1
|
Seybold A, Kumar S, Tumu SC, Hausen H. Neurons with larval synaptic targets pioneer the later nervous system in the annelid Malacoceros fuliginosus. Front Neurosci 2025; 18:1439897. [PMID: 39872997 PMCID: PMC11770012 DOI: 10.3389/fnins.2024.1439897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Comparative studies on the development of nervous systems have a significant impact on understanding animal nervous system evolution. Nevertheless, an important question is to what degree neuronal structures, which play an important role in early stages, become part of the adult nervous system or are relevant for its formation. This is likely in many direct developers, but it is not the case in forms with catastrophic metamorphosis. It is not clear in many forms with gradual metamorphosis. This introduces uncertainty in tracing the evolution of nervous systems and of larval forms. One of the prominent larval characteristics of numerous planktonic marine organisms is the epidermal ciliation used for swimming and steering, which disappears during metamorphosis. Therefore, the neuronal elements controlling the ciliary beating are often assumed to vanish with the cilia and regarded as purely larval specializations. With volume EM, we followed the neuronal targets of the very first pioneer neurons at the apical and posterior ends of the larva of the annelid Malacoceros fuliginosus. We observed that all of these pioneers appear to have a dual function. Although they are laying the paths for the later adult nervous system, they also make synaptic contact with the main ciliated ring of the larva. We propose that the formation of the later adult nervous system and the innervation of the larval locomotory organ are indeed closely linked to each other. This has implications for understanding the early nervous system development of marine larvae and for existing hypotheses on nervous system evolution.
Collapse
Affiliation(s)
- Anna Seybold
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Suman Kumar
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Harald Hausen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Earth Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Lehmann KS, Hupp MT, Abalde-Atristain L, Jefferson A, Cheng YC, Sheehan AE, Kang Y, Freeman MR. Astrocyte-dependent local neurite pruning in Beat-Va neurons. J Cell Biol 2025; 224:e202312043. [PMID: 39652106 PMCID: PMC11627112 DOI: 10.1083/jcb.202312043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 12/12/2024] Open
Abstract
Developmental neuronal remodeling is extensive and mechanistically diverse across the nervous system. We sought to identify Drosophila pupal neurons that underwent mechanistically new types of neuronal remodeling and describe remodeling Beat-VaM and Beat-VaL neurons. We show that Beat-VaM neurons produce highly branched neurites in the CNS during larval stages that undergo extensive local pruning. Surprisingly, although the ecdysone receptor (EcR) is essential for pruning in all other cell types studied, Beat-VaM neurons remodel their branches extensively despite cell autonomous blockade EcR or caspase signaling. Proper execution of local remodeling in Beat-VaM neurons instead depends on extrinsic signaling from astrocytes converging with intrinsic and less dominant EcR-regulated mechanisms. In contrast, Beat-VaL neurons undergo steroid hormone-dependent, apoptotic cell death, which we show relies on the segment-specific expression of the Hox gene Abd-B. Our work provides new cell types in which to study neuronal remodeling, highlights an important role for astrocytes in activating local pruning in Drosophila independent of steroid signaling, and defines a Hox gene-mediated mechanism for segment-specific cell elimination.
Collapse
Affiliation(s)
| | - Madison T. Hupp
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Amanda Jefferson
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ya-Chen Cheng
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Amy E. Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development of dorsal fan-shaped body neurons and sleep homeostasis. Curr Biol 2024; 34:4951-4967.e5. [PMID: 39383867 PMCID: PMC11537841 DOI: 10.1016/j.cub.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Complex behaviors arise from neural circuits that assemble from diverse cell types. Sleep is a conserved behavior essential for survival, yet little is known about how the nervous system generates neuron types of a sleep-wake circuit. Here, we focus on the specification of Drosophila 23E10-labeled dorsal fan-shaped body (dFB) long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex. We use lineage analysis and genetic birth dating to identify two bilateral type II neural stem cells (NSCs) that generate 23E10 dFB neurons. We show that adult 23E10 dFB neurons express ecdysone-induced protein 93 (E93) and that loss of ecdysone signaling or E93 in type II NSCs results in their misspecification. Finally, we show that E93 knockdown in type II NSCs impairs adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate the neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | | | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA.
| |
Collapse
|
4
|
Tang T, Li J, Zhang B, Wen L, Lu Y, Hu Q, Yu XQ, Zhang J. Loss of function in Drosophila transcription factor Dif delays brain development in larvae resulting in aging adult brain. Int J Biol Macromol 2024; 281:136491. [PMID: 39393722 DOI: 10.1016/j.ijbiomac.2024.136491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Drosophila NF-κB transcription factor Dif has been well known for its function in innate immunity, and recent study also reveals its role in neuronal cells. However, the underlying mechanisms of Dif in the brain remain elusive. In this study, we aim to investigate the function of Dif in Drosophila brain development and how Dif regulates structure and plasticity of the brain to affect aging and behaviors. Based on the analysis of differentially expressed genes, we identified key genes associated with cell division, development and aging in the brain of Dif1 loss of function mutant. In Dif1 larvae, we found that the metamorphosis and brain development were delayed, and cell division was decreased. In Dif1 adults, the number of neuron cells was reduced in the brain, the lifespan and locomotor activity were decreased, protein markers associated with aging-related neurodegenerative diseases in the brain were altered in abundance or activity. Our results indicated that Dif plays a crucial role in brain plasticity and neurogenesis, dysfunction of Dif delays larval brain development and impacts proliferation of neuronal cells, resulting in aging adult brain by regulating expression of key genes in multiple signaling pathways involved in cell division, neurogenesis and aging.
