1
|
Suazo I, García-Mesa Y, Martín-Cruces J, Cuendias P, Cobo T, García-Suárez O, Vega JA. Immunohistochemical Detection of Tentonin-3/TMEM150C in Human Dorsal Root Ganglion, Cutaneous End-Organ Complexes, and Muscle Spindles. Brain Sci 2025; 15:337. [PMID: 40309807 PMCID: PMC12025203 DOI: 10.3390/brainsci15040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tentonin-3/TMEM150C is a pore-forming protein of a mechanically activated channel recently identified that typically displays rapid activation followed by slow inactivation. It has been detected in murine dorsal root ganglia, nodose ganglion baroreceptors, and muscle spindles. Nevertheless, primary sensory neurons expressing tentonin-3/TMEM150C fall into the categories of nociceptors, mechanoreceptors, and proprioceptors. METHODS We used immunohistochemistry and image analysis (examining the size of the neuronal bodies in the dorsal root ganglia) to investigate the distribution of tentonin-3/TMEM150C in human cervical dorsal root ganglia, sensory nerve formations in the glabrous skin, especially cutaneous end-organ complexes or sensory corpuscles, and muscle spindles. RESULTS In dorsal root ganglia, 41% of neurons were tentonin-3/TMEM150C-positive, with a distribution of small (12.0%), intermediate (18.1%), and large (10.9%). In the glabrous skin, tentonin-3/TMEM150C was observed in the axon of Meissner, Pacinian, and Ruffini corpuscles as well as in the axon of the Merkel cell-axon complexes. Furthermore, tentonin-3/TMEM150C-positive axons were observed in muscle spindles. No free nerve endings displaying immunoreactivity were found. CONCLUSIONS This is the first report on the distribution of tentonin-3/TMEM150C immunoreactivity in the human peripheral somatosensory system, and although it is a brief preliminary study, it opens new perspectives for the study of this new mechano-gated ion channel.
Collapse
Affiliation(s)
- Iván Suazo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Chile;
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.M.-C.); (P.C.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - José Martín-Cruces
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.M.-C.); (P.C.); (O.G.-S.)
| | - Patricia Cuendias
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.M.-C.); (P.C.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología (IAO), 33006 Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.M.-C.); (P.C.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - José A. Vega
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Chile;
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.M.-C.); (P.C.); (O.G.-S.)
| |
Collapse
|
2
|
Tanaka T, Isonishi A, Banja M, Yamamoto R, Sonobe M, Okuda-Ashitaka E, Furue H, Okuda H, Tatsumi K, Wanaka A. Dermal macrophages control tactile perception under physiological conditions via NGF signaling. Sci Rep 2024; 14:27192. [PMID: 39516548 PMCID: PMC11549316 DOI: 10.1038/s41598-024-78683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
We demonstrated previously that sorting nexin 25 (SNX25) in nerve-associated macrophages plays critical roles in pain sensation by regulating tissue NGF content under both physiological and neuropathic conditions. In the present study, we apply the SNX25-NGF paradigm to tactile perception by showing that Snx25+/- mice or macrophage-specific Snx25 conditional knock-out (mcKO) mice had weaker responses to tactile stimuli in normal conditions. Snx25 mcKO mice responded poorly to transcutaneous electrical stimuli at a frequency of 5 Hz (C fiber responses), but normally to stimuli at a frequency of 250 Hz (Aδ fiber responses) or of 2000 Hz (Aβ fiber responses). CX3CR1-positive dermal macrophages were frequently found near calcitonin gene-related peptide (CGRP)- positive nerves and, less frequently, tyrosine hydroxylase (TH)-positive nerves. We confirmed that the tissue content of NGF was lower in Snx25 mcKO mice than in wild-type mice, and in turn, dermal NGF injection restored tactile sensitivity in Snx25+/- mice and Snx25 mcKO mice to normal levels. These results indicate that CGRP-positive C-nociceptors (possibly also TH-positive C-LTMRs) associated dermal macrophages control tactile perception by producing NGF and secreting it into the dermis.
Collapse
Affiliation(s)
- Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan.
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Mitsuko Banja
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Rikuto Yamamoto
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Masaki Sonobe
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Emiko Okuda-Ashitaka
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hiroaki Okuda
- Department of Functional Morphology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
3
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
4
|
Martín-Sanz R, Rodrigues-Françoso A, García-Mesa Y, García-Alonso FJ, Gómez-Muñoz MA, Malmierca-González S, Salazar-Blázquez R, García-Suárez O, Feito J. Prognostic Evaluation of Piezo2 Channels in Mammary Gland Carcinoma. Cancers (Basel) 2024; 16:2413. [PMID: 39001475 PMCID: PMC11240440 DOI: 10.3390/cancers16132413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
In the last decade, a group of Ca2+ channels called Piezo were discovered, demonstrating a decisive role in the cellular response to mechanical stimuli and being essential in the biological behavior of cells regarding the extracellular compartment. Several investigations have suggested a potential role in carcinogenesis, with a tumor suppressor role in some cases but increased expression in several high-grade neoplasms. Regarding Piezo2 expression in mammary gland neoplasms, a protective role for Piezo2 was initially suggested, but a subsequent study demonstrated a relationship between Piezo2 expression and the highly aggressive triple-negative phenotype of breast carcinoma. A cohort of 125 patients with clinical follow-up was chosen to study Piezo2 expression and clarify its clinical implications using the same immunohistochemical evaluation performed for other breast carcinoma parameters. Fisher's exact test was chosen to identify potential relationships between the different variables. A significant association was found with the Ki67 proliferation index, but not with mitoses. The tendency of most proliferative tumors was to have an increased score for Piezo2. A similar association was found between Piezo2 expression and perineural invasion.
