1
|
Vanneste S, Pei Y, Friml J. Mechanisms of auxin action in plant growth and development. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00851-2. [PMID: 40389696 DOI: 10.1038/s41580-025-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
The phytohormone auxin is a major signal coordinating growth and development in plants. The variety of its effects arises from its ability to form local auxin maxima and gradients within tissues, generated through directional cell-to-cell transport and elaborate metabolic control. These auxin distribution patterns instruct cells in a context-dependent manner to undergo predefined developmental transitions. In this Review, we discuss advances in auxin action at the level of homeostasis and signalling. We highlight key insights into the structural basis of PIN-mediated intercellular auxin transport and explore two novel non-transcriptional auxin signalling mechanisms: one involving intracellular Ca2+ transients and another involving cell-surface auxin perception that mediates global, ultrafast phosphorylation. Furthermore, we examine emerging evidence indicating the involvement of cyclic adenosine monophosphate as a second messenger in the transcriptional auxin response. Together, these recent developments in auxin research have profoundly deepened our understanding of the complex and diverse activities of auxin in plant growth and development.
Collapse
Affiliation(s)
- Steffen Vanneste
- HortiCell, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Yuanrong Pei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Vadodaria R, Anderson CT. Branching under pressure: Influences of cell wall architecture and biomechanics on lateral root morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102735. [PMID: 40344921 DOI: 10.1016/j.pbi.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Plants carry out a unique type of organogenesis in which cells do not move relative to each other but instead maintain their relative positions and grow in concert. The coordinated regulation of cell shape and size is thus essential for organ morphogenesis, but in a few developmental processes, most notably in invasive growth and the establishment of branched tissue architectures, cell and tissue growth in plants involves the displacement of surrounding or overlying tissues. Plant cells accomplish patterned developmental morphogenesis in part due to the mechanically complex architectures of their cell walls, which can anisotropically constrain the expansion that is facilitated in many cases by the cellular uptake of water that results in cell pressurization. Here, we focus on one example of patterned tissue growth and cell displacement, the formation and emergence of lateral roots, as a paradigm for understanding how cell wall architecture and cellular biomechanics influence the differentiation and growth of new organs in plants. We highlight recent advances in our knowledge of how hormone signaling, transcriptional regulation, cytoskeletal dynamics, and cell wall synthesis and remodeling influence lateral root initiation and emergence, and propose hypotheses and potential research directions for future studies of these complex but essential developmental processes.
Collapse
Affiliation(s)
- Ritu Vadodaria
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Balcerowicz M. Twists in the pattern: REM transcription factors determine phyllotaxis in the Arabidopsis inflorescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70199. [PMID: 40317828 DOI: 10.1111/tpj.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
|
4
|
Hu G, Wang K, Huang B, Mila I, Frasse P, Maza E, Djari A, Hernould M, Zouine M, Li Z, Bouzayen M. The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. NATURE PLANTS 2022; 8:419-433. [PMID: 35422080 DOI: 10.1038/s41477-022-01121-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/03/2022] [Indexed: 05/04/2023]
Abstract
Understanding the mechanisms underlying differentiation of inflorescence and flower meristems is essential towards enlarging our knowledge of reproductive organ formation and to open new prospects for improving yield traits. Here, we show that SlDOF9 is a new modulator of floral differentiation in tomato. CRISPR/Cas9 knockout strategy uncovered the role of SlDOF9 in controlling inflorescence meristem and floral meristem differentiation via the regulation of cell division genes and inflorescence architecture regulator LIN. Tomato dof9-KO lines have more flowers in both determinate and indeterminate cultivars and produce more fruit upon vibration-assisted fertilization. SlDOF9 regulates inflorescence development through an auxin-dependent ARF5-DOF9 module that seems to operate, at least in part, differently in Arabidopsis and tomato. Our findings add a new actor to the complex mechanisms underlying reproductive organ differentiation in flowering plants and provide leads towards addressing the diversity of factors controlling the transition to reproductive organs.