Collapse
Affiliation(s)
- Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bangwen Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Barthel L, Pettemeridi S, Nebras A, Schnaidt H, Fahland K, Vormwald L, Raabe T. The transcription elongation factors Spt4 and Spt5 control neural progenitor proliferation and are implicated in neuronal remodeling during Drosophila mushroom body development. Front Cell Dev Biol 2024; 12:1434168. [PMID: 39445331 PMCID: PMC11496258 DOI: 10.3389/fcell.2024.1434168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Spt4 and Spt5 form the DRB sensitivity inducing factor (DSIF) complex that regulates transcription elongation at multiple steps including promotor-proximal pausing, processivity and termination. Although this implicated a general role in transcription, several studies pointed to smaller sets of target genes and indicated a more specific requirement in certain cellular contexts. To unravel common or distinct functions of Spt4 and Spt5 in vivo, we generated knock-out alleles for both genes in Drosophila melanogaster. Using the development of the mushroom bodies as a model, we provided evidence for two common functions of Spt4 and Spt5 during mushroom body development, namely control of cell proliferation of neural progenitor cells and remodeling of axonal projections of certain mushroom body neurons. This latter function is not due to a general requirement of Spt4 and Spt5 for axon pathfinding of mushroom body neurons, but due to distinct effects on the expression of genes controlling remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Raabe
- Department Molecular Genetics of the Faculty of Medicine, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Morano NC, Lopez DH, Meltzer H, Sergeeva AP, Katsamba PS, Rostam KD, Gupta HP, Becker JE, Bornstein B, Cosmanescu F, Schuldiner O, Honig B, Mann RS, Shapiro L. Cis inhibition of co-expressed DIPs and Dprs shapes neural development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583391. [PMID: 38895375 PMCID: PMC11185508 DOI: 10.1101/2024.03.04.583391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In Drosophila , two interacting adhesion protein families, Dprs and DIPs, coordinate the assembly of neural networks. While intercellular DIP/Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis . We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.
Collapse
|
7
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
8
|
Fiala A, Kaun KR. What do the mushroom bodies do for the insect brain? Twenty-five years of progress. Learn Mem 2024; 31:a053827. [PMID: 38862175 PMCID: PMC11199942 DOI: 10.1101/lm.053827.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
In 1998, a special edition of Learning & Memory was published with a discrete focus of synthesizing the state of the field to provide an overview of the function of the insect mushroom body. While molecular neuroscience and optical imaging of larger brain areas were advancing, understanding the basic functioning of neuronal circuits, particularly in the context of the mushroom body, was rudimentary. In the past 25 years, technological innovations have allowed researchers to map and understand the in vivo function of the neuronal circuits of the mushroom body system, making it an ideal model for investigating the circuit basis of sensory encoding, memory formation, and behavioral decisions. Collaborative efforts within the community have played a crucial role, leading to an interactive connectome of the mushroom body and accessible genetic tools for studying mushroom body circuit function. Looking ahead, continued technological innovation and collaborative efforts are likely to further advance our understanding of the mushroom body and its role in behavior and cognition, providing insights that generalize to other brain structures and species.
Collapse
Affiliation(s)
- André Fiala
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Göttingen 37077, Germany
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02806, USA
| |
Collapse
|
9
|
Chan ICW, Chen N, Hernandez J, Meltzer H, Park A, Stahl A. Future avenues in Drosophila mushroom body research. Learn Mem 2024; 31:a053863. [PMID: 38862172 PMCID: PMC11199946 DOI: 10.1101/lm.053863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
How does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory.
Collapse
Affiliation(s)
- Ivy Chi Wai Chan
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - John Hernandez
- Neuroscience Department, Brown University, Providence, Rhode Island 02906, USA
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Annie Park
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
10
|
Hassinan CW, Sterrett SC, Summy B, Khera A, Wang A, Bai J. Dimensionality of locomotor behaviors in developing C. elegans. PLoS Comput Biol 2024; 20:e1011906. [PMID: 38437243 PMCID: PMC10939432 DOI: 10.1371/journal.pcbi.1011906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Adult animals display robust locomotion, yet the timeline and mechanisms of how juvenile animals acquire coordinated movements and how these movements evolve during development are not well understood. Recent advances in quantitative behavioral analyses have paved the way for investigating complex natural behaviors like locomotion. In this study, we tracked the swimming and crawling behaviors of the nematode Caenorhabditis elegans from postembryonic development through to adulthood. Our principal component analyses revealed that adult C. elegans swimming is low dimensional, suggesting that a small number of distinct postures, or eigenworms, account for most of the variance in the body shapes that constitute swimming behavior. Additionally, we found that crawling behavior in adult C. elegans is similarly low dimensional, corroborating previous studies. Further, our analysis revealed that swimming and crawling are distinguishable within the eigenworm space. Remarkably, young L1 larvae are capable of producing the postural shapes for swimming and crawling seen in adults, despite frequent instances of uncoordinated body movements. In contrast, late L1 larvae exhibit robust coordination of locomotion, while many neurons crucial for adult locomotion are still under development. In conclusion, this study establishes a comprehensive quantitative behavioral framework for understanding the neural basis of locomotor development, including distinct gaits such as swimming and crawling in C. elegans.
Collapse
Affiliation(s)
- Cera W Hassinan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Scott C Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
| | - Brennan Summy
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Arnav Khera
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Angie Wang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Pomona College, Claremont, California, United States of America
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
11
|
Yin C, Morita T, Parrish JZ. A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Dev 2024; 19:2. [PMID: 38297398 PMCID: PMC10829479 DOI: 10.1186/s13064-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Mosquito-borne diseases account for nearly 1 million human deaths annually, yet we have a limited understanding of developmental events that influence host-seeking behavior and pathogen transmission in mosquitoes. Mosquito-borne pathogens are transmitted during blood meals, hence adult mosquito behavior and physiology have been intensely studied. However, events during larval development shape adult traits, larvae respond to many of the same sensory cues as adults, and larvae are susceptible to infection by many of the same disease-causing agents as adults. Hence, a better understanding of larval physiology will directly inform our understanding of physiological processes in adults. Here, we use single cell RNA sequencing (scRNA-seq) to provide a comprehensive view of cellular composition in the Aedes aegypti larval ventral nerve cord (VNC), a central hub of sensory inputs and motor outputs which additionally controls multiple aspects of larval physiology. We identify more than 35 VNC cell types defined in part by neurotransmitter and neuropeptide expression. We also explore diversity among monoaminergic and peptidergic neurons that likely control key elements of larval physiology and developmental timing, and identify neuroblasts and immature neurons, providing a view of neuronal differentiation in the VNC. Finally, we find that larval cell composition, number, and position are preserved in the adult abdominal VNC, suggesting studies of larval VNC form and function will likely directly inform our understanding adult mosquito physiology. Altogether, these studies provide a framework for targeted analysis of VNC development and neuronal function in Aedes aegypti larvae.
