1
|
Lin H, Chen W, Zhou R, Yang J, Wu Y, Zheng J, Fei S, Wu G, Sun Z, Li J, Chen X. Characteristics of the plasmid-mediated colistin-resistance gene mcr-1 in Escherichia coli isolated from a veterinary hospital in Shanghai. Front Microbiol 2022; 13:1002827. [PMID: 36386648 PMCID: PMC9650080 DOI: 10.3389/fmicb.2022.1002827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 09/09/2023] Open
Abstract
The mobile colistin-resistance (mcr)-1 gene is primarily detected in Enterobacteriaceae species, such as Escherichia coli and Salmonella enterica, and represents a significant public health threat. Herein, we investigated the prevalence and characteristics of mcr-1-positive E. coli (MCRPEC) in hospitalized companion animals in a pet hospital in Shanghai, China, from May 2021 to July 2021. Seventy-nine non-duplicate samples were collected from the feces (n = 52) and wounds (n = 20) of cats and dogs and the surrounding hospital environment (n = 7). Seven MCRPEC strains, identified using screening assays and polymerase chain reaction, exhibited multidrug-resistant phenotypes in broth-microdilution and agar-dilution assays. Based in whole-genome sequencing and bioinformatics analyses, all seven isolates were determined to belong to sequence type (ST) 117. Moreover, the Incl2 plasmid was prevalent in these MCRPEC isolates, and the genetic environment of the seven E. coli strains was highly similar to that of E. coli SZ02 isolated from human blood. The isolates also harbored the β-lactamase gene bla CTX-M-65, and florfenicol resistance gene floR, among other resistance genes. Given that horizontal transfer occurred in all seven strains, E. coli plasmid transferability may accelerate the emergence of multidrug-resistant bacteria and may be transmitted from companion animals to humans. Therefore, the surveillance of MCRPEC isolates among companion animals should be strengthened.
Collapse
Affiliation(s)
- Hongguang Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Rushun Zhou
- Hunan Provincial Institution of Veterinary Drug and Feed Control, Changsha, Hunan, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiaomei Zheng
- Changsha Animal and Plant Disease Control Center, Changsha, Hunan, China
| | - Shuyue Fei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Guiting Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
2
|
Occurrence and Biological Cost of mcr-1-Carrying Plasmids Co-harbouring Beta-Lactamase Resistance Genes in Zoonotic Pathogens from Intensive Animal Production. Antibiotics (Basel) 2022; 11:antibiotics11101356. [PMID: 36290014 PMCID: PMC9598650 DOI: 10.3390/antibiotics11101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Colistin is classified as a high-priority critical antimicrobial by the World Health Organization (WHO). A better understanding of the biological cost imposed by mcr-plasmids is paramount to comprehending their spread and may facilitate the decision about the ban of colistin in livestock. This study aimed to assess the prevalence of mcr and ESBL genes from 98 Escherichia coli and 142 Salmonella enterica isolates from food-producing animals and the impact of the mcr-1 acquisition on bacterial fitness. Only mcr-1 was identified by multiplex PCR (mcr-1 to mcr-10) in 15.3% of E. coli. Colistin MICs ranged between 8−32 mg/L. In four isolates, blaTEM-1, blaCTX-M-1, and blaCTX-M-15 co-existed with mcr-1. The IncH12, IncHI1, IncP, IncN, and IncI plasmids were transferred by conjugation to E. coli J53 at frequencies of 10−7 to 10−2 cells/recipient. Growth kinetics assays showed that transconjugants had a significantly lower growth rate than the recipient (p < 0.05), and transconjugants’ average growth rate was higher in the absence than in the presence of colistin (1.66 versus 1.32 (p = 0.0003)). Serial transfer assay during 10 days demonstrated that plasmid retention ranged from complete loss to full retention. Overall, mcr-1-bearing plasmids impose a fitness cost, but the loss of plasmids is highly variable, suggesting that other factors beyond colistin pressure regulate the plasmid maintenance in a bacterial population, and colistin withdrawal will not completely lead to a decrease of mcr-1 levels.