Collapse
Affiliation(s)
- Guojian Hu
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Keke Wang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Baowen Huang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Isabelle Mila
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
| | - Pierre Frasse
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Elie Maza
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Anis Djari
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Michel Hernould
- Biologie du Fruit et Pathologie-UMR 1332, Université Bordeaux, INRAE, Villenave d'Ornon, France
| | - Mohamed Zouine
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mondher Bouzayen
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France.
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France.
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Guédon Y, Caraglio Y, Granier C, Lauri PÉ, Muller B. Identifying Developmental Patterns in Structured Plant Phenotyping Data. Methods Mol Biol 2022; 2395:199-225. [PMID: 34822155 DOI: 10.1007/978-1-0716-1816-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological breakthroughs concerning both sensors and robotized plant phenotyping platforms have totally renewed the plant phenotyping paradigm in the last two decades. This has impacted both the nature and the throughput of data with the availability of data at high-throughput from the tissular to the whole plant scale. Sensor outputs often take the form of 2D or 3D images or time series of such images from which traits are extracted while organ shapes, shoot or root system architectures can be deduced. Despite this change of paradigm, many phenotyping studies often ignore the structure of the plant and therefore loose the information conveyed by the temporal and spatial patterns emerging from this structure. The developmental patterns of plants often take the form of succession of well-differentiated phases, stages or zones depending on the temporal, spatial or topological indexing of data. This entails the use of hierarchical statistical models for their identification.The objective here is to show potential approaches for analyzing structured plant phenotyping data using state-of-the-art methods combining probabilistic modeling, statistical inference and pattern recognition. This approach is illustrated using five different examples at various scales that combine temporal and topological index parameters, and development and growth variables obtained using prospective or retrospective measurements.
Collapse
Affiliation(s)
- Yann Guédon
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yves Caraglio
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Christine Granier
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre-Éric Lauri
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bertrand Muller
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
6
|
Pernisová M, Vernoux T. Auxin Does the SAMba: Auxin Signaling in the Shoot Apical Meristem. Cold Spring Harb Perspect Biol 2021; 13:a039925. [PMID: 33903154 PMCID: PMC8634999 DOI: 10.1101/cshperspect.a039925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants, in contrast to animals, are unique in their capacity to postembryonically develop new organs due to the activity of stem cell populations, located in specialized tissues called meristems. Above ground, the shoot apical meristem generates aerial organs and tissues throughout plant life. It is well established that auxin plays a central role in the functioning of the shoot apical meristem. Auxin distribution in the meristem is not uniform and depends on the interplay between biosynthesis, transport, and degradation. Auxin maxima and minima are created, and result in transcriptional outputs that drive the development of new organs and contribute to meristem maintenance. To uncover and understand complex signaling networks such as the one regulating auxin responses in the shoot apical meristem remains a challenge. Here, we will discuss our current understanding and point to important research directions for the future.
Collapse
Affiliation(s)
- Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
- Functional Genomics and Proteomics, National Centre for Biomolecula Research, Faculty of Science, Masaryk University and CEITEC MU, 62500 Brno, Czech Republic
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
7
|
Kruglova NN, Titova GE, Seldimirova OA, Zinatullina AE. Cytophysiological Features of the Cereal-Based Experimental System “Embryo In Vivo–Callus In Vitro”. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yin X, Kitazawa MS. Beyond Fibonacci patterns and the golden angle: phyllotactic variations and their cellular origin. JOURNAL OF PLANT RESEARCH 2021; 134:369-371. [PMID: 33909170 DOI: 10.1007/s10265-021-01310-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Miho S Kitazawa
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-16 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
9
|
Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Sanz L, Lorenzo O. Nitric Oxide Alters the Pattern of Auxin Maxima and PIN-FORMED1 During Shoot Development. FRONTIERS IN PLANT SCIENCE 2021; 12:630792. [PMID: 34122465 PMCID: PMC8189175 DOI: 10.3389/fpls.2021.630792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/01/2021] [Indexed: 05/27/2023]
Abstract