Collapse
Affiliation(s)
- Chang Yin
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Takeshi Morita
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
| |
Collapse
|
12
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Shafer O, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development and function of a Drosophila sleep homeostat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560022. [PMID: 37873323 PMCID: PMC10592846 DOI: 10.1101/2023.09.29.560022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Complex behaviors arise from neural circuits that are assembled from diverse cell types. Sleep is a conserved and essential behavior, yet little is known regarding how the nervous system generates neuron types of the sleep-wake circuit. Here, we focus on the specification of Drosophila sleep-promoting neurons-long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex (CX). We use lineage analysis and genetic birth dating to identify two bilateral Type II neural stem cells that generate these dorsal fan-shaped body (dFB) neurons. We show that adult dFB neurons express Ecdysone-induced protein E93, and loss of Ecdysone signaling or E93 in Type II NSCs results in the misspecification of the adult dFB neurons. Finally, we show that E93 knockdown in Type II NSCs affects adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | | | - Orie Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| |
Collapse
|
13
|
Perron C, Carme P, Rosell AL, Minnaert E, Ruiz-Demoulin S, Szczkowski H, Neukomm LJ, Dura JM, Boulanger A. Chemokine-like Orion is involved in the transformation of glial cells into phagocytes in different developmental neuronal remodeling paradigms. Development 2023; 150:dev201633. [PMID: 37767633 PMCID: PMC10565233 DOI: 10.1242/dev.201633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
During animal development, neurons often form exuberant or inappropriate axons and dendrites at early stages, followed by the refinement of neuronal circuits at late stages. Neural circuit refinement leads to the production of neuronal debris in the form of neuronal cell corpses, fragmented axons and dendrites, and pruned synapses requiring disposal. Glial cells act as predominant phagocytes during neuronal remodeling and degeneration, and crucial signaling pathways between neurons and glia are necessary for the execution of phagocytosis. Chemokine-like mushroom body neuron-secreted Orion is essential for astrocyte infiltration into the γ axon bundle leading to γ axon pruning. Here, we show a role of Orion in debris engulfment and phagocytosis in Drosophila. Interestingly, Orion is involved in the overall transformation of astrocytes into phagocytes. In addition, analysis of several neuronal paradigms demonstrates the role of Orion in eliminating both peptidergic vCrz+ and PDF-Tri neurons via additional phagocytic glial cells like cortex and/or ensheathing glia. Our results suggest that Orion is essential for phagocytic activation of astrocytes, cortex and ensheathing glia, and point to Orion as a trigger of glial infiltration, engulfment and phagocytosis.
Collapse
Affiliation(s)
| | - Pascal Carme
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Eva Minnaert
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Lukas Jakob Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. Transl Psychiatry 2023; 13:226. [PMID: 37355701 DOI: 10.1038/s41398-023-02521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence-activated cell sorting of Kenyon cells, followed by either bulk or single-cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalopram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
16
|
Hassinan CW, Sterrett SC, Summy B, Khera A, Wang A, Bai J. A Quantitative Analysis of Locomotor Patterns in Developing C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543584. [PMID: 37333370 PMCID: PMC10274735 DOI: 10.1101/2023.06.03.543584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Adult animals display robust locomotion, yet the timeline and mechanisms of how juvenile animals acquire coordinated movements and how these movements evolve during development are not well understood. Recent advances in quantitative behavioral analyses have paved the way for investigating complex natural behaviors like locomotion. In this study, we tracked the swimming and crawling behaviors of the nematode Caenorhabditis elegans from postembryonic development through to adulthood. Our principal component analyses revealed that adult C. elegans swimming is low dimensional, suggesting that a small number of distinct postures, or eigenworms, account for most of the variance in the body shapes that constitute swimming behavior. Additionally, we found that crawling behavior in adult C. elegans is similarly low dimensional, corroborating previous studies. However, our analysis revealed that swimming and crawling are distinct gaits in adult animals, clearly distinguishable within the eigenworm space. Remarkably, young L1 larvae are capable of producing the postural shapes for swimming and crawling seen in adults, despite frequent instances of uncoordinated body movements. In contrast, late L1 larvae exhibit robust coordination of locomotion, while many neurons crucial for adult locomotion are still under development. In conclusion, this study establishes a comprehensive quantitative behavioral framework for understanding the neural basis of locomotor development, including distinct gaits such as swimming and crawling in C. elegans.
Collapse
Affiliation(s)
- Cera W. Hassinan
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019, USA
| | - Scott C. Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
| | - Brennan Summy
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Arnav Khera
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Angie Wang
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
- Pomona College, 333 N College Way, Claremont, CA 91711, USA
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, WA 98195, USA
| |
Collapse
|
17
|
Temporal control of neuronal wiring. Semin Cell Dev Biol 2023; 142:81-90. [PMID: 35644877 DOI: 10.1016/j.semcdb.2022.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022]
Abstract
Wiring an animal brain is a complex process involving a staggering number of cell-types born at different times and locations in the developing brain. Incorporation of these cells into precise circuits with high fidelity is critical for animal survival and behavior. Assembly of neuronal circuits is heavily dependent upon proper timing of wiring programs, requiring neurons to express specific sets of genes (sometimes transiently) at the right time in development. While cell-type specificity of genetic programs regulating wiring has been studied in detail, mechanisms regulating proper timing and coordination of these programs across cell-types are only just beginning to emerge. In this review, we discuss some temporal regulators of wiring programs and how their activity is controlled over time and space. A common feature emerges from these temporal regulators - they are induced by cell-extrinsic cues and control transcription factors capable of regulating a highly cell-type specific set of target genes. Target specificity in these contexts comes from cell-type specific transcription factors. We propose that the spatiotemporal specificity of wiring programs is controlled by the combinatorial activity of temporal programs and cell-type specific transcription factors. Going forward, a better understanding of temporal regulators will be key to understanding the mechanisms underlying brain wiring, and will be critical for the development of in vitro models like brain organoids.
