1
|
Allington G, Mehta NH, Dennis E, Mekbib KY, Reeves B, Kiziltug E, Chen S, Zhao S, Duy PQ, Saleh M, Ang LC, Fan B, Nelson-Williams C, Moreno-de-Luca A, Haider S, Lifton RP, Alper SL, McGee S, Jin SC, Kahle KT. De novo variants disrupt an LDB1-regulated transcriptional network in congenital ventriculomegaly. Brain 2025; 148:1817-1828. [PMID: 39680505 DOI: 10.1093/brain/awae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 12/18/2024] Open
Abstract
Congenital hydrocephalus, characterized by cerebral ventriculomegaly, is among the most common and least understood paediatric neurosurgical disorders. We have identified, in the largest assembled cerebral ventriculomegaly cohort (2697 parent-proband trios), an exome-wide significant enrichment of protein-altering de novo variants in LDB1 (P = 1.11 × 10-15). Eight unrelated patients with ventriculomegaly, developmental delay and dysmorphic features harboured loss-of-function de novo variants that truncate carboxy-terminal LIM interaction domain of LDB1, which regulates assembly of LIM homeodomain-containing transcriptional modulators. Integrative multiomic analyses suggest that LDB1 is a key transcriptional regulator in ventricular neuroprogenitors through its binding to LIM-homeodomain proteins, including SMARCC1 and ARID1B. Indeed, LIM-homeodomain-containing genes carry a disproportionate burden of protein-damaging de novo variants in our cohort, with SMARCC1 (P = 5.83 × 10-9) and ARID1B (P = 1.80 × 10-17) surpassing exome-wide significance thresholds. These data identify LBD1 as a novel neurodevelopmental disorder gene and suggest that an LDB1-regulated transcriptional programme is essential for human brain morphogenesis.
Collapse
Affiliation(s)
- Garrett Allington
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, New York Presbyterian Hospital & Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Benjamin Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shuang Chen
- School of Pharmacy, University College London, London WC1E 6BT, UK
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Maha Saleh
- Clinical Genetics, Department of Pediatrics, London Health Sciences Centre, London, Ontario N6A 5W9, Canada
| | - Lee C Ang
- Department of Pathology, London Health Sciences Centre and Western University, London, Ontario N6A 5C1, Canada
| | - Baojian Fan
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrés Moreno-de-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario K7L 2V7, Canada
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1E 6BT, UK
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
2
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
3
|
Zhang Y, Lowe S, Ding AZ, Li X. Notch-dependent binary fate choice regulates the Netrin pathway to control axon guidance of Drosophila visual projection neurons. Cell Rep 2023; 42:112143. [PMID: 36821442 PMCID: PMC10124989 DOI: 10.1016/j.celrep.2023.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Notch-dependent binary fate choice between sister neurons is one of the mechanisms to generate neural diversity. How these upstream neural fate specification programs regulate downstream effector genes to control axon targeting and neuropil assembly remains less well understood. Here, we report that Notch-dependent binary fate choice in Drosophila medulla neurons is required to regulate the Netrin axon guidance pathway, which controls targeting of transmedullary (Tm) neurons to lobula. In medulla neurons of Notch-on hemilineage composed of mostly lobula-targeting neurons, Notch signaling is required to activate the expression of Netrin-B and repress the expression of its repulsive receptor Unc-5. Turning off Unc-5 is necessary for Tm neurons to target lobula. Furthermore, Netrin-B provided by Notch-on medulla neurons is required for correct targeting of Tm axons from later-generated medulla columns. Thus, the coordinate regulation of Netrin pathway components by Notch signaling ensures correct targeting of Tm axons and contributes to the neuropil assembly.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Scott Lowe
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew Z Ding
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Ghazale H, Park E, Vasan L, Mester J, Saleh F, Trevisiol A, Zinyk D, Chinchalongporn V, Liu M, Fleming T, Prokopchuk O, Klenin N, Kurrasch D, Faiz M, Stefanovic B, McLaurin J, Schuurmans C. Ascl1 phospho-site mutations enhance neuronal conversion of adult cortical astrocytes in vivo. Front Neurosci 2022; 16:917071. [PMID: 36061596 PMCID: PMC9434350 DOI: 10.3389/fnins.2022.917071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Direct neuronal reprogramming, the process whereby a terminally differentiated cell is converted into an induced neuron without traversing a pluripotent state, has tremendous therapeutic potential for a host of neurodegenerative diseases. While there is strong evidence for astrocyte-to-neuron conversion in vitro, in vivo studies in the adult brain are less supportive or controversial. Here, we set out to enhance the efficacy of neuronal conversion of adult astrocytes in vivo by optimizing the neurogenic capacity of a driver transcription factor encoded by the proneural gene Ascl1. Specifically, we mutated six serine phospho-acceptor sites in Ascl1 to alanines (Ascl1 SA 6) to prevent phosphorylation by proline-directed serine/threonine kinases. Native Ascl1 or Ascl1 SA 