1
|
Li J, Shi M, Wang Y, Liu J, Liu S, Kang W, Liu X, Chen X, Huang K, Liu Y. Probiotic-derived extracellular vesicles alleviate AFB1-induced intestinal injury by modulating the gut microbiota and AHR activation. J Nanobiotechnology 2024; 22:697. [PMID: 39529091 PMCID: PMC11555919 DOI: 10.1186/s12951-024-02979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aflatoxin B1 (AFB1) is a mycotoxin that widely found in the environment and mouldy foods. AFB1 initially targets the intestine, and AFB1-induced intestinal injury cannot be ignored. Lactobacillus amylovorus (LA), a predominant species of Lactobacillus, plays a role in carbohydrate metabolism. Extracellular vesicles (EVs), small lipid membrane vesicles, are widely involved in diverse cellular processes. However, the mechanism by which Lactobacillus amylovorus-QC1H-derived EVs (LA.EVs) protect against AFB1-induced intestinal injury remains unclear. RESULTS In our study, a new strain named Lactobacillus amylovorus-QC1H (LA-QC1H) was isolated from pig faeces. Then, EVs derived from LA-QC1H were extracted via ultracentrifugation. Our results showed that LA.EVs significantly alleviated AFB1-induced intestinal injury by inhibiting the production of proinflammatory cytokines, decreasing intestinal permeability and increasing the expression of tight junction proteins. Moreover, 16 S rRNA analysis revealed that LA.EVs modulated AFB1-induced gut dysbiosis in mice. However, LA.EVs did not exert beneficial effects in antibiotic-treated mice. LA.EVs treatment increased intestinal levels of indole-3-acetic acid (IAA) and activated intestinal aryl hydrocarbon receptor (AHR)/interleukin-22 (IL-22) signalling in AFB1-exposed mice. Inhibition of intestinal AHR signalling markedly weakened the protective effect of LA.EVs in AFB1-exposed mice. CONCLUSIONS LA.EVs alleviated AFB1-induced intestinal injury by modulating the gut microbiota, activating the intestinal AHR/IL-22 signalling, reducing the inflammatory response and promoting intestinal barrier repair in mice.
Collapse
Affiliation(s)
- Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yubo Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinyan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xianjiao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Nazdar N, Imani A, Abtahi Froushani SM, Farzaneh M, Sarvi Moghanlou K. Antioxidative properties, phenolic compounds, and in vitro protective efficacy of multi-herbal hydro-alcoholic extracts of ginger, turmeric, and thyme against the toxicity of aflatoxin B 1 on mouse macrophage RAW264.7 cell line. Food Sci Nutr 2024; 12:8013-8029. [PMID: 39479629 PMCID: PMC11521708 DOI: 10.1002/fsn3.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 11/02/2024] Open
Abstract
Aflatoxin B1 (AFB1), the most potent toxic and carcinogenic secondary fungal metabolite, has frequently been reported in food/feed. Nowadays, herbal extracts are considered safe dietary additives to reduce the toxicity of such compounds. The protective capability of various combinations of hydro-alcoholic extracts (HAEs) of ginger, turmeric, and Shirazi thyme, against the toxicity of AFB1 on the RAW264.7 cell line was investigated. The RAW264.7 cells were exposed to six different concentrations of AFB1 (0.09, 0.18, 0.37, 0.75, 1.5, and 3 μg mL-1) for 48 h to determine the IC50 of AFB1. AFB1 was estimated to have an IC50 of 1.5 μg mL-1 for RAW264.7 cells. Then, the cells were simultaneously incubated with 1.5 μg mL-1 AFB1 and the HAEs for 24 h. The HAEs significantly reduced the toxicity of AFB1 in RAW264.7 cells. HAE of Shirazi thyme showed the highest amount of total phenol content (TPC) and the highest DPPH• activity. In addition, a combination of ginger, turmeric, and Shirazi thyme extract showed the highest antioxidant activity. Rutin, quercetin, and apigenin were the main phenolic components of ginger HAE. A significantly positive correlation was observed between TPC of hydro-alcoholic extract with ferric reducing antioxidant power (FRAP) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) values. Consequently, the simultaneous consumption of such extracts is recommended to protect the cells against dietary toxins.