Collapse
Affiliation(s)
- Raquel Martín-Sanz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Oftalmología, Complejo Asistencial de Zamora, 49022 Zamora, Spain
| | | | - Yolanda García-Mesa
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - María Asunción Gómez-Muñoz
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Sandra Malmierca-González
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Rocío Salazar-Blázquez
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Olivia García-Suárez
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Feito
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| |
Collapse
|
5
|
Desiderio S, Schwaller F, Tartour K, Padmanabhan K, Lewin GR, Carroll P, Marmigere F. Touch receptor end-organ innervation and function require sensory neuron expression of the transcription factor Meis2. eLife 2024; 12:RP89287. [PMID: 38386003 PMCID: PMC10942617 DOI: 10.7554/elife.89287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMRs target-field innervation in mice. Meis2 is specifically expressed in cutaneous LTMRs, and its expression depends on target-derived signals. While LTMRs lacking Meis2 survived and are normally specified, their end-organ innervations, electrophysiological properties, and transcriptome are differentially and markedly affected, resulting in impaired sensory-evoked behavioral responses. These data establish Meis2 as a major transcriptional regulator controlling the orderly formation of sensory neurons innervating peripheral end organs required for light touch.
Collapse
Affiliation(s)
- Simon Desiderio
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | - Frederick Schwaller
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | | | | | - Gary R Lewin
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | | |
Collapse
|
6
|
Koutsioumpa C, Santiago C, Jacobs K, Lehnert BP, Barrera V, Hutchinson JN, Schmelyun D, Lehoczky JA, Paul DL, Ginty DD. Skin-type-dependent development of murine mechanosensory neurons. Dev Cell 2023; 58:2032-2047.e6. [PMID: 37607547 PMCID: PMC10615785 DOI: 10.1016/j.devcel.2023.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Mechanosensory neurons innervating the skin underlie our sense of touch. Fast-conducting, rapidly adapting mechanoreceptors innervating glabrous (non-hairy) skin form Meissner corpuscles, while in hairy skin, they associate with hair follicles, forming longitudinal lanceolate endings. How mechanoreceptors develop axonal endings appropriate for their skin targets is unknown. We report that mechanoreceptor morphologies across different skin regions are indistinguishable during early development but diverge post-natally, in parallel with skin maturation. Neurons terminating along the glabrous and hairy skin border exhibit hybrid morphologies, forming both Meissner corpuscles and lanceolate endings. Additionally, molecular profiles of neonatal glabrous and hairy skin-innervating neurons largely overlap. In mouse mutants with ectopic glabrous skin, mechanosensory neurons form end-organs appropriate for the altered skin type. Finally, BMP5 and BMP7 are enriched in glabrous skin, and signaling through type I bone morphogenetic protein (BMP) receptors in neurons is critical for Meissner corpuscle morphology. Thus, mechanoreceptor morphogenesis is flexibly instructed by target tissues.
Collapse
Affiliation(s)
- Charalampia Koutsioumpa
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kiani Jacobs
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brendan P Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John N Hutchinson
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dhane Schmelyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David L Paul
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
George AJ, Abraira VE. Good vibrations. Science 2023; 381:832-833. [PMID: 37616365 DOI: 10.1126/science.adj8674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The role of a mechanosensitive ion channel in sexual behavior is unveiled.
Collapse
Affiliation(s)
- Arlene J George
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA
| | - Victoria E Abraira
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Meltzer S, Boulanger KC, Chirila AM, Osei-Asante E, DeLisle M, Zhang Q, Kalish BT, Tasnim A, Huey EL, Fuller LC, Flaherty EK, Maniatis T, Garrett AM, Weiner JA, Ginty DD. γ-Protocadherins control synapse formation and peripheral branching of touch sensory neurons. Neuron 2023; 111:1776-1794.e10. [PMID: 37028432 PMCID: PMC10365546 DOI: 10.1016/j.neuron.2023.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions. The Pcdhgc3 isoform mediates homophilic interactions between sensory axons and spinal cord neurons to promote synapse formation in vivo and is sufficient to induce postsynaptic specializations in vitro. Moreover, loss of Pcdhgs and somatosensory synaptic inputs to the dorsal horn leads to fewer corticospinal synapses on dorsal horn neurons. These findings reveal essential roles for Pcdhg isoform diversity in somatosensory neuron synapse formation, peripheral axonal branching, and stepwise assembly of central mechanosensory circuitry.
Collapse
Affiliation(s)
- Shan Meltzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Katelyn C Boulanger
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emmanuella Osei-Asante
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle DeLisle
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Erica L Huey
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - Erin K Flaherty
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Andrew M Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield St. 7322 Scott Hall, Detroit, MI 48201, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
9
|
A role for axon-glial interactions and Netrin-G1 signaling in the formation of low-threshold mechanoreceptor end organs. Proc Natl Acad Sci U S A 2022; 119:e2210421119. [PMID: 36252008 PMCID: PMC9618144 DOI: 10.1073/pnas.2210421119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-threshold mechanoreceptors (LTMRs) and their cutaneous end organs convert light mechanical forces acting on the skin into electrical signals that propagate to the central nervous system. In mouse hairy skin, hair follicle-associated longitudinal lanceolate complexes, which are end organs comprising LTMR axonal endings that intimately associate with terminal Schwann cell (TSC) processes, mediate LTMR responses to hair deflection and skin indentation. Here, we characterized developmental steps leading to the formation of Aβ rapidly adapting (RA)-LTMR and Aδ-LTMR lanceolate complexes. During early postnatal development, Aβ RA-LTMRs and Aδ-LTMRs extend and prune cutaneous axonal branches in close association with nascent TSC processes. Netrin-G1 is expressed in these developing Aβ RA-LTMR and Aδ-LTMR lanceolate endings, and Ntng1 ablation experiments indicate that Netrin-G1 functions in sensory neurons to promote lanceolate ending elaboration around hair follicles. The Netrin-G ligand (NGL-1), encoded by Lrrc4c, is expressed in TSCs, and ablation of Lrrc4c partially phenocopied the lanceolate complex deficits observed in Ntng1 mutants. Moreover, NGL-1-Netrin-G1 signaling is a general mediator of LTMR end organ formation across diverse tissue types demonstrated by the fact that Aβ RA-LTMR endings associated with Meissner corpuscles and Pacinian corpuscles are also compromised in the Ntng1 and Lrrc4c mutant mice. Thus, axon-glia interactions, mediated in part by NGL-1-Netrin-G1 signaling, promote LTMR end organ formation.
