1
|
Estrada-Hernández CA, Becerra-Cedillo MB, Hernández Velázquez IA, Mejía-Buenfil HE, Olivera-Martínez T, Salto-González IB, Torres-López F, Quirasco M. Microbiological Evaluation of Two Mexican Artisanal Cheeses: Analysis of Foodborne Pathogenic Bacteria in Cotija Cheese and Bola de Ocosingo Cheese by qPCR. Foods 2024; 13:2824. [PMID: 39272589 PMCID: PMC11394692 DOI: 10.3390/foods13172824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cotija and Bola de Ocosingo are artisanal ripened cheeses produced in Mexico. Both are made with raw bovine milk from free-grazing cows and with no starter cultures. Unlike culture-based techniques, molecular methods for pathogen detection in food allow a shorter turnaround time, higher detection specificity, and represent a lower microbiological risk for the analyst. In the present investigation, we analyzed 111 cheese samples (95 Cotija and 16 Bola de Ocosingo) by qPCR (TaqMan®) after an enrichment-culture step specific to each foodborne bacterium. The results showed that 100% of the samples were free of DNA from Listeria monocytogenes, Brucella spp., Escherichia coli enterotoxigenic (ETEC), and O157:H7; 9% amplified Salmonella spp. DNA; and 11.7%, Staphylococcus aureus DNA. However, the threshold cycle (Ct) values of the amplified targets ranged between 23 and 30, indicating DNA from non-viable microorganisms. Plate counts supported this assumption. In conclusion, 100% of the cheeses analyzed were safe to consume, and the enrichment step before DNA extraction proved essential to discern between viable and non-viable microorganisms. Hygienic milking, milk handling, cheese manufacturing, and ripening are crucial to achieve an adequate microbiological quality of cheeses made with raw milk.
Collapse
Affiliation(s)
- Cindy Adriana Estrada-Hernández
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Belén Becerra-Cedillo
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Irma Angélica Hernández Velázquez
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Hermann E Mejía-Buenfil
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Tania Olivera-Martínez
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - I Berenice Salto-González
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Frida Torres-López
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Maricarmen Quirasco
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Jiang Y, Pan Y, Yin J. Prevalence, toxin-genotype distribution, and transmission of Clostridium perfringens from the breeding and milking process of dairy farms. Food Microbiol 2024; 120:104485. [PMID: 38431330 DOI: 10.1016/j.fm.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to elucidate the distribution, transmission, and cross-contamination of Clostridium perfringens during the breeding and milking process from dairy farms. The prevalence of 22.3% (301/1351) yielded 494 C. perfringens isolates; all isolates were type A, except for one type D, and 69.8% (345/494) of the isolates carried atyp. cpb2 and only 0.6% (3/494) of the isolates carried cons. cpb2. C. perfringens detected throughout the whole process but without type F. 150 isolates were classified into 94 pulsed-field gel electrophoresis (PFGE) genotypes; among them, six clusters contained 34 PFGE genotypes with 58.0% isolates which revealed epidemic correlation and genetic diversity; four PFGE genotypes (PT57, PT9, PT61, and PT8) were the predominant genotypes. The isolates from different farms demonstrated high homology. Our study confirmed that C. perfringens demonstrated broad cross-contamination from nipples and hides of dairy cattle, followed by personnel and tools and air-introduced raw milk during the milking process. In conclusion, raw milk could serve as a medium for the transmission of C. perfringens, which could result in human food poisoning. Monitoring and controlling several points of cross-contamination during the milking process are essential as is implementing stringent hygiene measures to prevent further spread and reduce the risk of C. perfringens infection.