Collapse
Affiliation(s)
- Nina Nazdar
- Department of Fisheries, Faculty of Natural ResourcesUrmia UniversityUrmiaIran
| | - Ahmad Imani
- Department of Fisheries, Faculty of Natural ResourcesUrmia UniversityUrmiaIran
| | | | - Mohsen Farzaneh
- Department of AgricultureMedicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehranIran
| | | |
Collapse
|
3
|
Ye Y, Wang T, Wang JS, Ji J, Ning X, Sun X. Antibiotic altered liver damage induced by aflatoxin B1 exposure in mice by modulating the gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123291. [PMID: 38176639 DOI: 10.1016/j.envpol.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Aflatoxins B1 (AFB1) and antibiotic (AN) carry co-exposure risks, with the gut being a target organ for their combined effects. However, the current understanding of the impact of AN on gut and liver injury induced by AFB1 remains limited. In this study, we conducted a 9-week investigation into the implications of AN (ampicillin and penicillin) treatment on AFB1-induced intestinal and liver injury in C57BL/6J male mice fed a normal diet (ND) and a high-fat diet (HFD). The results showed that AN treatment significantly reduce the total number and diversity of intestinal species in both ND and HFD mice exposed to AFB1. Moreover, AN treatment alleviated AFB1-induced liver injury and lipid accumulation in mice on ND and HFD, while improving abnormal lipid metabolism in the liver and serum. However, AN treatment also promoted intestinal damage and reduced the levels of short-chain fatty acids in the gut. Correlation analysis demonstrated that, under the two dietary patterns, microorganisms across various genera were significantly positively or negatively correlated with alterations in liver, serum, and intestinal biochemical indexes. These genera include Akkermansia, Robinsoniella, Parabacteroides, Escherichia-Shigel, and Parabacteroides, Odoribacter. AN may alleviate long-term AFB1-induced liver injury through the regulation of intestinal microorganisms, with the effect being more pronounced in mice following an HFD pattern. These findings provide novel insights into the effects of AFB1 on the gut‒liver axis under complex exposure conditions, as well as the relationship between gut microbial homeostasis and liver injury across different dietary patterns.
Collapse
Affiliation(s)
- Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Tingwei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Xiao Ning
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing, 100050, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| |
Collapse
|
4
|
Tian Y, Dong PY, Liang SL, Li L, Zhang SE, Klinger FG, Shen W, Yan YY, Zhang XF. Aflatoxin B1 affects porcine alveolar macrophage growth through the calcium signaling pathway mediated by the ceRNA regulatory network. Mol Biol Rep 2023; 50:8237-8247. [PMID: 37572211 DOI: 10.1007/s11033-023-08672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Aflatoxin B1 (AFB1), one of the most prevalent contaminants in human and animal food, impairs the immune system, but information on the mechanisms of AFB1-mediated macrophage toxicity is still lacking. METHODS AND RESULTS In this study, for the first time, we employed whole transcriptome sequencing technology to explore the molecular mechanism by which AFB1 affects the growth of porcine alveolar macrophages (PAM). We found that AFB1 exposure reduced the proliferative capacity of PAM and prevented cell cycle progression. Based on whole transcriptome analysis, RT-qPCR, ICC and RNAi, we verified the role and regulatory mechanism of the competing endogenous RNA (ceRNA) network in the process of AFB1 exposure affecting the growth of PAM. CONCLUSIONS We found that AFB1 induced MSTRG.43,583, MSTRG.67,490, MSTRG.84,995, and MSTRG.89,935 to competitively bind miR-219a, miR-30b-3p, and miR-30c-1-3p, eliminating the inhibition of its target genes CACNA1S, RYR3, and PRKCG. This activated the calcium signaling pathway to regulate the growth of PAM. These results provide valuable information on the mechanism of AFB1 exposure induced impairment of macrophage function in humans and animals.
Collapse
Affiliation(s)
- Yu Tian
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, 266109, China
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Pei-Yu Dong
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Sheng-Lin Liang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Long Li
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Francesca Gioia Klinger
- Saint Camillus International, University of Health Sciences, Via di Sant Alessandro 8, Rome, 00131, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - You-Yu Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 13 Wuhan, 430023, China.