Collapse
|
10
|
García-Mesa Y, Martín-Sanz R, García-Piqueras J, Cobo R, Muñoz-Bravo S, García-Suárez O, Martín-Biedma B, Vega JA, Feito J. Merkel Cell Carcinoma Display PIEZO2 Immunoreactivity. J Pers Med 2022; 12:894. [PMID: 35743679 PMCID: PMC9224776 DOI: 10.3390/jpm12060894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
As an essential component of mechano-gated ion channels, critically required for mechanotransduction in mammalian cells, PIEZO2 is known to be characteristically expressed by Merkel cells in human skin. Here, we immunohistochemically investigated the occurrence of Piezo channels in a case series of Merkel cell carcinoma. A panel of antibodies was used to characterize Merkel cells, and to detect PIEZO2 expression. All analyzed tumors displayed PIEZO2 in nearly all cells, showing two patterns of immunostaining: membranous and perinuclear dot-like. PIEZO2 co-localized with cytokeratin 20, chromogranin A, synaptophysin and neurofilament. Moreover, neurofilament immunoreactive structures resembling nerve-Merkel cell contacts were occasionally found. PIEZO2 was also detected in cells of the sweat ducts. The role of PIEZO2 in Merkel cell carcinoma is still unknown, but it could be related with the mechanical regulation of the tumor biology or be a mere vestige of the Merkel cell derivation.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
| | - Raquel Martín-Sanz
- Servicio de Oftalmología, IBSAL, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain;
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
- Departamento de Anatomía e Histología, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ramón Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
| | - Saray Muñoz-Bravo
- Servicio de Anatomía Patológica, Instituto de Investigación Biomédica de Salamanca, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain;
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - José Antonio Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Jorge Feito
- Servicio de Anatomía Patológica, Instituto de Investigación Biomédica de Salamanca, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
11
|
Bekiari C, Tekos F, Skaperda Z, Argyropoulou A, Skaltsounis AL, Kouretas D, Tsingotjidou A. Antioxidant and Neuroprotective Effect of a Grape Pomace Extract on Oxaliplatin-Induced Peripheral Neuropathy in Rats: Biochemical, Behavioral and Histopathological Evaluation. Antioxidants (Basel) 2022; 11:antiox11061062. [PMID: 35739960 PMCID: PMC9219719 DOI: 10.3390/antiox11061062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Oxaliplatin is a widely used chemotherapeutic agent. Despite its many beneficial aspects in fighting many malignancies, it shares an aversive effect of neuropathy. Many substances have been used to limit this oxaliplatin-driven neuropathy in patients. This study evaluates the neuroprotective role of a grape pomace extract (GPE) into an oxaliplatin induced neuropathy in rats. For this reason, following the delivery of the substance into the animals prior to or simultaneously with oxaliplatin, their performance was evaluated by behavioral tests. Blood tests were also performed for the antioxidant activity of the extract, along with a histological and pathological evaluation of dorsal root ganglion (DRG) cells as the major components of the neuropathy. All behavioral tests were corrected following the use of the grape pomace. Oxidative stressors were also limited with the use of the extract. Additionally, the morphometrical analysis of the DRG cells and their immunohistochemical phenotype revealed the fidelity of the animal model and the changes into the parvalbumin and GFAP concentration indicative of the neuroprotective role of the pomace. In conclusion, the grape pomace extract with its antioxidant properties alleviates the harmful effects of the oxaliplatin induced chronic neuropathy in rats.
Collapse
Affiliation(s)
- Chryssa Bekiari
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (D.K.)
| | - Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (D.K.)
| | - Aikaterini Argyropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National Kapodistrian University of Athens, Panepistimioupoli, Zografou, 15771 Athens, Greece; (A.A.); (A.-L.S.)
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National Kapodistrian University of Athens, Panepistimioupoli, Zografou, 15771 Athens, Greece; (A.A.); (A.-L.S.)
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (D.K.)
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310999941
| |
Collapse
|
12
|
Suazo I, Vega JA, García-Mesa Y, García-Piqueras J, García-Suárez O, Cobo T. The Lamellar Cells of Vertebrate Meissner and Pacinian Corpuscles: Development, Characterization, and Functions. Front Neurosci 2022; 16:790130. [PMID: 35356056 PMCID: PMC8959428 DOI: 10.3389/fnins.2022.790130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory corpuscles, or cutaneous end-organ complexes, are complex structures localized at the periphery of Aβ-axon terminals from primary sensory neurons that primarily work as low-threshold mechanoreceptors. Structurally, they consist, in addition to the axons, of non-myelinating Schwann-like cells (terminal glial cells) and endoneurial- and perineurial-related cells. The terminal glial cells are the so-called lamellar cells in Meissner and Pacinian corpuscles. Lamellar cells are variably arranged in sensory corpuscles as a “coin stack” in the Meissner corpuscles or as an “onion bulb” in the Pacinian ones. Nevertheless, the origin and protein profile of the lamellar cells in both morphotypes of sensory corpuscles is quite similar, although it differs in the expression of mechano-gated ion channels as well as in the composition of the extracellular matrix between the cells. The lamellar cells have been regarded as supportive cells playing a passive role in the process of genesis of the action potential, i.e., the mechanotransduction process. However, they express ion channels related to the mechano–electric transduction and show a synapse-like mechanism that suggest neurotransmission at the genesis of the electrical action potential. This review updates the current knowledge about the embryonic origin, development modifications, spatial arrangement, ultrastructural characteristics, and protein profile of the lamellar cells of cutaneous end-organ complexes focusing on Meissner and Pacinian morphotypes.