Hormone patterns tailor cell fate decisions during plant organ formation. Among them, auxins and cytokinins are critical phytohormones during early development. Nitric oxide (NO) modulates root architecture by the control of auxin spatial patterns. However, NO involvement during the coordination of shoot organogenesis remains unclear. Here, we explore the effect of NO during shoot development by using a phenotypic, cellular, and genetic analysis in Arabidopsis thaliana and get new insights into the characterization of NO-mediated leaf-related phenotypes. NO homeostasis mutants are impaired in several shoot architectural parameters, including phyllotactic patterns, inflorescence stem elongation, silique production, leaf number, and margin. Auxin distribution is a key feature for tissue differentiation and need to be controlled at different levels (i.e., synthesis, transport, and degradation mechanisms). The phenotypes resulting from the introduction of the cue1 mutation in the axr1 auxin resistant and pin1 backgrounds exacerbate the relationship between NO and auxins. Using the auxin reporter DR5:GUS, we observed an increase in auxin maxima under NO-deficient mutant backgrounds and NO scavenging, pointing to NO-ASSOCIATED 1 (NOA1) as the main player related to NO production in this process. Furthermore, polar auxin transport is mainly regulated by PIN-FORMED 1 (PIN1), which controls the flow along leaf margin and venations. Analysis of PIN1 protein levels shows that NO controls its accumulation during leaf development, impacting the auxin mediated mechanism of leaf building. With these findings, we also provide evidence for the NO opposite effects to determine root and shoot architecture, in terms of PIN1 accumulation under NO overproduction.
Collapse
|
10
|
Godin C, Golé C, Douady S. Phyllotaxis as geometric canalization during plant development. Development 2020; 147:147/19/dev165878. [PMID: 33046454 DOI: 10.1242/dev.165878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
Why living forms develop in a relatively robust manner, despite various sources of internal or external variability, is a fundamental question in developmental biology. Part of the answer relies on the notion of developmental constraints: at any stage of ontogenesis, morphogenetic processes are constrained to operate within the context of the current organism being built. One such universal constraint is the shape of the organism itself, which progressively channels the development of the organism toward its final shape. Here, we illustrate this notion with plants, where strikingly symmetric patterns (phyllotaxis) are formed by lateral organs. This Hypothesis article aims first to provide an accessible overview of phyllotaxis, and second to argue that the spiral patterns in plants are progressively canalized from local interactions of nascent organs. The relative uniformity of the organogenesis process across all plants then explains the prevalence of certain patterns in plants, i.e. Fibonacci phyllotaxis.
Collapse
Affiliation(s)
- Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Golé
- Department of Mathematics, Smith College, Northampton, MA 01063, USA
| | - Stéphane Douady
- Laboratoire MSC, UMR 7057 Université Paris Diderot - CNRS, Bâtiment Condorcet, CC 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
11
|
Louarn G, Song Y. Two decades of functional-structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. ANNALS OF BOTANY 2020; 126:501-509. [PMID: 32725187 PMCID: PMC7489058 DOI: 10.1093/aob/mcaa143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Functional-structural plant models (FSPMs) explore and integrate relationships between a plant's structure and processes that underlie its growth and development. In the last 20 years, scientists interested in functional-structural plant modelling have expanded greatly the range of topics covered and now handle dynamical models of growth and development occurring from the microscopic scale, and involving cell division in plant meristems, to the macroscopic scales of whole plants and plant communities. SCOPE The FSPM approach occupies a central position in plant science; it is at the crossroads of fundamental questions in systems biology and predictive ecology. This special issue of Annals of Botany features selected papers on critical areas covered by FSPMs and examples of comprehensive models that are used to solve theoretical and applied questions, ranging from developmental biology to plant phenotyping and management of plants for agronomic purposes. Altogether, they offer an opportunity to assess the progress, gaps and bottlenecks along the research path originally foreseen for FSPMs two decades ago. This review also allows discussion of current challenges of FSPMs regarding (1) integration of multidisciplinary knowledge, (2) methods for handling complex models, (3) standards to achieve interoperability and greater genericity and (4) understanding of plant functioning across scales. CONCLUSIONS This approach has demonstrated considerable progress, but has yet to reach its full potential in terms of integration and heuristic knowledge production. The research agenda of functional-structural plant modellers in the coming years should place a greater emphasis on explaining robust emergent patterns, and on the causes of possible deviation from it. Modelling such patterns could indeed fuel both generic integration across scales and transdisciplinary transfer. In particular, it could be beneficial to emergent fields of research such as model-assisted phenotyping and predictive ecology in managed ecosystems.