Collapse
|
18
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. RESEARCH SQUARE 2023:rs.3.rs-2626506. [PMID: 36993644 PMCID: PMC10055553 DOI: 10.21203/rs.3.rs-2626506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence activated cell sorting of Kenyon cells, followed by either or bulk or single cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalapram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other Drosophila circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L. Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Haspel G, Cohen N. Neurodevelopment: Maintaining function during circuit reconfiguration. Curr Biol 2022; 32:R1226-R1228. [DOI: 10.1016/j.cub.2022.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Poppinga H, Çoban B, Meltzer H, Mayseless O, Widmann A, Schuldiner O, Fiala A. Pruning deficits of the developing Drosophila mushroom body result in mild impairment in associative odour learning and cause hyperactivity. Open Biol 2022; 12:220096. [PMID: 36128716 PMCID: PMC9490343 DOI: 10.1098/rsob.220096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The principles of how brain circuits establish themselves during development are largely conserved across animal species. Connections made during embryonic development that are appropriate for an early life stage are frequently remodelled later in ontogeny via pruning and subsequent regrowth to generate adult-specific connectivity. The mushroom body of the fruit fly Drosophila melanogaster is a well-established model circuit for examining the cellular mechanisms underlying neurite remodelling. This central brain circuit integrates sensory information with learned and innate valences to adaptively instruct behavioural decisions. Thereby, the mushroom body organizes adaptive behaviour, such as associative learning. However, little is known about the specific aspects of behaviour that require mushroom body remodelling. Here, we used genetic interventions to prevent the intrinsic neurons of the larval mushroom body (γ-type Kenyon cells) from remodelling. We asked to what degree remodelling deficits resulted in impaired behaviour. We found that deficits caused hyperactivity and mild impairment in differential aversive olfactory learning, but not appetitive learning. Maintenance of circadian rhythm and sleep were not affected. We conclude that neurite pruning and regrowth of γ-type Kenyon cells is not required for the establishment of circuits that mediate associative odour learning per se, but it does improve distinct learning tasks.
Collapse
Affiliation(s)
- Haiko Poppinga
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Büşra Çoban
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Hagar Meltzer
- Departments for Molecular Cell Biology and Molecular Neuroscience, Weizmann Institute of Science, Ullmann Building of Life Sciences, Rehovot 7610001, Israel
| | - Oded Mayseless
- Departments for Molecular Cell Biology and Molecular Neuroscience, Weizmann Institute of Science, Ullmann Building of Life Sciences, Rehovot 7610001, Israel
| | - Annekathrin Widmann
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Oren Schuldiner
- Departments for Molecular Cell Biology and Molecular Neuroscience, Weizmann Institute of Science, Ullmann Building of Life Sciences, Rehovot 7610001, Israel
| | - André Fiala
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Meltzer H, Schuldiner O. Spatiotemporal Control of Neuronal Remodeling by Cell Adhesion Molecules: Insights From Drosophila. Front Neurosci 2022; 16:897706. [PMID: 35645712 PMCID: PMC9135462 DOI: 10.3389/fnins.2022.897706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/22/2022] [Indexed: 01/26/2023] Open
Abstract
Developmental neuronal remodeling is required for shaping the precise connectivity of the mature nervous system. Remodeling involves pruning of exuberant neural connections, often followed by regrowth of adult-specific ones, as a strategy to refine neural circuits. Errors in remodeling are associated with neurodevelopmental disorders such as schizophrenia and autism. Despite its fundamental nature, our understanding of the mechanisms governing neuronal remodeling is far from complete. Specifically, how precise spatiotemporal control of remodeling and rewiring is achieved is largely unknown. In recent years, cell adhesion molecules (CAMs), and other cell surface and secreted proteins of various families, have been implicated in processes of neurite pruning and wiring specificity during circuit reassembly. Here, we review some of the known as well as speculated roles of CAMs in these processes, highlighting recent advances in uncovering spatiotemporal aspects of regulation. Our focus is on the fruit fly Drosophila, which is emerging as a powerful model in the field, due to the extensive, well-characterized and stereotypic remodeling events occurring throughout its nervous system during metamorphosis, combined with the wide and constantly growing toolkit to identify CAM binding and resulting cellular interactions in vivo. We believe that its many advantages pose Drosophila as a leading candidate for future breakthroughs in the field of neuronal remodeling in general, and spatiotemporal control by CAMs specifically.
Collapse
Affiliation(s)
- Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Hagar Meltzer,
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Oren Schuldiner,
| |
Collapse
|
22
|
Chen SL, Liu BT, Lee WP, Liao SB, Deng YB, Wu CL, Ho SM, Shen BX, Khoo GH, Shiu WC, Chang CH, Shih HW, Wen JK, Lan TH, Lin CC, Tsai YC, Tzeng HF, Fu TF. WAKE-mediated modulation of cVA perception via a hierarchical neuro-endocrine axis in Drosophila male-male courtship behaviour. Nat Commun 2022; 13:2518. [PMID: 35523813 PMCID: PMC9076693 DOI: 10.1038/s41467-022-30165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
The nervous and endocrine systems coordinate with each other to closely influence physiological and behavioural responses in animals. Here we show that WAKE (encoded by wide awake, also known as wake) modulates membrane levels of GABAA receptor Resistance to Dieldrin (Rdl), in insulin-producing cells of adult male Drosophila melanogaster. This results in changes to secretion of insulin-like peptides which is associated with changes in juvenile hormone biosynthesis in the corpus allatum, which in turn leads to a decrease in 20-hydroxyecdysone levels. A reduction in ecdysone signalling changes neural architecture and lowers the perception of the male-specific sex pheromone 11-cis-vaccenyl acetate by odorant receptor 67d olfactory neurons. These finding explain why WAKE-deficient in Drosophila elicits significant male-male courtship behaviour. The authors show that the Drosophila master regulator WAKE modulates the secretion of insulin-like peptides, triggering a decrease in 20-hydroxyecdysone levels. This lowers the perception of a male-specific sex pheromone and explains why WAKE-deficient Drosophila flies show male-male courtship behaviour.