Collapse
Affiliation(s)
- Yanfen Jiang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Yifan Pan
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jingyi Yin
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| |
Collapse
|
3
|
B. Salman M, Zin Eldin AIA, Eissa N, Maher A, Aish AE, El-Moez SIA. Evaluation of the effectiveness of some essential oils against zoonotic methicillin-resistant Staphylococcus aureus isolated from dairy products and humans. J Adv Vet Anim Res 2024; 11:306-316. [PMID: 39101082 PMCID: PMC11296189 DOI: 10.5455/javar.2024.k778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 02/17/2024] [Indexed: 08/06/2024] Open
Abstract
Objective Staphylococcus aureus (S. aureus) is a zooanthroponotic, nosocomial, and community-associated pathogen that threatens livestock management and even public health. The goal of this investigation was to clarify the role of S. aureus in zoonotic illnesses. Besides that, a novel trial was conducted in the current Egyptian study using oil extracts such as cactus oil, tea oil, geranium oil, and thyme oil to demonstrate the susceptibility of methicillin-resistant S. aureus (MRSA) isolates to these organic oils in response to the alarming global concern regarding the decreased susceptibility of S. aureus to known antibiotics, which exacerbates control and treatment protocols. Materials and Methods A total of 110 samples (45 raw cattle milk samples, 35 Karish cheese samples, and 30 human sputum samples) were collected. The bacterium was identified via traditional culturing methods, Gram staining, and the application of several biochemical tests. After that, various kinds of known commercial antibiotics were used to detect the antimicrobial susceptibility (AMS) of the obtained isolates. Furthermore, conventional polymerase chain reaction (PCR) testing was performed to identify S. aureus (nuc gene) and MRSA (mecA gene), with further application of multiplex PCR for screening of all the obtained isolates for vancomycin resistance via targeting vanA, vanB, and vanC genes. Finally, the agar gel diffusion method was performed to assess the antibacterial activity of four plant extracts (cactus oil, tea oil, geranium oil, and thyme oil) against the obtained MRSA. Results The culturing method revealed S. aureus positivity in raw cattle milk (13.33%), in Karish cheese (28.57%), and in human samples (20%). The obtained isolates showed mainly resistance to amoxicillin-clavulanic and ampicillin antibiotics, while the dairy samples showed further resistance against ceptaxime and an intermediate reaction against erythromycin. On the molecular side, PCR positivity was present in human samples (10%), raw cow milk (13.33%), and Karish cheese (14.29%). Nine of the fourteen PCR isolates were methicillin-resistant S. aureus (MRSA) isolates. Comparing the four oil extracts against the acquired MRSA isolates, cactus oil extract proved to be the most effective. Conclusion The study's results are highly promising as they support the notion that certain essential oils possess strong antimicrobial properties against zoonotic S. aureus, thereby reducing the excessive use of antibiotics in veterinary and medical settings.
Collapse
Affiliation(s)
- Marwa B. Salman
- Department of Zoonotic Diseases, National Research Center (NRC), Cairo, Egypt
| | | | - Nourhan Eissa
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - Ahmed Maher
- Department of Zoonotic Diseases, National Research Center (NRC), Cairo, Egypt
| | - Abd-Elghany Aish
- Department of Hepatogastroenterology and Infectious Diseases, Shebin-Elkom Teaching Hospitals, Menoufia University, Menoufia, Egypt
| | | |
Collapse
|
4
|
Khairullah AR, Kurniawan SC, Sudjarwo SA, Effendi MH, Widodo A, Moses IB, Hasib A, Zahra RLA, Gelolodo MA, Kurniawati DA, Riwu KHP, Silaen OSM, Afnani DA, Ramandinianto SC. Kinship analysis of mecA gene of methicillin-resistant Staphylococcus aureus isolated from milk and risk factors from the farmers in Blitar, Indonesia. Vet World 2024; 17:216-225. [PMID: 38406357 PMCID: PMC10884576 DOI: 10.14202/vetworld.2024.216-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Aim There are numerous reports of subclinical mastitis cases in Blitar, which is consistent with the region's high milk production and dairy cattle population. Staphylococcus aureus, which is often the cause of mastitis cases, is widely known because of its multidrug-resistant properties and resistance to β-lactam antibiotic class, especially the methicillin-resistant S. aureus (MRSA) strains. This study aimed to molecular detection and sequence analysis of the mecA gene in milk and farmer's hand swabs to show that dairy cattle are reservoirs of MRSA strains. Materials and Methods A total of 113 milk samples and 39 farmers' hand swab samples were collected from a dairy farm for the isolation of S. aureus using Mannitol salt agar. The recovered isolates were further characterized using standard microbiological techniques. Isolates confirmed as S. aureus were tested for sensitivity to antibiotics. Oxacillin Resistance Screening Agar Base testing was used to confirm the presence of MRSA, whereas the mecA gene was detected by polymerase chain reaction and sequencing. Results A total of 101 samples were confirmed to be S. aureus. There were 2 S. aureus isolates that were multidrug-resistant and 14 S. aureus isolates that were MRSA. The mecA gene was detected in 4/14 (28.6%) phenotypically identified MRSA isolates. Kinship analysis showed identical results between mecA from milk and farmers' hand swabs. No visible nucleotide variation was observed in the two mecA sequences of isolates from Blitar, East Java. Conclusion The spread of MRSA is a serious problem because the risk of zoonotic transmission can occur not only to people who are close to livestock in the workplace, such as dairy farm workers but also to the wider community through the food chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Sri Agus Sudjarwo