Collapse
Affiliation(s)
| | - Youhong Song
- Anhui Agricultural University, School of Agronomy, Hefei, Anhui Province, PR China
| |
Collapse
|
12
|
Galvan-Ampudia CS, Cerutti G, Legrand J, Brunoud G, Martin-Arevalillo R, Azais R, Bayle V, Moussu S, Wenzl C, Jaillais Y, Lohmann JU, Godin C, Vernoux T. Temporal integration of auxin information for the regulation of patterning. eLife 2020; 9:55832. [PMID: 32379043 PMCID: PMC7205470 DOI: 10.7554/elife.55832] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/29/2020] [Indexed: 12/27/2022] Open
Abstract
Positional information is essential for coordinating the development of multicellular organisms. In plants, positional information provided by the hormone auxin regulates rhythmic organ production at the shoot apex, but the spatio-temporal dynamics of auxin gradients is unknown. We used quantitative imaging to demonstrate that auxin carries high-definition graded information not only in space but also in time. We show that, during organogenesis, temporal patterns of auxin arise from rhythmic centrifugal waves of high auxin travelling through the tissue faster than growth. We further demonstrate that temporal integration of auxin concentration is required to trigger the auxin-dependent transcription associated with organogenesis. This provides a mechanism to temporally differentiate sites of organ initiation and exemplifies how spatio-temporal positional information can be used to create rhythmicity. Plants, like animals and many other multicellular organisms, control their body architecture by creating organized patterns of cells. These patterns are generally defined by signal molecules whose levels differ across the tissue and change over time. This tells the cells where they are located in the tissue and therefore helps them know what tasks to perform. A plant hormone called auxin is one such signal molecule and it controls when and where plants produce new leaves and flowers. Over time, this process gives rise to the dashing arrangements of spiraling organs exhibited by many plant species. The leaves and flowers form from a relatively small group of cells at the tip of a growing stem known as the shoot apical meristem. Auxin accumulates at precise locations within the shoot apical meristem before cells activate the genes required to make a new leaf or flower. However, the precise role of auxin in forming these new organs remained unclear because the tools to observe the process in enough detail were lacking. Galvan-Ampudia, Cerutti et al. have now developed new microscopy and computational approaches to observe auxin in a small plant known as Arabidopsis thaliana. This showed that dozens of shoot apical meristems exhibited very similar patterns of auxin. Images taken over a period of several hours showed that the locations where auxin accumulated were not fixed on a group of cells but instead shifted away from the center of the shoot apical meristems faster than the tissue grew. This suggested the cells experience rapidly changing levels of auxin. Further experiments revealed that the cells needed to be exposed to a high level of auxin over time to activate genes required to form an organ. This mechanism sheds a new light on how auxin regulates when and where plants make new leaves and flowers. The tools developed by Galvan-Ampudia, Cerutti et al. could be used to study the role of auxin in other plant tissues, and to investigate how plants regulate the response to other plant hormones.
Collapse
Affiliation(s)
- Carlos S Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Guillaume Cerutti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Géraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Romain Azais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| |
Collapse
|
13
|
Xiong Y, Jiao Y. The Diverse Roles of Auxin in Regulating Leaf Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E243. [PMID: 31340506 PMCID: PMC6681310 DOI: 10.3390/plants8070243] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Leaves, the primary plant organs that function in photosynthesis and respiration, have highly organized, flat structures that vary within and among species. In recent years, it has become evident that auxin plays central roles in leaf development, including leaf initiation, blade formation, and compound leaf patterning. In this review, we discuss how auxin maxima form to define leaf primordium formation. We summarize recent progress in understanding of how spatial auxin signaling promotes leaf blade formation. Finally, we discuss how spatial auxin transport and signaling regulate the patterning of compound leaves and leaf serration.