Collapse
Affiliation(s)
- Shiu-Ling Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bo-Ting Liu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Wang-Pao Lee
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sin-Bo Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yao-Bang Deng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuk-Man Ho
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bing-Xian Shen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Guan-Hock Khoo
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Wei-Chiang Shiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chih-Hsuan Chang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Wen Shih
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.,Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Chien Lin
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.
| | - Huey-Fen Tzeng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| |
Collapse
|
23
|
Midorikawa M. Pathway-specific maturation of presynaptic functions of the somatosensory thalamus. Neurosci Res 2022; 181:1-8. [DOI: 10.1016/j.neures.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
|
24
|
Lai YW, Miyares RL, Liu LY, Chu SY, Lee T, Yu HH. Hormone-controlled changes in the differentiation state of post-mitotic neurons. Curr Biol 2022; 32:2341-2348.e3. [PMID: 35508173 DOI: 10.1016/j.cub.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
While we think of neurons as having a fixed identity, many show spectacular plasticity.1-10 Metamorphosis drives massive changes in the fly brain;11,12 neurons that persist into adulthood often change in response to the steroid hormone ecdysone.13,14 Besides driving remodeling,11-14 ecdysone signaling can also alter the differentiation status of neurons.7,15 The three sequentially born subtypes of mushroom body (MB) Kenyon cells (γ, followed by α'/β', and finally α/β)16 serve as a model of temporal fating.17-21 γ neurons are also used as a model of remodeling during metamorphosis. As γ neurons are the only functional Kenyon cells in the larval brain, they serve the function of all three adult subtypes. Correspondingly, larval γ neurons have a similar morphology to α'/β' and α/β neurons-their axons project dorsally and medially. During metamorphosis, γ neurons remodel to form a single medial projection. Both temporal fate changes and defects in remodeling therefore alter γ-neuron morphology in similar ways. Mamo, a broad-complex, tramtrack, and bric-à-brac/poxvirus and zinc finger (BTB/POZ) transcription factor critical for temporal specification of α'/β' neurons,18,19 was recently described as essential for γ remodeling.22 In a previous study, we noticed a change in the number of adult Kenyon cells expressing γ-specific markers when mamo was manipulated.18 These data implied a role for Mamo in γ-neuron fate specification, yet mamo is not expressed in γ neurons until pupariation,18,22 well past γ specification. This indicates that mamo has a later role in ensuring that γ neurons express the correct Kenyon cell subtype-specific genes in the adult brain.
Collapse
Affiliation(s)
- Yen-Wei Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan; Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan
| | - Rosa L Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA
| | - Sao-Yu Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA.
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan.
| |
Collapse
|
25
|
Boulanger A, Dura JM. Neuron-glia crosstalk in neuronal remodeling and degeneration: Neuronal signals inducing glial cell phagocytic transformation in Drosophila. Bioessays 2022; 44:e2100254. [PMID: 35315125 DOI: 10.1002/bies.202100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Neuronal remodeling is a conserved mechanism that eliminates unwanted neurites and can include the loss of cell bodies. In these processes, a key role for glial cells in events from synaptic pruning to neuron elimination has been clearly identified in the last decades. Signals sent from dying neurons or neurites to be removed are received by appropriate glial cells. After receiving these signals, glial cells infiltrate degenerating sites and then, engulf and clear neuronal debris through phagocytic mechanisms. There are few identified or proposed signals and receptors involved in neuron-glia crosstalk, which induces the transformation of glial cells to phagocytes during neuronal remodeling in Drosophila. Many of these signaling pathways are conserved in mammals. Here, we particularly emphasize the role of Orion, a recently identified neuronal CX3 C chemokine-like secreted protein, which induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Although, chemokine signaling was not described previously in insects we propose that chemokine-like involvement in neuron/glial cell interaction is an evolutionarily ancient mechanism.
Collapse
Affiliation(s)
- Ana Boulanger
- IGH, Université de Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
26
|
Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 2021; 184:5807-5823.e14. [PMID: 34739833 DOI: 10.1016/j.cell.2021.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.
Collapse
Affiliation(s)
- Janko Gospocic
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl M Glastad
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shelley L Berger
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA.
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Chen D, McManus CE, Radmanesh B, Matzat LH, Lei EP. Temporal inhibition of chromatin looping and enhancer accessibility during neuronal remodeling. Nat Commun 2021; 12:6366. [PMID: 34737269 PMCID: PMC8568962 DOI: 10.1038/s41467-021-26628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
During development, looping of an enhancer to a promoter is frequently observed in conjunction with temporal and tissue-specific transcriptional activation. The chromatin insulator-associated protein Alan Shepard (Shep) promotes Drosophila post-mitotic neuronal remodeling by repressing transcription of master developmental regulators, such as brain tumor (brat), specifically in maturing neurons. Since insulator proteins can promote looping, we hypothesized that Shep antagonizes brat promoter interaction with an as yet unidentified enhancer. Using chromatin conformation capture and reporter assays, we identified two enhancer regions that increase in looping frequency with the brat promoter specifically in pupal brains after Shep depletion. The brat promoters and enhancers function independently of Shep, ruling out direct repression of these elements. Moreover, ATAC-seq in isolated neurons demonstrates that Shep restricts chromatin accessibility of a key brat enhancer as well as other enhancers genome-wide in remodeling pupal but not larval neurons. These enhancers are enriched for chromatin targets of Shep and are located at Shep-inhibited genes, suggesting direct Shep inhibition of enhancer accessibility and gene expression during neuronal remodeling. Our results provide evidence for temporal regulation of chromatin looping and enhancer accessibility during neuronal maturation.
Collapse
Affiliation(s)
- Dahong Chen
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Catherine E McManus
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Behram Radmanesh
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Leah H Matzat
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA.
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Lee K, Doe CQ. A locomotor neural circuit persists and functions similarly in larvae and adult Drosophila. eLife 2021; 10:e69767. [PMID: 34259633 PMCID: PMC8298091 DOI: 10.7554/elife.69767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 11/22/2022] Open
Abstract
Individual neurons can undergo drastic structural changes, known as neuronal remodeling or structural plasticity. One example of this is in response to hormones, such as during puberty in mammals or metamorphosis in insects. However, in each of these examples, it remains unclear whether the remodeled neuron resumes prior patterns of connectivity, and if so, whether the persistent circuits drive similar behaviors. Here, we utilize a well-characterized neural circuit in the Drosophila larva: the moonwalker descending neuron (MDN) circuit. We previously showed that larval MDN induces backward crawling, and synapses onto the Pair1 interneuron to inhibit forward crawling (Carreira-Rosario et al., 2018). MDN is remodeled during metamorphosis and regulates backward walking in the adult fly. We investigated whether Pair1 is remodeled during metamorphosis and functions within the MDN circuit during adulthood. We assayed morphology and molecular markers to demonstrate that Pair1 is remodeled during metamorphosis and persists in the adult fly. MDN-Pair1 connectivity is lost during early pupal stages, when both neurons are severely pruned back, but connectivity is re-established at mid-pupal stages and persist into the adult. In the adult, optogenetic activation of Pair1 resulted in arrest of forward locomotion, similar to what is observed in larvae. Thus, the MDN-Pair1 neurons are an interneuronal circuit - a pair of synaptically connected interneurons - that is re-established during metamorphosis, yet generates similar locomotor behavior at both larval and adult stages.