Collapse
|
3
|
Vogt NA, Hetman BM, Pearl DL, Vogt AA, Reid-Smith RJ, Parmley EJ, Janecko N, Bharat A, Mulvey MR, Ricker N, Bondo KJ, Allen SE, Jardine CM. Using whole-genome sequence data to examine the epidemiology of Salmonella, Escherichia coli and associated antimicrobial resistance in raccoons (Procyon lotor), swine manure pits, and soil samples on swine farms in southern Ontario, Canada. PLoS One 2021; 16:e0260234. [PMID: 34793571 PMCID: PMC8601536 DOI: 10.1371/journal.pone.0260234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
To better understand the contribution of wildlife to the dissemination of Salmonella and antimicrobial resistance in Salmonella and Escherichia coli, we examined whole-genome sequence data from Salmonella and E. coli isolates collected from raccoons (Procyon lotor) and environmental sources on farms in southern Ontario. All Salmonella and phenotypically resistant E. coli collected from raccoons, soil, and manure pits on five swine farms as part of a previous study were included. We assessed for evidence of potential transmission of these organisms between different sources and farms utilizing a combination of population structure assessments (using core-genome multi-locus sequence typing), direct comparisons of multi-drug resistant isolates, and epidemiological modeling of antimicrobial resistance (AMR) genes and plasmid incompatibility (Inc) types. Univariable logistic regression models were fit to assess the impact of source type, farm location, and sampling year on the occurrence of select resistance genes and Inc types. A total of 159 Salmonella and 96 resistant E. coli isolates were included. A diversity of Salmonella serovars and sequence types were identified, and, in some cases, we found similar or identical Salmonella isolates and resistance genes between raccoons, soil, and swine manure pits. Certain Inc types and resistance genes associated with source type were consistently more likely to be identified in isolates from raccoons than swine manure pits, suggesting that manure pits are not likely a primary source of those particular resistance determinants for raccoons. Overall, our data suggest that transmission of Salmonella and AMR determinants between raccoons and swine manure pits is uncommon, but soil-raccoon transmission appears to be occurring frequently. More comprehensive sampling of farms, and assessment of farms with other livestock species, as well as additional environmental sources (e.g., rivers) may help to further elucidate the movement of resistance genes between these various sources.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
| | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Adam A. Vogt
- Independent Researcher, Mississauga, Ontario, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Samantha E. Allen
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
- Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Wang X, Zhai Z, Zhao X, Zhang H, Jiang H, Wang X, Wang H, Chang W. Occurrence and characteristics of Escherichia coli mcr-1-like in rabbits in Shandong, China. Vet Med Sci 2020; 7:219-225. [PMID: 33012114 PMCID: PMC7840214 DOI: 10.1002/vms3.340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Polymyxin is regarded as the last retort to fight against multidrug‐resistant (MDR) Enterobacteriaceae. The emergency and spread of polymyxin‐associated resistance gene mcr‐1 evoked great panic of no medicine to cure the bacterial infection in society. mcr‐1 is widespread in domestic and wild animals. Therefore, continuous monitoring of its prevalence and characteristics is required. In this study, we used a polymerase chain reaction (PCR)‐based method to detect the mcr‐1 of Escherichia coli isolated from rabbits of Tai'an, China, and determined the characteristics of mcr‐1‐bearing plasmids. A total of 55 non‐duplicated E. coli was recovered from the swabs of rabbit faeces. Plasmid profiling, plasmid and chromosome PCR, complete genome sequencing, a conjugation experiment, lactose fermentation experiment, multilocus sequence typing and polymyxin resistance tests were performed to determine the characteristics of mcr‐1‐bearing plasmids. 14.6% (8/55) of the specimens were mcr‐1 positive. The mcr‐1‐positive E. coli harboured more drug‐resistant genes compared with the mcr‐1‐negative specimens, and results showed four sequence types. Overall, these findings suggested the possible threat of the transmission of mcr‐1 from rabbits to humans, especially since the gene is located on transferable plasmids making horizontal transfer relatively easy. Since food‐producing animals are necessary for our daily diet, worldwide cooperation is needed in fighting the spread of this drug resistance gene to avoid human infections with MDR pathogenic bacteria.
Collapse
Affiliation(s)
- Xinxing Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhenzhen Zhai
- Postdoctoral Scientific Research Station, Tai'an City Central Hospital, Tai'an, China
| | - Xiaonan Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongna Zhang
- Department of Teaching Affairs, Hebei University of Economics and Business, Shijiazhuang, China
| | - Hanming Jiang
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xuepeng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hairong Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Weishan Chang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|