Partitiviridae, as well as different unclassified viruses. We further characterized three near full-length genome sequences of bat coronaviruses. A phylogenetic analysis showed that these belonged to alphacoronaviruses with the closest similarity (78–99% at the protein level) to Danish and Finnish bat coronaviruses detected in Pipistrellus and Myotis bats. In addition, the full-length and the near full-length genomes of picornavirus were characterized. These showed the closest similarity (88–94% at the protein level) to bat picornaviruses identified in Chinese bats. Altogether, the results of this study show that Swedish Pipistrellus bats harbor a great diversity of viruses, some of which are closely related to mammalian viruses. This study expands our knowledge on the bat population virome and improves our understanding of the evolution and transmission of viruses among bats and to other species.
Collapse
Affiliation(s)
- Harindranath Cholleti
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, 750 07 Uppsala, Sweden; (A.-L.B.); (M.B.)
- Correspondence:
| | - Johnny de Jong
- Swedish Biodiversity Centre (CBM), Department of Urban and Rural Development, Swedish University of Agricultural Sciences (SLU), P.O. Box 7016, 750 07 Uppsala, Sweden;
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, 750 07 Uppsala, Sweden; (A.-L.B.); (M.B.)
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, 750 07 Uppsala, Sweden; (A.-L.B.); (M.B.)
| |
Collapse
|
7
|
Ramanantsalama RV, Goodman SM, Dietrich M, Lebarbenchon C. Interaction between Old World fruit bats and humans: From large scale ecosystem services to zoonotic diseases. Acta Trop 2022; 231:106462. [PMID: 35421381 DOI: 10.1016/j.actatropica.2022.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/01/2022]
Abstract
The Old World tropical and subtropical frugivorous bat genus Rousettus (Pteropodidae) contains species with broad distributions, as well as those occurring in restricted geographical areas, particularly islands. Herein we review the role of Rousettus as a keystone species from a global "One Health" approach and related to ecosystem functioning, zoonotic disease and public health. Rousettus are efficient at dispersing seeds and pollinating flowers; their role in forest regeneration is related to their ability to fly considerable distances during nightly foraging bouts and their relatively small body size, which allows them to access fruits in forested areas with closed vegetation. Rousettus are also reservoirs for various groups of pathogens (viruses, bacteria, fungi, protozoa), which, by definition, are infectious agents causing disease. The study of day roosts of different species of Rousettus and the successful establishment of captive breeding colonies have provided important details related to the infection dynamics of their associated pathogens. Large-scale conversion of forested areas into agricultural landscapes has increased contact between humans and Rousettus, therefore augmenting the chances of infectious agent spillover. Many crucial scientific details are still lacking related to members of this genus, which have direct bearing on the prevention of emerging disease outbreaks, as well as the conservation of these bats. The public should be better informed on the capacity of fruit bats as keystone species for large scale forest regeneration and in spreading pathogens. Precise details on the transmission of zoonotic diseases of public health importance associated with Rousettus should be given high priority.
Collapse
|
8
|
Boone JM, Fountain K, Williams J, Lloyd DH, Killick R, Rodriguez Barbón A, Stidworthy MF, Loeffler A. Diseases and histopathological findings from lesional pinnae of 10 bats. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Johann M. Boone
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | - Kay Fountain
- Department of Biology and Biochemistry University of Bath Claverton Down Bath UK
| | - Jonathan Williams
- Department of Pathobiology and Population Sciences Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | - David H. Lloyd
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | | | | | - Mark F. Stidworthy
- Pathology Division International Zoo Veterinary Group Station House, Keighley West Yorkshire UK
| | - Anette Loeffler
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| |
Collapse
|
9
|
Tan CW, Yang X, Anderson DE, Wang LF. Bat virome research: the past, the present and the future. Curr Opin Virol 2021; 49:68-80. [PMID: 34052731 DOI: 10.1016/j.coviro.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Bats have been increasingly recognised as an exceptional reservoir for emerging zoonotic viruses for the past few decades. Recent studies indicate that the unique bat immune system may be partially responsible for their ability to co-exist with viruses with minimal or no clinical diseases. In this review, we discuss the history and importance of bat virome studies and contrast the vast difference between such studies before and after the introduction of next generation sequencing (NGS) in this area of research. We also discuss the role of discovery serology and high-throughput single cell RNA-seq in future bat virome research.
Collapse
Affiliation(s)
- Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Xinglou Yang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; SingHealth Duke-NUS Global Health Institute, 169857, Singapore.
| |
Collapse
|
10
|
Israeli Rousettus aegyptiacus Pox Virus (IsrRAPXV) Infection in Juvenile Egyptian Fruit Bat ( Rousettus aegyptiacus): Clinical Findings and Molecular Detection. Viruses 2021; 13:v13030407. [PMID: 33806696 PMCID: PMC8001970 DOI: 10.3390/v13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
During 2019, five carcasses of juvenile Egyptian fruit bats (Rousettus aegyptiacus) were submitted to the Kimron Veterinary Institute. These bats exhibited typical poxvirus like lesion plaques of different sizes on the skin, abdomen and the ventral side of the wings. Clinical and histopathological findings suggested a poxvirus infection. Infectious virus was isolated from skin swabs, skin tissue and tongue of the dead bats and was further confirmed to be a Poxvirus by molecular diagnosis using PCR with pan-chordopoxviruses primers. All the dead bats were found positive for two Poxvirus genes encoding a metalloproteinase and DNA dependent DNA polymerase. In this study, a novel real time quantitative PCR (qPCR) assay was established to further confirmed the presence of specific poxvirus viral DNA in all pathologically tested tissues. Moreover, according to sequence analysis, the virus was found to be highly similar to the recently discovered Israeli Rousettus aegyptiacus Pox Virus (IsrRAPXV).
Collapse
|
11
|
David D, Davidson I, Berkowitz A, Karniely S, Edery N, Bumbarov V, Laskar O, Elazari-Volcani R. A novel poxvirus isolated from an Egyptian fruit bat in Israel. Vet Med Sci 2020; 6:587-590. [PMID: 32100464 PMCID: PMC7397903 DOI: 10.1002/vms3.233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An Egyptian fruit bat (Rousettus aegyptiacus) from the Zoological Gardens, at Tel Aviv, Israel, showed pox‐like clinical signs including vesicular and nodular skin lesions on the wings. Cell culture isolation, histopathology, electron microscopy and molecular analysis, revealed the presence of a novel bat poxvirus. Future research is needed to determine whether this virus can affect human health.
Collapse
Affiliation(s)
- Dan David
- Kimron Veterinary Institute, Bet Dagan, Israel
| | | | | | | | - Nir Edery
- Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Orly Laskar
- Department of Infectious Diseases, IIBR, Ness Ziona, Israel
| | | |
Collapse
|