Collapse
Affiliation(s)
- Kristen Lee
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
29
|
Aghayeva U, Bhattacharya A, Sural S, Jaeger E, Churgin M, Fang-Yen C, Hobert O. DAF-16/FoxO and DAF-12/VDR control cellular plasticity both cell-autonomously and via interorgan signaling. PLoS Biol 2021; 19:e3001204. [PMID: 33891586 PMCID: PMC8099054 DOI: 10.1371/journal.pbio.3001204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/05/2021] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
Many cell types display the remarkable ability to alter their cellular phenotype in response to specific external or internal signals. Such phenotypic plasticity is apparent in the nematode Caenorhabditis elegans when adverse environmental conditions trigger entry into the dauer diapause stage. This entry is accompanied by structural, molecular, and functional remodeling of a number of distinct tissue types of the animal, including its nervous system. The transcription factor (TF) effectors of 3 different hormonal signaling systems, the insulin-responsive DAF-16/FoxO TF, the TGFβ-responsive DAF-3/SMAD TF, and the steroid nuclear hormone receptor, DAF-12/VDR, a homolog of the vitamin D receptor (VDR), were previously shown to be required for entering the dauer arrest stage, but their cellular and temporal focus of action for the underlying cellular remodeling processes remained incompletely understood. Through the generation of conditional alleles that allowed us to spatially and temporally control gene activity, we show here that all 3 TFs are not only required to initiate tissue remodeling upon entry into the dauer stage, as shown before, but are also continuously required to maintain the remodeled state. We show that DAF-3/SMAD is required in sensory neurons to promote and then maintain animal-wide tissue remodeling events. In contrast, DAF-16/FoxO or DAF-12/VDR act cell-autonomously to control anatomical, molecular, and behavioral remodeling events in specific cell types. Intriguingly, we also uncover non-cell autonomous function of DAF-16/FoxO and DAF-12/VDR in nervous system remodeling, indicating the presence of several insulin-dependent interorgan signaling axes. Our findings provide novel perspectives into how hormonal systems control tissue remodeling.
Collapse
Affiliation(s)
- Ulkar Aghayeva
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Eliza Jaeger
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Matthew Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Axonal chemokine-like Orion induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Nat Commun 2021; 12:1849. [PMID: 33758182 PMCID: PMC7988174 DOI: 10.1038/s41467-021-22054-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
The remodeling of neurons is a conserved fundamental mechanism underlying nervous system maturation and function. Astrocytes can clear neuronal debris and they have an active role in neuronal remodeling. Developmental axon pruning of Drosophila memory center neurons occurs via a degenerative process mediated by infiltrating astrocytes. However, how astrocytes are recruited to the axons during brain development is unclear. Using an unbiased screen, we identify the gene requirement of orion, encoding for a chemokine-like protein, in the developing mushroom bodies. Functional analysis shows that Orion is necessary for both axonal pruning and removal of axonal debris. Orion performs its functions extracellularly and bears some features common to chemokines, a family of chemoattractant cytokines. We propose that Orion is a neuronal signal that elicits astrocyte infiltration and astrocyte-driven axonal engulfment required during neuronal remodeling in the Drosophila developing brain. Astrocytes can engulf axonal debris in the developing brain. However, the mechanisms regulating astrocyte recruitment to the proper axons is unclear. Here, the authors identify Orion as a signal for astrocyte infiltration and engulfment to the mushroom bodies in the Drosophila developing brain.
Collapse
|
31
|
Okamoto N, Yamanaka N. Transporter-mediated ecdysteroid trafficking across cell membranes: A novel target for insect growth regulators. JOURNAL OF PESTICIDE SCIENCE 2021; 46:23-28. [PMID: 33746543 PMCID: PMC7953032 DOI: 10.1584/jpestics.d20-071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Ecdysteroids are a class of steroid hormones in arthropods that control molting and metamorphosis through interaction with intracellular nuclear receptors. In contrast to the extensive literature describing their biosynthetic pathways and signaling components, little has been known about how these hormones are traveling into and out of the cells through lipid bilayers of the cell membranes. Recently, a series of studies conducted in the fruit fly Drosophila melanogaster revealed that membrane transporters have critical functions in trafficking ecdysteroids across cell membranes, challenging the classical simple diffusion model of steroid hormone transport. Here we summarize recent advances in our understanding of membrane transporters involved in ecdysteroid signaling in Drosophila, with particular focus on Ecdysone Importer (EcI) that is involved in ecdysteroid uptake in peripheral tissues. We then discuss the potential advantage of EcI blockers as a novel pest management tool as compared to classical insect growth regulators.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305–8577, Japan
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
32
|
Furusawa K, Emoto K. Spatiotemporal regulation of developmental neurite pruning: Molecular and cellular insights from Drosophila models. Neurosci Res 2020; 167:54-63. [PMID: 33309868 DOI: 10.1016/j.neures.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023]
Abstract
Developmental neurite pruning is a process by which neurons selectively eliminate unnecessary processes of axons and/or dendrites without cell death, which shapes the mature wiring of nervous systems. In this sense, developmental neurite pruning requires spatiotemporally precise control of local degradation of cellular components including cytoskeletons and membranes. The Drosophila nervous system undergoes large-scale remodeling, including axon/dendrite pruning, during metamorphosis. In addition to this unique phenomenon in the nervous system, powerful genetic tools make the Drosophila nervous system a sophisticated model to investigate spatiotemporal regulation of neural remodeling. This article reviews recent advances to our understanding of the molecular and cellular mechanisms of developmental axon/dendrite pruning, mainly focusing on studies in Drosophila sensory neurons and mushroom body neurons.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazuo Emoto
- Department of Biological Sciences, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
33
|
Ghose P, Wehman AM. The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. Curr Top Dev Biol 2020; 144:409-432. [PMID: 33992160 DOI: 10.1016/bs.ctdb.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phagocytosis is an essential process by which cellular debris and pathogens are cleared from the environment. Cells extend their plasma membrane to engulf objects and contain them within a limiting membrane for isolation from the cytosol or for intracellular degradation in phagolysosomes. The basic mechanisms of phagocytosis and intracellular clearance are well conserved between animals. Indeed, much of our understanding is derived from studies on the nematode worm, Caenorhabditis elegans. Here, we review the latest progress in understanding the mechanisms and functions of phagocytic clearance from C. elegans studies. In particular, we highlight new insights into phagocytic signaling pathways, phagosome formation and phagolysosome resolution, as well as the challenges in studying these cyclic processes.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, University of Texas, Arlington, TX, United States.