Collapse
Affiliation(s)
- Yuanyuan Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Long Y, Boudaoud A. Emergence of robust patterns from local rules during plant development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:127-137. [PMID: 30577002 DOI: 10.1016/j.pbi.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The formation of spatial and temporal patterns is an essential component of organismal development. Patterns can be observed on every level from subcellular to organismal and may emerge from local rules that correspond to the interactions between molecules, cells, or tissues. The emergence of robust patterns may seem in contradiction with the prominent heterogeneity at subcellular and cellular scales, however it has become increasingly clear that heterogeneity can be instrumental for pattern formation. Here we review recent examples in plant development, involving genetic regulation, cell arrangement, growth and signal gradient. We discuss how patterns emerge from local rules, whether heterogeneity is stochastic or can be patterned, and whether stochastic noise is amplified or requires filtering for robust patterns to be achieved. We also stress the importance of modelling in investigating such questions.
Collapse
Affiliation(s)
- Yuchen Long
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
15
|
Kang H, Ma J, Wu D, Shen WH, Zhu Y. Functional Coordination of the Chromatin-Remodeling Factor AtINO80 and the Histone Chaperones NRP1/2 in Inflorescence Meristem and Root Apical Meristem. FRONTIERS IN PLANT SCIENCE 2019; 10:115. [PMID: 30792730 PMCID: PMC6374632 DOI: 10.3389/fpls.2019.00115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/23/2019] [Indexed: 05/05/2023]
Abstract
Chromatin structure requires proper modulation in face of transcriptional reprogramming in the context of organism growth and development. Chromatin-remodeling factors and histone chaperones are considered to intrinsically possess abilities to remodel chromatin structure in single or in combination. Our previous study revealed the functional synergy between the Arabidopsis chromatin-remodeling factor INOSITOL AUXOTROPHY 80 (AtINO80) and the histone chaperone NAP1-RELATED PROTEIN 1 (NRP1) and NRP2 in somatic homologous recombination, one crucial pathway involved in repairing DNA double strand breaks. Here, we report genetic interplay between AtINO80 and NRP1/2 in regulating inflorescence meristem (IM) and root apical meristem (RAM) activities. The triple mutant atino80-5 m56-1 depleting of both AtINO80 (atino80-5) and NRP1/2 (m56-1) showed abnormal positioning pattern of floral primordia and enlargement of IM size. Higher mRNA levels of several genes involved in auxin pathway (e.g., PIN1, FIL) were found in the inflorescences of the triple mutant but barely in those of the single mutant atino80-5 or the double mutant m56-1. In particular, the depletion of AtINO80 and NRP1/2 decreased histone H3 levels within the chromatin regions of PIN1, which encodes an important auxin efflux carrier. Moreover, the triple mutant displayed a severe short-root phenotype with higher sensitivity to auxin transport inhibitor NPA. Unusual high level of cell death was also found in triple mutant root tips, accompanied by double-strand break damages revealed by γ-H2A.X loci and cortex cell enlargement. Collectively, our study provides novel insight into the functional coordination of the two epigenetic factors AtINO80 and NRP1/2 in apical meristems during plant growth and development.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Di Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Yan Zhu,
| |
Collapse
|
16
|
|
17
|
Fujita H, Kawaguchi M. Spatial regularity control of phyllotaxis pattern generated by the mutual interaction between auxin and PIN1. PLoS Comput Biol 2018; 14:e1006065. [PMID: 29614066 PMCID: PMC5882125 DOI: 10.1371/journal.pcbi.1006065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 11/19/2022] Open
Abstract
Phyllotaxis, the arrangement of leaves on a plant stem, is well known because of its beautiful geometric configuration, which is derived from the constant spacing between leaf primordia. This phyllotaxis is established by mutual interaction between a diffusible plant hormone auxin and its efflux carrier PIN1, which cooperatively generate a regular pattern of auxin maxima, small regions with high auxin concentrations, leading to leaf primordia. However, the molecular mechanism of the regular pattern of auxin maxima is still largely unknown. To better understand how the phyllotaxis pattern is controlled, we investigated mathematical models based on the auxin-PIN1 interaction through linear stability analysis and numerical simulations, focusing on the spatial regularity control of auxin maxima. As in previous reports, we first confirmed that this spatial regularity can be reproduced by a highly simplified and abstract model. However, this model lacks the extracellular region and is not appropriate for considering the molecular mechanism. Thus, we investigated how auxin maxima patterns are affected under more realistic conditions. We found that the spatial regularity is eliminated by introducing the extracellular region, even in the presence of direct diffusion between cells or between extracellular spaces, and this strongly suggests the existence of an unknown molecular mechanism. To unravel this mechanism, we assumed a diffusible molecule to verify various feedback interactions with auxin-PIN1 dynamics. We revealed that regular patterns can be restored by a diffusible molecule that mediates the signaling from auxin to PIN1 polarization. Furthermore, as in the one-dimensional case, similar results are observed in the two-dimensional space. These results provide a great insight into the theoretical and molecular basis for understanding the phyllotaxis pattern. Our theoretical analysis strongly predicts a diffusible molecule that is pivotal for the phyllotaxis pattern but is yet to be determined experimentally.