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Jl. Dharmawangsa Dalam Selatan No. 28-30, Kampus B Airlangga, Surabaya 60115, East Java, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki 480211, Nigeria
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Queensland, Australia
| | - Reichan Lisa Az Zahra
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, East Nusa Tenggara, Indonesia
| | - Dyah Ayu Kurniawati
- Indonesia Research Center for Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6 Senen, Jakarta 10430, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | | |
Collapse
|
5
|
Li S, Nie L, Wang Y, Wang Y, Fan D, Wang J, Hu Y, Dong L, Zhang Y, Wang S. Detection of β-lactoglobulin under different thermal-processing conditions by immunoassay based on nanobody and monoclonal antibody. Food Chem 2023; 424:136337. [PMID: 37209435 DOI: 10.1016/j.foodchem.2023.136337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
The problems of inaccurate detection values of thermal-processed β-lactoglobulin (β-LG) content seriously affect the screening of allergens. A monoclonal antibody (mAb) against β-LG was successfully prepared and a highly sensitive sandwich ELISA (sELISA) was constructed with specific nanobody (Nb) as the capture antibody with detection limit of 0.24 ng/mL. Based on this sELISA, the ability of Nb and mAb to recognize β-LG and β-LG interacting with milk components was explored. Combined with protein structure analysis to elaborate the mechanism of shielding β-LG antigen epitopes during thermal-processing, thus enabling the differentiation between pasteurized and ultra-high temperature sterilized milk, the detection of milk content in milk-containing beverages, and the highly sensitive detection and analysis of β-LG allergens in dairy-free products. The method provides methodological support for identifying the quality of dairy products and reducing the risk of β-LG contamination in dairy-free products.
Collapse
Affiliation(s)
- Shijie Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Linqing Nie
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - YaYa Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Gajewska J, Zakrzewski A, Chajęcka-Wierzchowska W, Zadernowska A. Meta-analysis of the global occurrence of S. aureus in raw cattle milk and artisanal cheeses. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Dogan Ü, Sucularlı F, Yildirim E, Cetin D, Suludere Z, Boyaci IH, Tamer U. Escherichia coli Enumeration in a Capillary-Driven Microfluidic Chip with SERS. BIOSENSORS 2022; 12:765. [PMID: 36140150 PMCID: PMC9497094 DOI: 10.3390/bios12090765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Pathogen detection is still a challenging issue for public health, especially in food products. A selective preconcentration step is also necessary if the target pathogen concentration is very low or if the sample volume is limited in the analysis. Plate counting (24-48 h) methods should be replaced by novel biosensor systems as an alternative reliable pathogen detection technique. The usage of a capillary-driven microfluidic chip is an alternative method for pathogen detection, with the combination of surface-enhanced Raman scattering (SERS) measurements. Here, we constructed microchambers with capillary microchannels to provide nanoparticle-pathogen transportation from one chamber to the other. Escherichia coli (E. coli) was selected as a model pathogen and specific antibody-modified magnetic nanoparticles (MNPs) as a capture probe in a complex milk matrix. MNPs that captured E. coli were transferred in a capillary-driven microfluidic chip consisting of four chambers, and 4-aminothiophenol (4-ATP)-labelled gold nanorods (Au NRs) were used as the Raman probe in the capillary-driven microfluidic chip. The MNPs provided immunomagnetic (IMS) separation and preconcentration of analytes from the sample matrix and then, 4-ATP-labelled Au NRs provided an SERS response by forming sandwich immunoassay structures in the last chamber of the capillary-driven microfluidic chip. The developed SERS-based method could detect 101-107 cfu/mL of E. coli with the total analysis time of less than 60 min. Selectivity of the developed method was also tested by using Salmonella enteritidis (S. enteritidis) and Staphylococcus aureus (S. aureus) as analytes, and very weak signals were observed.
Collapse
Affiliation(s)
- Üzeyir Dogan
- Department of Analytical Chemistry, Faculty of Pharmacy, Düzce University, 81620 Düzce, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Türkiye
| | - Ferah Sucularlı
- Aselsan A.Ş., Radar, Electronic Warfare Systems Business Sector, 06172 Ankara, Türkiye
| | - Ender Yildirim
- Department of Mechanical Engineering, Faculty of Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Türkiye
| | - Demet Cetin
- Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, Besevler, 06500 Ankara, Türkiye
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Besevler, 06500 Ankara, Türkiye
| | - Ismail Hakkı Boyaci
- Department of Food Engineering, Hacettepe University, Beytepe, 06800 Ankara, Türkiye
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Türkiye
| |
Collapse
|