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Sun Y, Yao Z, Long M, Zhang Y, Huang K, Li L. Alveolar Macrophages Participate in the Promotion of Influenza Virus Infection by Aflatoxin B1 at an Early Stage. Toxins (Basel) 2023; 15:67. [PMID: 36668886 PMCID: PMC9863124 DOI: 10.3390/toxins15010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Aflatoxin B1 (AFB1), one of the most common environmental mycotoxin contaminations in food and feed, poses significant threats to human and animal health. Our previous study indicated that even non-toxic AFB1 concentrations could promote influenza virus replication and induce influenza virus-infected alveolar macrophages polarizing from M1 (immunostimulatory phenotype) to M2 (immunosuppressive phenotype) over time. However, whether AFB1 promotes influenza replication via modulating the polarization of alveolar macrophages is unknown. Here, we specifically depleted alveolar macrophages using clodronate-containing liposomes in swine influenza virus (SIV)-infected mice to explore the mechanism the promotion of SIV replication by AFB1. The results show that the depletion of alveolar macrophages significantly alleviated the AFB1-induced weight loss, inflammatory responses, and lung and immune organ damage of the SIV-infected mice after 14 days and greatly diminished the AFB1-promoted SIV replication. In contrast, the depletion of alveolar macrophages did not alleviate the AFB1-induced weight loss, and lung and immune organ damage of the SIV-infected mice after 28 days and slightly diminished the AFB1-promoted SIV replication. Collectively, the data indicate that alveolar macrophages play a crucial role the promotion of SIV infection by AFB1 in the early rather than late stage, and AFB1 can promote SIV replication by inducing alveolar macrophages to polarize towards M1 macrophages. This research provides novel targets for reducing the risk of AFB1-promoted influenza virus infection.
Collapse
Affiliation(s)
- Yuhang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoran Yao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Kehe Huang
- Department of Animal Nutrition and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Liu S, Li J, Kang W, Li Y, Ge L, Liu D, Liu Y, Huang K. Aflatoxin B1 Induces Intestinal Barrier Dysfunction by Regulating the FXR-Mediated MLCK Signaling Pathway in Mice and in IPEC-J2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:867-876. [PMID: 36579420 DOI: 10.1021/acs.jafc.2c06931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a widespread mycotoxin in food and feed. Although the liver is the main target organ of AFB1, the intestine is the first exposure organ to AFB1. However, the mechanism by which AFB1 induced intestinal barrier dysfunction via regulating the farnesoid X receptor (FXR)-mediated myosin light chain kinase (MLCK) signaling pathway has rarely been studied. In vivo, AFB1 exposure significantly decreased the small intestine length and increased the intestinal permeability. Meanwhile, AFB1 exposure markedly suppressed the protein expressions of FXR, ZO-1, occludin, and claudin-1 and enhanced the protein expression of MLCK. In vitro, AFB1 exposure induced intestinal barrier dysfunction by the elevation in the FITC-Dextran 4 kDa flux and inhibition in the transepithelial electrical resistance in a dose-dependent manner. In addition, AFB1 exposure downregulated the mRNA and protein expressions of FXR, ZO-1, occludin, and claudin-1, redistributed the ZO-1 protein, and enhanced the protein expressions of MLCK and p-MLC. However, fexaramine (Fex, FXR agonist) pretreatment markedly reversed the AFB1-induced FXR activity reduction, MLCK protein activation, and intestinal barrier impairment in vitro and in vivo. Moreover, pretreatment with the inhibition of MLCK with ML-7 significantly alleviated the AFB1-induced intestinal barrier dysfunction and tight junction disruption in vitro. In conclusion, AFB1 induced intestinal barrier impairment via regulating the FXR-mediated MLCK signaling pathway in vitro and in vivo and provided novel insights to prevent mycotoxin poisoning in the intestine.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
7
|
Wang W, Wang Y, Yang J, Wagner KM, Hwang SH, Cheng J, Singh N, Edwards P, Morisseau C, Zhang G, Panigrahy D, Hammock BD. Aflatoxin B 1 exposure disrupts the intestinal immune function via a soluble epoxide hydrolase-mediated manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114417. [PMID: 36525946 PMCID: PMC9879385 DOI: 10.1016/j.ecoenv.2022.114417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 05/05/2023]