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, United States.
| |
Collapse
|
34
|
Dowle EJ, Powell THQ, Doellman MM, Meyers PJ, Calvert MB, Walden KKO, Robertson HM, Berlocher SH, Feder JL, Hahn DA, Ragland GJ. Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc Natl Acad Sci U S A 2020; 117:23960-23969. [PMID: 32900926 PMCID: PMC7519392 DOI: 10.1073/pnas.2002357117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in Rhagoletis pomonella, a fly specialized to feed on fruits of seasonally limited host plants. Transcriptomes from the central nervous system across a time series during diapause show consistent and progressive changes in transcripts participating in diverse developmental processes, despite a lack of gross morphological change. Moreover, population genomic analyses suggested that many genes of small effect enriched in developmental functional categories underlie variation in dormancy timing and overlap with gene sets associated with development rate in Drosophila melanogaster Our transcriptional data also suggested that a recent evolutionary shift from a seasonally late to a seasonally early host plant drove more rapid development during diapause in the early fly population. Moreover, genetic variants that diverged during the evolutionary shift were also enriched in putative cis regulatory regions of genes differentially expressed during diapause development. Overall, our data suggest polygenic variation in the rate of developmental progression during diapause contributes to the evolution of seasonality in R. pomonella We further discuss patterns that suggest hourglass-like developmental divergence early and late in diapause development and an important role for hub genes in the evolution of transcriptional divergence.
Collapse
Affiliation(s)
- Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Anatomy, University of Otago, 9016 Dunedin, New Zealand
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University-State University of New York, Binghamton, NY 13902
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - McCall B Calvert
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556
| | - Daniel A Hahn
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Entomology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
35
|
Estacio-Gómez A, Hassan A, Walmsley E, Le LW, Southall TD. Dynamic neurotransmitter specific transcription factor expression profiles during Drosophila development. Biol Open 2020; 9:9/5/bio052928. [PMID: 32493733 PMCID: PMC7286294 DOI: 10.1242/bio.052928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification. This article has an associated First Person interview with the first author of the paper. Summary: Transcriptome profiling of cholinergic, GABAergic and glutamatergic neurons in Drosophila identified multiple transcription factors as potential regulators of neurotransmitter fate.
Collapse
Affiliation(s)
- Alicia Estacio-Gómez
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Amira Hassan
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Emma Walmsley
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Lily Wong Le
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
36
|
Lee G, Sehgal R, Wang Z, Park JH. Ultraspiracle-independent anti-apoptotic function of ecdysone receptors is required for the survival of larval peptidergic neurons via suppression of grim expression in Drosophila melanogaster. Apoptosis 2020; 24:256-268. [PMID: 30637539 DOI: 10.1007/s10495-019-01514-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Drosophila melanogaster a significant number of heterogenous larval neurons in the central nervous system undergo metamorphosis-associated programmed cell death, termed metamorphoptosis. Interestingly distinct groups of doomed larval neurons are eliminated at different metamorphic phases. Although ecdysone hormonal signaling via nuclear ecdysone receptors (EcRs) is known to orchestrate the neuronal metamorphoptosis, little is known about how this signaling controls such diverse neuronal responses. Crustacean cardioactive peptide (CCAP)-producing neurons in the ventral nerve cord are developmentally programmed to die shortly after adult emergence. In this study, we show that disruption of endogenous EcR function by ectopic expression of dominant negative forms of EcRs (EcRDN) causes premature death of larval CCAP neurons in a caspase-dependent manner. This event is rescued by co-expression of individual EcR isoforms. Furthermore, larval CCAP neurons are largely normal in ecr mutants lacking either EcR-A or EcR-B isoforms, suggesting that EcR isoforms redundantly function to protect larval CCAP neurons. Of surprise, a role of Ultraspiracle (Usp), a canonical partner of EcR, is dispensable in the protection of CCAP neurons, whereas both EcR and Usp are required for inducing metamorphoptosis of vCrz neurons shortly after prepupal formation. As a downstream, grim is an essential cell death gene for the EcRDN-mediated CCAP neuronal death, while either hid or rpr function is dispensable. Together, our results suggest that Usp-independent EcR actions protect CCAP neurons from their premature death by repressing grim expression until their normally scheduled apoptosis at post-emergence. Our studies highlight two opposite roles played by EcR function for metamorphoptosis of two different peptidergic neuronal groups, proapoptotic (vCrz) versus antiapoptotic (CCAP), and propose that distinct death timings of doomed larval neurons are determined by differential signaling mechanisms involving EcR.
Collapse
Affiliation(s)
- Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ritika Sehgal
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zixing Wang
- UT-ORNL Graduate School of Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jae H Park
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA. .,UT-ORNL Graduate School of Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
37
|
Kato K, Orihara-Ono M, Awasaki T. Multiple lineages enable robust development of the neuropil-glia architecture in adult Drosophila. Development 2020; 147:dev184085. [PMID: 32051172 DOI: 10.1242/dev.184085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Neural remodeling is essential for the development of a functional nervous system and has been extensively studied in the metamorphosis of Drosophila Despite the crucial roles of glial cells in brain functions, including learning and behavior, little is known of how adult glial cells develop in the context of neural remodeling. Here, we show that the architecture of neuropil-glia in the adult Drosophila brain, which is composed of astrocyte-like glia (ALG) and ensheathing glia (EG), robustly develops from two different populations in the larva: the larval EG and glial cell missing-positive (gcm+ ) cells. Whereas gcm+ cells proliferate and generate adult ALG and EG, larval EG dedifferentiate, proliferate and redifferentiate into the same glial subtypes. Each glial lineage occupies a certain brain area complementary to the other, and together they form the adult neuropil-glia architecture. Both lineages require the FGF receptor Heartless to proliferate, and the homeoprotein Prospero to differentiate into ALG. Lineage-specific inhibition of gliogenesis revealed that each lineage compensates for deficiency in the proliferation of the other. Together, the lineages ensure the robust development of adult neuropil-glia, thereby ensuring a functional brain.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Minako Orihara-Ono
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Takeshi Awasaki
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| |
Collapse
|
38
|
With a little help from my friends: how intercellular communication shapes neuronal remodeling. Curr Opin Neurobiol 2020; 63:23-30. [PMID: 32092689 DOI: 10.1016/j.conb.2020.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Developmental neuronal remodeling shapes the mature connectivity of the nervous system in both vertebrates and invertebrates. Remodeling often combines degenerative and regenerative events, and defects in its normal progression have been linked to neurological disorders. Here we review recent progress that highlights the roles of cell-cell interactions during remodeling. We propose that these are fundamental to elucidating how spatiotemporal control of remodeling and coordinated circuit remodeling are achieved. We cover examples spanning various neuronal circuits in vertebrates and invertebrates and involving interactions between neurons and different cell types.