Collapse
Affiliation(s)
- Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: José A. Vega,
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
13
|
Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, Cervantes AM, Reese JC, Chamessian A, Copits BA, Dougherty PM, Gereau RW, Burton MD, Dussor G, Price TJ. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med 2022; 14:eabj8186. [PMID: 35171654 PMCID: PMC9272153 DOI: 10.1126/scitranslmed.abj8186] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein-coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha (CALCA) expression in female pruritogen receptor-enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.
Collapse
Affiliation(s)
- Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA.,Corresponding author: (T.J.P.); (D.T.-F.)
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Pradipta R. Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Vivekanand Jeevakumar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | | | | | - Alexander Chamessian
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Michael D. Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA.,Corresponding author: (T.J.P.); (D.T.-F.)
| |
Collapse
|
14
|
Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, Cervantes AM, Reese JC, Chamessian A, Copits BA, Dougherty PM, Gereau RW, Burton MD, Dussor G, Price TJ. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med 2022. [DOI: 10.1126/scitranslmed.abj8186\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein–coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha (
CALCA
) expression in female pruritogen receptor–enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.
Collapse
Affiliation(s)
- Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Pradipta R. Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Vivekanand Jeevakumar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | | | | | - Alexander Chamessian
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Bryan A. Copits
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Gereau
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Michael D. Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| |
Collapse
|
15
|
Deng PY, Avraham O, Cavalli V, Klyachko VA. Hyperexcitability of Sensory Neurons in Fragile X Mouse Model. Front Mol Neurosci 2022; 14:796053. [PMID: 35002623 PMCID: PMC8727524 DOI: 10.3389/fnmol.2021.796053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Sensory hypersensitivity and somatosensory deficits represent the core symptoms of Fragile X syndrome (FXS). These alterations are believed to arise from changes in cortical sensory processing, while potential deficits in the function of peripheral sensory neurons residing in dorsal root ganglia remain unexplored. We found that peripheral sensory neurons exhibit pronounced hyperexcitability in Fmr1 KO mice, manifested by markedly increased action potential (AP) firing rate and decreased threshold. Unlike excitability changes found in many central neurons, no significant changes were observed in AP rising and falling time, peak potential, amplitude, or duration. Sensory neuron hyperexcitability was caused primarily by increased input resistance, without changes in cell capacitance or resting membrane potential. Analyses of the underlying mechanisms revealed reduced activity of HCN channels and reduced expression of HCN1 and HCN4 in Fmr1 KO compared to WT. A selective HCN channel blocker abolished differences in all measures of sensory neuron excitability between WT and Fmr1 KO neurons. These results reveal a hyperexcitable state of peripheral sensory neurons in Fmr1 KO mice caused by dysfunction of HCN channels. In addition to the intrinsic neuronal dysfunction, the accompanying paper examines deficits in sensory neuron association/communication with their enveloping satellite glial cells, suggesting contributions from both neuronal intrinsic and extrinsic mechanisms to sensory dysfunction in the FXS mouse model.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States.,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Foote AG, Lungova V, Thibeault SL. Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation. Cell Mol Life Sci 2022; 79:591. [PMID: 36376494 PMCID: PMC9663367 DOI: 10.1007/s00018-022-04622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation-altering cytokeratin differentiation.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
17
|
García-Mesa Y, García-Piqueras J, Cobo R, Martín-Cruces J, Suazo I, García-Suárez O, Feito J, Vega JA. Sensory innervation of the human male prepuce: Meissner's corpuscles predominate. J Anat 2021; 239:892-902. [PMID: 34120333 PMCID: PMC8450466 DOI: 10.1111/joa.13481] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 01/28/2023] Open
Abstract
Meissner's corpuscles are the most abundant sensory corpuscles in the glabrous skin of the male prepuce. They are type I, rapidly adapting, low‐threshold mechanoreceptors, and their function is linked to the expression of the mechanoprotein piezo‐type mechanosensitive ion channel component 2 (PIEZO2). Stimulation of genital Meissner's corpuscles gives rise to sexual sensations. It has been recently demonstrated that digital Meissner's corpuscles, Meissner‐like corpuscles, and genital end bulbs have an endoneurium‐like capsule surrounding their neuronal elements; that is, the axon and glial lamellar cells, and their axons, display PIEZO2 immunoreactivity. It is unknown whether this is also the case for preputial Meissner's corpuscles. Furthermore, the expression of certain proteins that have been found in Meissner's corpuscles at other anatomical locations, especially in the digits, has not been investigated in preputial Meissner's corpuscles. Here, we used immunohistochemistry to investigate the expression of axonal (neurofilament, neuron‐specific enolase), glial (S100 protein, glial fibrillary acidic protein, vimentin), endoneurial (CD34), and perineurial (glucose transporter 1) markers in the preputial and digital Meissner's corpuscles of male participants aged between 5 and 23 years. Furthermore, we investigated the occurrence of the mechanoprotein PIEZO2 in male preputial Meissner's corpuscles. Human male prepuce contains numerous Meissner's corpuscles, which may be grouped or isolated and are regularly distributed in the dermal papillae. Lamellar glial cells display strong expression of S100 protein and vimentin but lack expression of glial fibrillary acidic protein. In addition, they show axonal PIEZO2 expression and have an endoneurial capsule, but no perineurial. Our results indicate that human male preputial Meissner's corpuscles share the immunohistochemical profile of digital Meissner's corpuscles, which is considered to be necessary for mechanotransduction. These data strongly suggest that the structure and function of Meissner's corpuscles are independent of their anatomical location.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Ramón Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - José Martín-Cruces
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Iván Suazo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Salamanca, Salamanca, Spain.,Departamento de Anatomía e Histología Humanas, Universidad de Salamanca, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
18
|
Pomaville MB, Wright KM. Immunohistochemical and Genetic Labeling of Hairy and Glabrous Skin Innervation. Curr Protoc 2021; 1:e121. [PMID: 33950580 PMCID: PMC8162737 DOI: 10.1002/cpz1.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cutaneous innervation is an essential component of the mammalian sensory nervous system. During development, genetically and morphologically diverse subtypes of sensory neurons use distinct molecular pathways to innervate end organs or form free nerve endings in glabrous and hairy skin. Peripheral neurons can be damaged by acute injury or degenerate due to chronic conditions including diabetes and chemotherapy, leading to peripheral neuropathy. The analysis of skin and cutaneous innervation can be applied to many research endeavors, from developmental neuroscience to pharmaceutical testing. Due to the natural hydrophobicity and heterogenous makeup of the skin (dense, keratinized cells as well as sparse, extracellular-matrix-bound cells), its histological analysis presents unique challenges compared to that of many other tissues. This series of protocols describes histological methods for generalized immunohistochemistry and subtype-specific genetic labeling of sensory neurons in mouse skin in both whole-mount and section formats. We provide detailed methodology of tissue preparation for hairy and glabrous skin, several types of labeling, and counting of hair follicles in flat-mounted mouse skin. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Cryosectioning and immunostaining of mouse hairy skin Alternate Protocol 1: Alternate method for preparation and fixation of mouse hairy skin Basic Protocol 2: Sectioning of mouse paw glabrous skin Basic Protocol 3: Whole-mount immunolabeling of mouse skin Basic Protocol 4: Sparse labeling of skin-innervating neurons with a Cre-dependent membrane-bound alkaline phosphatase reporter Alternate Protocol 2: Sparse labeling of skin-innervating neurons with a Cre-dependent fluorescent reporter Basic Protocol 5: Oil Red O staining of skin.