6 were expressed in adult, murine cortical astrocytes under the control of a glial fibrillary acidic protein (GFAP) promoter using adeno-associated viruses (AAVs). When targeted to the cerebral cortex in vivo, mCherry+ cells transduced with AAV8-GFAP-Ascl1 SA 6-mCherry or AAV8-GFAP-Ascl1-mCherry expressed neuronal markers within 14 days post-transduction, with Ascl1 SA 6 promoting the formation of more mature dendritic arbors compared to Ascl1. However, mCherry expression disappeared by 2-months post-transduction of the AAV8-GFAP-mCherry control-vector. To circumvent reporter issues, AAV-GFAP-iCre (control) and AAV-GFAP-Ascl1 (or Ascl1 SA 6)-iCre constructs were generated and injected into the cerebral cortex of Rosa reporter mice. In all comparisons of AAV capsids (AAV5 and AAV8), GFAP promoters (long and short), and reporter mice (Rosa-zsGreen and Rosa-tdtomato), Ascl1 SA 6 transduced cells more frequently expressed early- (Dcx) and late- (NeuN) neuronal markers. Furthermore, Ascl1 SA 6 repressed the expression of astrocytic markers Sox9 and GFAP more efficiently than Ascl1. Finally, we co-transduced an AAV expressing ChR2-(H134R)-YFP, an optogenetic actuator. After channelrhodopsin photostimulation, we found that Ascl1 SA 6 co-transduced astrocytes exhibited a significantly faster decay of evoked potentials to baseline, a neuronal feature, when compared to iCre control cells. Taken together, our findings support an enhanced neuronal conversion efficiency of Ascl1 SA 6 vs. Ascl1, and position Ascl1 SA 6 as a critical transcription factor for future studies aimed at converting adult brain astrocytes to mature neurons to treat disease.
Collapse
Affiliation(s)
- Hussein Ghazale
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - EunJee Park
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lakshmy Vasan
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James Mester
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fermisk Saleh
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrea Trevisiol
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dawn Zinyk
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Vorapin Chinchalongporn
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Mingzhe Liu
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Natalia Klenin
- Department of Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Maryam Faiz
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. Front Neuroanat 2021; 15:786679. [PMID: 34955766 PMCID: PMC8696165 DOI: 10.3389/fnana.2021.786679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is a hyperspecialized brain region composed of strongly inter- and intraconnected nuclei involved in emotional learning and behavior. The cellular heterogeneity of the amygdalar nuclei has complicated straightforward conclusions on their developmental origin, and even resulted in contradictory data. Recently, the concentric ring theory of the pallium and the radial histogenetic model of the pallial amygdala have cleared up several uncertainties that plagued previous models of amygdalar development. Here, we provide an extensive overview on the developmental origin of the nuclei of the amygdaloid complex. Starting from older gene expression data, transplantation and lineage tracing studies, we systematically summarize and reinterpret previous findings in light of the novel perspectives on amygdalar development. In addition, migratory routes that these cells take on their way to the amygdala are explored, and known transcription factors and guidance cues that seemingly drive these cells toward the amygdala are emphasized. We propose some future directions for research on amygdalar development and highlight that a better understanding of its development could prove critical for the treatment of several neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Sousa E, Flames N. Transcriptional regulation of neuronal identity. Eur J Neurosci 2021; 55:645-660. [PMID: 34862697 PMCID: PMC9306894 DOI: 10.1111/ejn.15551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Neuronal diversity is an intrinsic feature of the nervous system. Transcription factors (TFs) are key regulators in the establishment of different neuronal identities; how are the actions of different TFs coordinated to orchestrate this diversity? Are there common features shared among the different neuron types of an organism or even among different animal groups? In this review, we provide a brief overview on common traits emerging on the transcriptional regulation of neuron type diversification with a special focus on the comparison between mouse and Caenorhabditis elegans model systems. In the first part, we describe general concepts on neuronal identity and transcriptional regulation of gene expression. In the second part of the review, TFs are classified in different categories according to their key roles at specific steps along the protracted process of neuronal specification and differentiation. The same TF categories can be identified both in mammals and nematodes. Importantly, TFs are very pleiotropic: Depending on the neuron type or the time in development, the same TF can fulfil functions belonging to different categories. Finally, we describe the key role of transcriptional repression at all steps controlling neuronal diversity and propose that acquisition of neuronal identities could be considered a metastable process.