Abstract
Aflatoxin B1 (AFB1) contamination in food and feed leads to severe global health problems. Acting as the frontier immunological barrier, the intestinal mucosa is constantly challenged by exposure to foodborne toxins such as AFB1 via contaminated diets, but the detailed toxic mechanism and endogenous regulators of AFB1 toxicity are still unclear. Here, we showed that AFB1 disrupted intestinal immune function by suppressing macrophages, especially M2 macrophages, and antimicrobial peptide-secreting Paneth cells. Using an oxylipinomics approach, we identified that AFB1 immunotoxicity is associated with decreased epoxy fatty acids, notably epoxyeicosatrienoic acids, and increased soluble epoxide hydrolase (sEH) levels in the intestine. Furthermore, sEH deficiency or inhibition rescued the AFB1-compromised intestinal immunity by restoring M2 macrophages as well as Paneth cells and their-derived lysozyme and α-defensin-3 in mice. Altogether, our study demonstrates that AFB1 exposure impairs intestinal immunity, at least in part, in a sEH-mediated way. Moreover, the present study supports the potential application of pharmacological intervention by inhibiting the sEH enzyme in alleviating intestinal immunotoxicity and associated complications caused by AFB1 global contamination.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Karen M Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jeff Cheng
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nalin Singh
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Patricia Edwards
- Center for Health and the Environment, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Guodong Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Dipak Panigrahy
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
Zhang J, Hu S, Zhao C, Zhou Y, Zhang L, Liu H, Zhou P, Li S, Fu L, Zheng Z, Xiang Y, Xu X, Ruan J, Li X, Sun L, Cao G, Zhao S, Wang X, Xie S. Genome-Scale CRISPR Knockout Screening Identifies BACH1 as a Key Regulator of Aflatoxin B 1-Induced Oxidative Damage. Antioxidants (Basel) 2022; 11:antiox11091787. [PMID: 36139865 PMCID: PMC9495794 DOI: 10.3390/antiox11091787] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin B1 (AFB1) is amongst the mycotoxins commonly affecting human and animal health, raising global food safety and control concerns. The mechanisms underlying AFB1 toxicity are poorly understood. Moreover, antidotes against AFB1 are lacking. Genome-wide CRISPR/Cas9 knockout screening in porcine kidney cells identified the transcription factor BTB and CNC homolog 1 (BACH1) as a gene required for AFB1 toxicity. The inhibition of BACH1 expression in porcine kidney cells and human hepatoma cells resulted in increased resistance to AFB1. BACH1 depletion attenuates AFB1-induced oxidative damage via the upregulation of antioxidant genes. Subsequently, virtual structural screening identified the small molecule 1-Piperazineethanol, α-[(1,3-benzodioxol-5-yloxy)methyl] -4-(2-methoxyphenyl) (M2) as an inhibitor of BACH1. M2 and its analogues inhibited AFB1-induced porcine and human cell death in vitro, while M2 administration significantly improved AFB1-induced symptoms of weight loss and liver injury in vivo. These findings demonstrate that BACH1 plays a central role in AFB1-induced oxidative damage by regulating antioxidant gene expression. We also present a potent candidate small-molecule inhibitor in developing novel treatments for AFB1 toxicity.
Collapse
Affiliation(s)
- Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Siyi Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China;
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Yuan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Lu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Peng Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Sheng Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Zhuqing Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Yue Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (L.S.); (G.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Lvhui Sun
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (L.S.); (G.C.)
| | - Gang Cao
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (L.S.); (G.C.)
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (L.S.); (G.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.Z.); (X.W.); (S.X.)
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: (S.Z.); (X.W.); (S.X.)