Collapse
Affiliation(s)
- Matthew B Pomaville
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
19
|
Salio C, Aimar P, Malapert P, Moqrich A, Merighi A. Neurochemical and Ultrastructural Characterization of Unmyelinated Non-peptidergic C-Nociceptors and C-Low Threshold Mechanoreceptors Projecting to Lamina II of the Mouse Spinal Cord. Cell Mol Neurobiol 2021; 41:247-262. [PMID: 32306148 PMCID: PMC11448667 DOI: 10.1007/s10571-020-00847-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
C-nociceptors (C-Ncs) and non-nociceptive C-low threshold mechanoreceptors (C-LTMRs) are two subpopulations of small unmyelinated non-peptidergic C-type neurons of the dorsal root ganglia (DRGs) with central projections displaying a specific pattern of termination in the spinal cord dorsal horn. Although these two subpopulations exist in several animals, remarkable neurochemical differences occur between mammals, particularly rat/humans from one side and mouse from the other. Mouse is widely investigated by transcriptomics. Therefore, we here studied the immunocytochemistry of murine C-type DRG neurons and their central terminals in spinal lamina II at light and electron microscopic levels. We used a panel of markers for peptidergic (CGRP), non-peptidergic (IB4), nociceptive (TRPV1), non-nociceptive (VGLUT3) C-type neurons and two strains of transgenic mice: the TAFA4Venus knock-in mouse to localize the TAFA4+ C-LTMRs, and a genetically engineered ginip mouse that allows an inducible and tissue-specific ablation of the DRG neurons expressing GINIP, a key modulator of GABABR-mediated analgesia. We confirmed that IB4 and TAFA4 did not coexist in small non-peptidergic C-type DRG neurons and separately tagged the C-Ncs and the C-LTMRs. We then showed that TRPV1 was expressed in only about 7% of the IB4+ non-peptidergic C-Ncs and their type Ia glomerular terminals within lamina II. Notably, the selective ablation of GINIP did not affect these neurons, whereas it reduced IB4 labeling in the medial part of lamina II and the density of C-LTMRs glomerular terminals to about one half throughout the entire lamina. We discuss the significance of these findings for interspecies differences and functional relevance.
Collapse
Affiliation(s)
- Chiara Salio
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Patrizia Aimar
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288, Marseille Cedex 09, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288, Marseille Cedex 09, France
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy.
| |
Collapse
|
20
|
A review of the neurobiomechanical processes underlying secure gripping in object manipulation. Neurosci Biobehav Rev 2021; 123:286-300. [PMID: 33497782 DOI: 10.1016/j.neubiorev.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
O'SHEA, H. and S. J. Redmond. A review of the neurobiomechanical processes underlying secure gripping in object manipulation. NEUROSCI BIOBEHAV REV 286-300, 2021. Humans display skilful control over the objects they manipulate, so much so that biomimetic systems have yet to emulate this remarkable behaviour. Two key control processes are assumed to facilitate such dexterity: predictive cognitive-motor processes that guide manipulation procedures by anticipating action outcomes; and reactive sensorimotor processes that provide important error-based information for movement adaptation. Notwithstanding increased interdisciplinary research interest in object manipulation behaviour, the complexity of the perceptual-sensorimotor-cognitive processes involved and the theoretical divide regarding the fundamentality of control mean that the essential mechanisms underlying manipulative action remain undetermined. In this paper, following a detailed discussion of the theoretical and empirical bases for understanding human dexterous movement, we emphasise the role of tactile-related sensory events in secure object handling, and consider the contribution of certain biophysical and biomechanical phenomena. We aim to provide an integrated account of the current state-of-art in skilled human-object interaction that bridges the literature in neuroscience, cognitive psychology, and biophysics. We also propose novel directions for future research exploration in this area.
Collapse
|
21
|
The Human Cutaneous Sensory Corpuscles: An Update. J Clin Med 2021; 10:jcm10020227. [PMID: 33435193 PMCID: PMC7827880 DOI: 10.3390/jcm10020227] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Sensory corpuscles of human skin are terminals of primary mechanoreceptive neurons associated with non-neuronal cells that function as low-threshold mechanoreceptors. Structurally, they consist of an extreme tip of a mechanosensory axon and nonmyelinating peripheral glial cells variably arranged according to the morphotype of the sensory corpuscle, all covered for connective cells of endoneurial and/or perineurial origin. Although the pathologies of sensitive corpuscles are scarce and almost never severe, adequate knowledge of the structure and immunohistochemical profile of these formations is essential for dermatologists and pathologists. In fact, since sensory corpuscles and nerves share a basic structure and protein composition, a cutaneous biopsy may be a complementary method for the analysis of nerve involvement in peripheral neuropathies, systemic diseases, and several pathologies of the central nervous system. Thus, a biopsy of cutaneous sensory corpuscles can provide information for the diagnosis, evolution, and effectiveness of treatments of some pathologies in which they are involved. Here, we updated and summarized the current knowledge about the immunohistochemistry of human sensory corpuscles with the aim to provide information to dermatologists and skin pathologists.