Collapse
Affiliation(s)
- Erick Sousa
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| |
Collapse
|
7
|
Turrero García M, Stegmann SK, Lacey TE, Reid CM, Hrvatin S, Weinreb C, Adam MA, Nagy MA, Harwell CC. Transcriptional profiling of sequentially generated septal neuron fates. eLife 2021; 10:71545. [PMID: 34851821 PMCID: PMC8694698 DOI: 10.7554/elife.71545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.
Collapse
Affiliation(s)
| | - Sarah K Stegmann
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Tiara E Lacey
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,Biological and Biomedical Sciences PhD program at Harvard UniversityCambridgeUnited States
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States,PhD Program in Systems Biology at Harvard UniversityCambridgeUnited States
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Hartenstein V, Omoto JJ, Lovick JK. The role of cell lineage in the development of neuronal circuitry and function. Dev Biol 2020; 475:165-180. [PMID: 32017903 DOI: 10.1016/j.ydbio.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.e., the neurons descended from that progenitor), one efficient developmental strategy would be to have lineages give rise to the structural modules of the mature nervous system. It is clear that this strategy plays an important role in neural development of many invertebrate animals, notably insects, where the availability of genetic techniques has made it possible to analyze the precise relationship between neuronal origin and differentiation since several decades. Similar techniques, developed more recently in the vertebrate field, reveal that functional modules of the mammalian cerebral cortex are also likely products of developmentally defined lineages. We will review studies that relate cell lineage to circuitry and function from a comparative developmental perspective, aiming at enhancing our understanding of neural progenitors and their lineages, and translating findings acquired in different model systems into a common conceptual framework.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
|
10
|
Oberst P, Agirman G, Jabaudon D. Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Curr Opin Neurobiol 2019; 56:185-193. [PMID: 30999235 DOI: 10.1016/j.conb.2019.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
During the development of the central nervous system, progenitors successively generate distinct types of neurons which assemble into the circuits that underlie our ability to interact with the environment. Spatial and temporal patterning mechanisms are partially evolutionarily conserved processes that allow generation of neuronal diversity from a limited set of progenitors. Here, we review examples of temporal patterning in neuronal progenitors in the Drosophila ventral nerve cord and in the mammalian cerebral cortex. We discuss cell-autonomous mechanisms and environmental influences on the temporal transitions of neuronal progenitors. Identifying the principles controlling the temporal specification of progenitors across species, as highlighted here, may help understand the evolutionary constraints over brain circuit design and function.
Collapse
Affiliation(s)
- Polina Oberst
- Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Gulistan Agirman
- Department of Basic Neurosciences, University of Geneva, Switzerland; GIGA-Neurosciences, University of Liège, C.H.U. Sart-Tilman, Liège, Belgium
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Switzerland; Department of Neurology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
11
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Kalogeropoulou A, Lygerou Z, Taraviras S. Cortical Development and Brain Malformations: Insights From the Differential Regulation of Early Events of DNA Replication. Front Cell Dev Biol 2019; 7:29. [PMID: 30915332 PMCID: PMC6421272 DOI: 10.3389/fcell.2019.00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
During the development of the cortex distinct populations of Neural Stem Cells (NSCs) are defined by differences in their cell cycle duration, self-renewal capacity and transcriptional profile. A key difference across the distinct populations of NSCs is the length of G1 phase, where the licensing of the DNA replication origins takes place by the assembly of a pre-replicative complex. Licensing of DNA replication is a process that is adapted accordingly to the cell cycle length of NSCs to secure the timed duplication of the genome. Moreover, DNA replication should be efficiently coordinated with ongoing transcription for the prevention of conflicts that would impede the progression of both processes, compromising the normal course of development. In the present review we discuss how the differential regulation of the licensing and initiation of DNA replication in different cortical NSCs populations is integrated with the properties of these stem cells populations. Moreover, we examine the implication of the initial steps of DNA replication in the pathogenetic mechanisms of neurodevelopmental defects and Zika virus-related microcephaly, highlighting the significance of the differential regulation of DNA replication during brain development.