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (C.Z.); (Y.Z.); (L.Z.); (H.L.); (P.Z.); (S.L.); (L.F.); (Z.Z.); (Y.X.); (X.X.); (J.R.); (X.L.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (L.S.); (G.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.Z.); (X.W.); (S.X.)
| |
Collapse
|
9
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Ma J, Liu Y, Guo Y, Ma Q, Ji C, Zhao L. Transcriptional Profiling of Aflatoxin B1-Induced Oxidative Stress and Inflammatory Response in Macrophages. Toxins (Basel) 2021; 13:401. [PMID: 34199697 PMCID: PMC8228812 DOI: 10.3390/toxins13060401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a highly toxic mycotoxin that causes severe suppression of the immune system of humans and animals, as well as enhances reactive oxygen species (ROS) formation, causing oxidative damage. However, the mechanisms underlying the ROS formation and immunotoxicity of AFB1 are poorly understood. This study used the mouse macrophage RAW264.7 cell line and whole-transcriptome sequencing (RNA-Seq) technology to address this knowledge-gap. The results show that AFB1 induced the decrease of cell viability in a dose- and time-dependent manner. AFB1 also significantly increased intracellular productions of ROS and malondialdehyde and decreased glutathione levels. These changes correlated with increased mRNA expression of NOS2, TNF-α and CXCL2 and decreased expression of CD86. In total, 783 differentially expressed genes (DEGs) were identified via RNA-Seq technology. KEGG analysis of the oxidative phosphorylation pathway revealed that mRNA levels of ND1, ND2, ND3, ND4, ND4L, ND5, ND6, Cyt b, COX2, ATPeF0A and ATPeF08 were higher in AFB1-treated cells than control cells, whereas 14 DEGs were downregulated in the AFB1 group. Furthermore, seven immune regulatory pathways mediated by oxidative stress were identified by KEGG analysis. Altogether, these data suggest that AFB1 induces oxidative stress in macrophages via affecting the respiratory chain, which leads to the activation of several signaling pathways related to the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.M.); (Y.L.); (Y.G.); (Q.M.); (C.J.)
| |
Collapse
|
11
|
Pickova D, Ostry V, Toman J, Malir F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins (Basel) 2021; 13:399. [PMID: 34205163 PMCID: PMC8227755 DOI: 10.3390/toxins13060399] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
In the early 1960s the discovery of aflatoxins began when a total of 100,000 turkey poults died by hitherto unknown turkey "X" disease in England. The disease was associated with Brazilian groundnut meal affected by Aspergillus flavus. The toxin was named Aspergillus flavus toxin-aflatoxin. From the point of view of agriculture, aflatoxins show the utmost importance. Until now, a total of 20 aflatoxins have been described, with B1, B2, G1, and G2 aflatoxins being the most significant. Contamination by aflatoxins is a global health problem. Aflatoxins pose acutely toxic, teratogenic, immunosuppressive, carcinogenic, and teratogenic effects. Besides food insecurity and human health, aflatoxins affect humanity at different levels, such as social, economical, and political. Great emphasis is placed on aflatoxin mitigation using biocontrol methods. Thus, this review is focused on aflatoxins in terms of historical development, the principal milestones of aflatoxin research, and recent data on their toxicity and different ways of mitigation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
12
|
Pang VF, Chiang CF, Chang CC. The in vitro effects of aflatoxin B 1 on physiological functions of swine alveolar macrophages. Vet Med Sci 2020; 6:919-925. [PMID: 32594663 PMCID: PMC7738744 DOI: 10.1002/vms3.313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
The toxic effects of aflatoxin B1 (AFB1 ) on the physiological functions of swine alveolar macrophages (SAM) were investigated. Freshly isolated SAM were incubated with various AFB1 concentrations (1.6 × 10-1 - 1.6 × 105 nmol/L) and time periods, and their phagocytic ability, synthesis of DNA, RNA and protein, and cell activation by lipopolysaccharide (LPS), were analysed. Results demonstrated that a significant (p < .05) reduction (60%) in Staphylococcus aureus uptaken by SAM appeared 3 hr after AFB1 (>16 nmol/L) treatment. The synthesis of DNA, RNA and protein were markedly reduced, among which DNA and protein synthesis were affected more noticeably. The activation of SAM by LPS was significantly (p < .05) suppressed when the concentration of AFB1 reached 1.6 × 103 nmol/L. In general, most of the analysed effects were more prominent as AFB1 concentration or incubation period increased. Taken together, AFB 1 could elicit significant adverse effects on the physiological functions of SAM. Exposure of pigs to aflatoxin-contaminated feed may increase their susceptibility to various secondary infections.
Collapse
Affiliation(s)
- Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Cheng Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|