Collapse
|
22
|
Carozza S, Leong V. The Role of Affectionate Caregiver Touch in Early Neurodevelopment and Parent-Infant Interactional Synchrony. Front Neurosci 2021; 14:613378. [PMID: 33584178 PMCID: PMC7873991 DOI: 10.3389/fnins.2020.613378] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Though rarely included in studies of parent–infant interactions, affectionate touch plays a unique and vital role in infant development. Previous studies in human and rodent models have established that early and consistent affectionate touch from a caregiver confers wide-ranging and holistic benefits for infant psychosocial and neurophysiological development. We begin with an introduction to the neurophysiological pathways for the positive effects of touch. Then, we provide a brief review of how affectionate touch tunes the development of infant somatosensory, autonomic (stress regulation), and immune systems. Affective touch also plays a foundational role in the establishment of social affiliative bonds and early psychosocial behavior. These touch-related bonding effects are known to be mediated primarily by the oxytocin system, but touch also activates mesocorticolimbic dopamine and endogenous opioid systems which aid the development of social cognitive processes such as social learning and reward processing. We conclude by proposing a unique role for affectionate touch as an essential pathway to establishing and maintaining parent-infant interactional synchrony at behavioral and neural levels. The limitations of the current understanding of affectionate touch in infant development point to fruitful avenues for future research.
Collapse
Affiliation(s)
- Sofia Carozza
- Department of Physiology, Development and Neuroscience, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Leong
- Division of Psychology, Nanyang Technological University, Singapore, Singapore.,Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Cobo R, García‐Mesa Y, Cárcaba L, Martin‐Cruces J, Feito J, García‐Suárez O, Cobo J, García‐Piqueras J, Vega JA. Verification and characterisation of human digital Ruffini's sensory corpuscles. J Anat 2021; 238:13-19. [PMID: 32864772 PMCID: PMC7754963 DOI: 10.1111/joa.13301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Ruffini's corpuscles are present as long fusiform encapsulated sensory structures in different tissues including the skin. Although physiological analyses strongly suggest their existence in glabrous digital skin, such localisation remains unconfirmed. Here, we have investigated the occurrence of typical Ruffini's corpuscles in 372 sections of human digital skin obtained from 186 subjects of both sexes and different ages (19-92 years). S100 protein, neuron-specific enolase and neurofilament proteins were detected, and the basic immunohistochemical profile of these corpuscles was analysed. Fewer than 0.3 Ruffini's corpuscles/mm2 were detected, with density distribution across the fingers being F4 > F3 > F2 > F1 > F5 and absolute values being F2 > F1 > F3 > F4 > F5. Axons displayed neuron-specific enolase immunoreactivity, glial cells forming the core contained S100 protein, and the capsule was positive for CD34 but not Glut1, demonstrating an endoneurial origin. Present results demonstrate the existence of Ruffini's corpuscles in human glabrous digital skin at very low densities. Moreover, the identified Ruffini's corpuscles share the basic immunohistochemical characteristics of other dermal sensory corpuscles.
Collapse
Affiliation(s)
- Ramón Cobo
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Yolanda García‐Mesa
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Lucía Cárcaba
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José Martin‐Cruces
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Jorge Feito
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Servicio de Anatomía PatológicaComplejo Hospitalario Universitario de SalamancaSalamancaSpain
| | - Olivia García‐Suárez
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico‐QuirúrgicasUniversidad de OviedoOviedoSpain,Instituto Asturiano de OdontologíaOviedoSpain
| | - Jorge García‐Piqueras
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José A. Vega
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Facultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| |
Collapse
|
24
|
Peripheral Mechanobiology of Touch-Studies on Vertebrate Cutaneous Sensory Corpuscles. Int J Mol Sci 2020; 21:ijms21176221. [PMID: 32867400 PMCID: PMC7504094 DOI: 10.3390/ijms21176221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family. This review updates the current data about the occurrence and distribution of putative mechanosensitive ion channels in cutaneous mechanoreceptors including primary sensory neurons and sensory corpuscles.