Collapse
Affiliation(s)
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
13
|
Azzarelli R, Simons BD, Philpott A. The developmental origin of brain tumours: a cellular and molecular framework. Development 2018; 145:145/10/dev162693. [PMID: 29759978 PMCID: PMC6001369 DOI: 10.1242/dev.162693] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of the nervous system relies on the coordinated regulation of stem cell self-renewal and differentiation. The discovery that brain tumours contain a subpopulation of cells with stem/progenitor characteristics that are capable of sustaining tumour growth has emphasized the importance of understanding the cellular dynamics and the molecular pathways regulating neural stem cell behaviour. By focusing on recent work on glioma and medulloblastoma, we review how lineage tracing contributed to dissecting the embryonic origin of brain tumours and how lineage-specific mechanisms that regulate stem cell behaviour in the embryo may be subverted in cancer to achieve uncontrolled proliferation and suppression of differentiation. Summary: Lineage-tracing work in glioma and medulloblastoma reveals similarities between neuronal development and brain tumours, identifying potential new therapeutic avenues that exploit vulnerabilities in tumour growth patterns.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Benjamin D Simons
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK .,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
14
|
Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther 2018; 9:67. [PMID: 29544541 PMCID: PMC5856210 DOI: 10.1186/s13287-018-0812-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 01/15/2023] Open
Abstract
Background Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. Methods We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Results Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. Conclusions The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons. Electronic supplementary material The online version of this article (10.1186/s13287-018-0812-6) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Turrero García M, Harwell CC. Radial glia in the ventral telencephalon. FEBS Lett 2017; 591:3942-3959. [PMID: 28862741 DOI: 10.1002/1873-3468.12829] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022]
Abstract
The ventral telencephalon is the developmental origin of the basal ganglia and the source of neuronal and glial cells that integrate into developing circuits in other areas of the brain. Radial glia in the embryonic subpallium give rise to an enormous diversity of mature cell types, either directly or through other transit-amplifying progenitors. Here, we review current knowledge about these subpallial neural stem cells and their progeny, focusing on the period of neurogenesis. We describe their cell biological features and the extrinsic and intrinsic molecular codes that guide their fate specification in defined temporal and spatial sequences. We also discuss the role of clonal lineage in the organization and specification of mature neurons.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Rossi AM, Fernandes VM, Desplan C. Timing temporal transitions during brain development. Curr Opin Neurobiol 2016; 42:84-92. [PMID: 27984764 DOI: 10.1016/j.conb.2016.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
During development a limited number of progenitors generate diverse cell types that comprise the nervous system. Neuronal diversity, which arises largely at the level of neural stem cells, is critical for brain function. Often these cells exhibit temporal patterning: they sequentially produce neurons of distinct cell fates as a consequence of intrinsic and/or extrinsic cues. Here, we review recent advances in temporal patterning during neuronal specification, focusing on conserved players and mechanisms in invertebrate and vertebrate models. These studies underscore temporal patterning as an evolutionarily conserved strategy to generate neuronal diversity. Understanding the general principles governing temporal patterning and the molecular players involved will improve our ability to direct neural progenitors towards specific neuronal fates for brain repair.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; CGSB, NYU Abu Dhabi, United Arab Emirates.
| |
Collapse
|
18
|
Xie YF, Jiang XH, Sessle BJ, Yu XM. Development of regional specificity of spinal and medullary dorsal horn neurons. World J Biol Chem 2016; 7:138-145. [PMID: 26981202 PMCID: PMC4768117 DOI: 10.4331/wjbc.v7.i1.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
Extensive studies have focused on the development and regionalization of neurons in the central nervous system (CNS). Many genes, which play crucial roles in the development of CNS neurons, have been identified. By using the technique “direct reprogramming”, neurons can be produced from multiple cell sources such as fibroblasts. However, understanding the region-specific regulation of neurons in the CNS is still one of the biggest challenges in the research field of neuroscience. Neurons located in the trigeminal subnucleus caudalis (Vc) and in the spinal dorsal horn (SDH) play crucial roles in pain and sensorimotor functions in the orofacial and other somatic body regions, respectively. Anatomically, Vc represents the most caudal component of the trigeminal system, and is contiguous with SDH. This review is focused on recent data dealing with the regional specificity involved in the development of neurons in Vc and SDH.
Collapse
|