Collapse
Affiliation(s)
- Hironori Fujita
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- * E-mail:
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
18
|
Wang Y, Jiao Y. Axillary meristem initiation-a way to branch out. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:61-66. [PMID: 28963901 DOI: 10.1016/j.pbi.2017.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 05/23/2023]
Abstract
Plants differ from most animals in their retained ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems. In seed plants, branching is achieved by axillary meristems, which are established in the axil of each leaf base and develop into lateral branches. Research into axillary meristem initiation has identified transcription factors and phytohormones as key regulators. Based on these findings, a mechanistic framework for understanding axillary meristem initiation has emerged. Taking recent research into account, we discuss mechanisms underlying stem cell fate regulation that enable axillary meristem formation.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China.
| |
Collapse
|
19
|
Truskina J, Vernoux T. The growth of a stable stationary structure: coordinating cell behavior and patterning at the shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:83-88. [PMID: 29073502 DOI: 10.1016/j.pbi.2017.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/23/2023]
Abstract
Plants are characterized by their ability to produce new organs post-embryonically throughout their entire life cycle. In particular development of all above-ground organs relies almost entirely on the function of the shoot apical meristem (SAM). The SAM performs a dual role by maintaining a pool of undifferentiated cells and simultaneously driving cell differentiation to initiate organogenesis. Both processes require strict coordination between individual cells which leads to formation of reproducible morphological and molecular patterns within SAM. The patterns are formed and maintained in large part due to spatio-temporal variation in signaling of plant hormones auxin and cytokinin resulting in tissue-specific transcriptional regulation. Integration of these mechanisms into computational models further identifies the key regulatory interactions involved in SAM function.
Collapse
Affiliation(s)
- Jekaterina Truskina
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France.
| |
Collapse
|
20
|
Abstract
In contrast to animals, plants maintain life-long post-embryonic organogenesis from specialized tissues termed meristems. Shoot meristems give rise to all aerial tissues and are precisely regulated to balance stem cell renewal and differentiation. The phytohormone auxin has a dynamic and differential distribution within shoot meristems and during shoot meristem formation. Polar auxin transport and local auxin biosynthesis lead to auxin maxima and minima to direct cell fate specification, which are critical for meristem formation, lateral organ formation, and lateral organ patterning. In recent years, feedback regulatory loops of auxin transport and signaling have emerged as major determinants of the self-organizing properties of shoot meristems. Systems biology approaches, which involve molecular genetics, live imaging, and computational modeling, have become increasingly important to unravel the function of auxin signaling in shoot meristems.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, China
| | - Yuling Jiao
- College of Life Sciences, University of Chinese Academy of Sciences, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, China
| |
Collapse
|
21
|
Nimchuk ZL, Perdue TD. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment. FRONTIERS IN PLANT SCIENCE 2017; 8:773. [PMID: 28579995 PMCID: PMC5437170 DOI: 10.3389/fpls.2017.00773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/25/2017] [Indexed: 05/30/2023]
Abstract
Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.
Collapse
Affiliation(s)
- Zachary L. Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
| | - Tony D. Perdue
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
- Biology Microscope Core, University of North Carolina at Chapel Hill, Chapel HillNC, USA
| |
Collapse
|