Collapse
|
25
|
García-Magro N, Negredo P, Martin YB, Nuñez Á, Avendaño C. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain 2020; 21:96. [PMID: 32762640 PMCID: PMC7410158 DOI: 10.1186/s10194-020-01161-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Stimulation of the occipital or trigeminal nerves has been successfully used to treat chronic refractory neurovascular headaches such as migraine or cluster headache, and painful neuropathies. Convergence of trigeminal and occipital sensory afferents in the ‘trigeminocervical complex’ (TCC) from cutaneous, muscular, dural, and visceral sources is a key mechanism for the input-induced central sensitization that may underlie the altered nociception. Both excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) mechanisms are involved in modulating nociception in the spinal and medullary dorsal horn neurons, but the mechanisms by which nerve stimulation effects occur are unclear. This study was aimed at investigating the acute effects of electrical stimulation of the greater occipital nerve (GON) on the responses of neurons in the TCC to the mechanical stimulation of the vibrissal pad. Methods Adult male Wistar rats were used. Neuronal recordings were obtained in laminae II-IV in the TCC in control, sham and infraorbital chronic constriction injury (CCI-IoN) animals. The GON was isolated and electrically stimulated. Responses to the stimulation of vibrissae by brief air pulses were analyzed before and after GON stimulation. In order to understand the role of the neurotransmitters involved, specific receptor blockers of NMDA (AP-5), GABAA (bicuculline, Bic) and Glycine (strychnine, Str) were applied locally. Results GON stimulation produced a facilitation of the response to light facial mechanical stimuli in controls, and an inhibition in CCI-IoN cases. AP-5 reduced responses to GON and vibrissal stimulation and blocked the facilitation of GON on vibrissal responses found in controls. The application of Bic or Str significantly reduced the facilitatory effect of GON stimulation on the response to vibrissal stimulation in controls. However, the opposite effect was found when GABAergic or Glycinergic transmission was prevented in CCI-IoN cases. Conclusions GON stimulation modulates the responses of TCC neurons to light mechanical input from the face in opposite directions in controls and under CCI-IoN. This modulation is mediated by GABAergic and Glycinergic mechanisms. These results will help to elucidate the neural mechanisms underlying the effectiveness of nerve stimulation in controlling painful craniofacial disorders, and may be instrumental in identifying new therapeutic targets for their prevention and treatment.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.,Programme in Neuroscience, Doctoral School, Autonoma University of Madrid, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
26
|
Cobo R, García-Mesa Y, García-Piqueras J, Feito J, Martín-Cruces J, García-Suárez O, A. Vega J. The Glial Cell of Human Cutaneous Sensory Corpuscles: Origin, Characterization, and Putative Roles. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wiedmann NM, Wong AW, Keast JR, Osborne PB. Sex differences in c-Fos and EGR-1/Zif268 activity maps of rat sacral spinal cord following cystometry-induced micturition. J Comp Neurol 2020; 529:311-326. [PMID: 32415681 PMCID: PMC7818477 DOI: 10.1002/cne.24949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Storage and voiding of urine from the lower urinary tract (LUT) must be timed precisely to occur in appropriate behavioral contexts. A major part of the CNS circuit that coordinates this activity is found in the lumbosacral spinal cord. Immediate early gene (IEG) activity mapping has been widely used to investigate the lumbosacral LUT-related circuit, but most reports focus on the effects of noxious stimulation in anesthetized female rats. Here we use c-Fos and EGR-1 (Zif268) activity mapping of lumbosacral spinal cord to investigate cystometry-induced micturition in awake female and male rats. In females, after cystometry c-Fos neurons in spinal cord segments L5-S2 were concentrated in the sacral parasympathetic nucleus (SPN), dorsal horn laminae II-IV, and dorsal commissural nucleus (SDCom). Comparisons of cystometry and control groups in male and female revealed sex differences. Activity mapping suggested dorsal horn laminae II-IV was activated in females but showed net inhibition in males. However, inhibition in male rats was not detected by EGR-1 activity mapping, which showed low coexpression with c-Fos. A class of catecholamine neurons in SPN and SDCom neurons were also more strongly activated by micturition in females. In both sexes, most c-Fos neurons were identified as excitatory by their absence of Pax2 expression. In conclusion, IEG mapping in awake male and female rats has extended our understanding of the functional molecular anatomy of the LUT-related circuit in spinal cord. Using this approach, we have identified sex differences that were not detected by previous studies in anesthetized rats.
Collapse
Affiliation(s)
- Nicole M Wiedmann
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Agnes W Wong
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Finno CJ, Peterson J, Kang M, Park S, Bordbari MH, Durbin-Johnson B, Settles M, Perez-Flores MC, Lee JH, Yamoah EN. Single-Cell RNA-seq Reveals Profound Alterations in Mechanosensitive Dorsal Root Ganglion Neurons with Vitamin E Deficiency. iScience 2019; 21:720-735. [PMID: 31733517 PMCID: PMC6864320 DOI: 10.1016/j.isci.2019.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022] Open
Abstract
Ninety percent of Americans consume less than the estimated average requirements of dietary vitamin E (vitE). Severe vitE deficiency due to genetic mutations in the tocopherol transfer protein (TTPA) in humans results in ataxia with vitE deficiency (AVED), with proprioceptive deficits and somatosensory degeneration arising from dorsal root ganglia neurons (DRGNs). Single-cell RNA-sequencing of DRGNs was performed in Ttpa-/- mice, an established model of AVED. In stark contrast to expected changes in proprioceptive neurons, Ttpa-/- DRGNs showed marked upregulation of voltage-gated Ca2+ and K+ channels in mechanosensitive, tyrosine-hydroxylase positive (TH+) DRGNs. The ensuing significant conductance changes resulted in reduced excitability in mechanosensitive Ttpa-/- DRGNs. A highly supplemented vitE diet (600 mg dl-α-tocopheryl acetate/kg diet) prevented the cellular and molecular alterations and improved mechanosensation. VitE deficiency profoundly alters the molecular signature and functional properties of mechanosensitive TH+ DRGN, representing an intriguing shift of the prevailing paradigm from proprioception to mechanical sensation.
Collapse
Affiliation(s)
- Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Janel Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Mincheol Kang
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Matthew H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Blythe Durbin-Johnson
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Maria C Perez-Flores
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeong H Lee
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ebenezer N Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
29
|
Kuatsjah E, Khoshnam M, Menon C. Investigation on the effect of noisy galvanic vestibular stimulation on fine motor skills during a visuomotor task in healthy participants. PLoS One 2019; 14:e0216214. [PMID: 31048906 PMCID: PMC6497271 DOI: 10.1371/journal.pone.0216214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 11/24/2022] Open
Abstract
Noisy galvanic vestibular stimulation (nGVS) has been shown to improve dynamic walking stability, affect postural responses, enhance balance in healthy subjects, and influence motor performance in individuals with Parkinson’s disease. Although the studies to fully characterize the effect of nGVS are still ongoing, stochastic resonance theory which states that the addition of noisy signal may enhance a weak sensory input signals transmission in a non-linear system may provide a possible explanation for the observed positive effects of nGVS. This study explores the effect of nGVS on fine tracking behavior in healthy subjects. Ten healthy participants performed a computer-based visuomotor task by controlling an object with a joystick to follow an amplitude-modulated signal path while simultaneously receiving a sham or pink noise nGVS. The stimulation was generated to have a zero-mean, linearly detrended 1/f-type power spectrum, Gaussian distribution within 0.1–10 Hz range, and a standard deviation (SD) set to 90% based on each participant’s cutaneous threshold value. Results show that simultaneous nGVS delivery statistically improved the tracking performance with a decreased root-mean-squared error of 5.71±6.20% (mean±SD), a decreased time delay of 11.88±9.66% (mean±SD), and an increased signal-to-noise ratio of 2.93% (median, interquartile range (IQR) 3.31%). This study showed evidence that nGVS may be beneficial in improving sensorimotor performance during a fine motor tracking task requiring fine wrist movement in healthy subjects. Further research with a more comprehensive subset of tasks is required to fully characterize the effects of nGVS on fine motor skills.
Collapse
Affiliation(s)
- Eunice Kuatsjah
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
| | - Mahta Khoshnam
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
30
|
García-Piqueras J, García-Mesa Y, Cárcaba L, Feito J, Torres-Parejo I, Martín-Biedma B, Cobo J, García-Suárez O, Vega JA. Ageing of the somatosensory system at the periphery: age-related changes in cutaneous mechanoreceptors. J Anat 2019; 234:839-852. [PMID: 30924930 DOI: 10.1111/joa.12983] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Decline of tactile sensation associated with ageing depends on modifications in skin and both central and peripheral nervous systems. At present, age-related changes in the periphery of the somatosensory system, particularly concerning the effects on mechanoreceptors, remain unknown. Here we used immunohistochemistry to analyse the age-dependent changes in Meissner's and Pacinian corpuscles as well as in Merkel cell-neurite complexes. Moreover, variations in the neurotrophic TrkB-BDNF system and the mechanoprotein Piezo2 (involved in maintenance of cutaneous mechanoreceptors and light touch, respectively) were evaluated. The number of Meissner's corpuscles and Merkel cells decreased progressively with ageing. Meissner's corpuscles were smaller, rounded in morphology and located deeper in the dermis, and signs of corpuscular denervation were found in the oldest subjects. Pacinian corpuscles generally showed no relevant age-related alterations. Reduced expression of Piezo2 in the axon of Meissner's corpuscles and in Merkel cells was observed in old subjects, as well was a decline in the BDNF-TrkB neurotrophic system. This study demonstrates that cutaneous Meissner's corpuscles and Merkel cell-neurite complexes (and less evidently Pacinian corpuscles) undergo morphological and size changes during the ageing process, as well as a reduction in terms of density. Furthermore, the mechanoprotein Piezo2 and the neurotrophic TrkB-BDNF system are reduced in aged corpuscles. Taken together, these alterations might explain part of the impairment of the somatosensory system associated with ageing.
Collapse
Affiliation(s)
- Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Lucia Cárcaba
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Isidro Torres-Parejo
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
31
|
Iwasato T, Erzurumlu RS. Development of tactile sensory circuits in the CNS. Curr Opin Neurobiol 2018; 53:66-75. [PMID: 29908482 DOI: 10.1016/j.conb.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Molecular identification of neuronal types and genetic and imaging approaches to characterize their properties reveal morphological, physiological and dynamic aspects of sensory circuit development. Here we focus on the mouse tactile sensory circuitry, with particular emphasis on the main trigeminal pathway that connects the whiskers, the major tactile organ in rodents, to the neocortex. At each level of this pathway, neurogenesis, axonal elongation, pathfinding, target recognition and circuit reorganization including dendritic refinement of cortical layer 4 neurons occur contemporaneously and a multitude of molecular signals are used in differing combinations. We highlight recent advances in development of tactile circuitry and note gaps in our understanding.
Collapse
Affiliation(s)
- Takuji Iwasato
- National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI, Mishima, Japan
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
32
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
33
|
García-Mesa Y, García-Piqueras J, García B, Feito J, Cabo R, Cobo J, Vega JA, García-Suárez O. Merkel cells and Meissner's corpuscles in human digital skin display Piezo2 immunoreactivity. J Anat 2017; 231:978-989. [PMID: 28905996 DOI: 10.1111/joa.12688] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
The transformation of mechanical energy into electrical signals is the first step in mechanotransduction in the peripheral sensory nervous system and relies on the presence of mechanically gated ion channels within specialized sensory organs called mechanoreceptors. Piezo2 is a vertebrate stretch-gated ion channel necessary for mechanosensitive channels in mammalian cells. Functionally, it is related to light touch, which has been detected in murine cutaneous Merkel cell-neurite complexes, Meissner-like corpuscles and lanceolate nerve endings. To the best of our knowledge, the occurrence of Piezo2 in human cutaneous mechanoreceptors has never been investigated. Here, we used simple and double immunohistochemistry to investigate the occurrence of Piezo2 in human digital glabrous skin. Piezo2 immunoreactivity was detected in approximately 80% of morphologically and immunohistochemically characterized (cytokeratin 20+ , chromogranin A+ and synaptophisin+ ) Merkel cells. Most of them were in close contact with Piezo2- nerve fibre profiles. Moreover, the axon, but not the lamellar cells, of Meissner's corpuscles was also Piezo2+ , but other mechanoreceptors, i.e. Pacinian or Ruffini's corpuscles, were devoid of immunoreactivity. Piezo2 was also observed in non-nervous tissue, especially the basal keratinocytes, endothelial cells and sweat glands. The present results demonstrate the occurrence of Piezo2 in cutaneous sensory nerve formations that functionally work as slowly adapting (Merkel cells) and rapidly adapting (Meissner's corpuscles) low-threshold mechanoreceptors and are related to fine and discriminative touch but not to vibration or hard touch. These data offer additional insight into the molecular basis of mechanosensing in humans.
Collapse
Affiliation(s)
- Y García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| | - J García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| | - B García
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - J Feito
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - R Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| | - J Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - O García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
34
|
Cobo J, Solé-Magdalena A, Menéndez I, de Vicente J, Vega J. Connections between the facial and trigeminal nerves: Anatomical basis for facial muscle proprioception. JPRAS Open 2017. [DOI: 10.1016/j.jpra.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|