Collapse
|
39
|
Okamoto N, Yamanaka N. Steroid Hormone Entry into the Brain Requires a Membrane Transporter in Drosophila. Curr Biol 2020; 30:359-366.e3. [PMID: 31928869 DOI: 10.1016/j.cub.2019.11.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
Abstract
Steroid hormones control various aspects of brain development and behavior in metazoans, but how they enter the central nervous system (CNS) through the blood-brain barrier (BBB) remains poorly understood. It is generally believed that steroid hormones freely diffuse through the plasma membrane of the BBB cells to reach the brain [1], because of the predominant "simple diffusion" model of steroid hormone transport across cell membranes. Recently, however, we challenged the simple diffusion model by showing that a Drosophila organic anion-transporting polypeptide (OATP), which we named Ecdysone Importer (EcI), is required for cellular uptake of the primary insect steroid hormone ecdysone [2]. As ecdysone is first secreted into the hemolymph before reaching the CNS [3], our finding raised the question of how ecdysone enters the CNS through the BBB to exert its diverse role in Drosophila brain development. Here, we demonstrate in the Drosophila BBB that EcI is indispensable for ecdysone entry into the CNS to facilitate brain development. EcI is highly expressed in surface glial cells that form the BBB, and EcI knockdown in the BBB suppresses ecdysone signaling within the CNS and blocks ecdysone-mediated neuronal events during development. In an ex vivo culture system, the CNS requires EcI in the BBB to incorporate ecdysone from the culture medium. Our results suggest a transporter-mediated mechanism of steroid hormone entry into the CNS, which may provide important implications in controlling brain development and behavior by regulating steroid hormone permeability across the BBB.
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
40
|
Vijayakumar J, Perrois C, Heim M, Bousset L, Alberti S, Besse F. The prion-like domain of Drosophila Imp promotes axonal transport of RNP granules in vivo. Nat Commun 2019; 10:2593. [PMID: 31197139 PMCID: PMC6565635 DOI: 10.1038/s41467-019-10554-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/15/2019] [Indexed: 01/29/2023] Open
Abstract
Prion-like domains (PLDs), defined by their low sequence complexity and intrinsic disorder, are present in hundreds of human proteins. Although gain-of-function mutations in the PLDs of neuronal RNA-binding proteins have been linked to neurodegenerative disease progression, the physiological role of PLDs and their range of molecular functions are still largely unknown. Here, we show that the PLD of Drosophila Imp, a conserved component of neuronal ribonucleoprotein (RNP) granules, is essential for the developmentally-controlled localization of Imp RNP granules to axons and regulates in vivo axonal remodeling. Furthermore, we demonstrate that Imp PLD restricts, rather than promotes, granule assembly, revealing a novel modulatory function for PLDs in RNP granule homeostasis. Swapping the position of Imp PLD compromises RNP granule dynamic assembly but not transport, suggesting that these two functions are uncoupled. Together, our study uncovers a physiological function for PLDs in the spatio-temporal control of neuronal RNP assemblies. The physiological role of prion-like domains (PLDs) within RNA-binding proteins is not well understood. Here, authors show in Drosophila that the PLD in the protein Imp is required for localization of ribonucleoprotein granules to axons and axonal remodelling.
Collapse
Affiliation(s)
| | | | - Marjorie Heim
- University Côte d'Azur, CNRS, Inserm, iBV, Nice, 06100, France
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience, Orsay, 91505, France
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center, Technische Universität Dresden, Dresden, 01307, Germany
| | - Florence Besse
- University Côte d'Azur, CNRS, Inserm, iBV, Nice, 06100, France.
| |
Collapse
|
41
|
Meltzer H, Marom E, Alyagor I, Mayseless O, Berkun V, Segal-Gilboa N, Unger T, Luginbuhl D, Schuldiner O. Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat Commun 2019; 10:2113. [PMID: 31068592 PMCID: PMC6506539 DOI: 10.1038/s41467-019-10140-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Gene editing by CRISPR/Cas9 is commonly used to generate germline mutations or perform in vitro screens, but applicability for in vivo screening has so far been limited. Recently, it was shown that in Drosophila, Cas9 expression could be limited to a desired group of cells, allowing tissue-specific mutagenesis. Here, we thoroughly characterize tissue-specific (ts)CRISPR within the complex neuronal system of the Drosophila mushroom body. We report the generation of a library of gRNA-expressing plasmids and fly lines using optimized tools, which provides a valuable resource to the fly community. We demonstrate the application of our library in a large-scale in vivo screen, which reveals insights into developmental neuronal remodeling.
Collapse
Affiliation(s)
- Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Marom
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Segal-Gilboa
- Structural Proteomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Structural Proteomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - David Luginbuhl
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, USA
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
43
|
Castells-Nobau A, Eidhof I, Fenckova M, Brenman-Suttner DB, Scheffer-de Gooyert JM, Christine S, Schellevis RL, van der Laan K, Quentin C, van Ninhuijs L, Hofmann F, Ejsmont R, Fisher SE, Kramer JM, Sigrist SJ, Simon AF, Schenck A. Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila. PLoS One 2019; 14:e0211652. [PMID: 30753188 PMCID: PMC6372147 DOI: 10.1371/journal.pone.0211652] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
FOXP proteins form a subfamily of evolutionarily conserved transcription factors involved in the development and functioning of several tissues, including the central nervous system. In humans, mutations in FOXP1 and FOXP2 have been implicated in cognitive deficits including intellectual disability and speech disorders. Drosophila exhibits a single ortholog, called FoxP, but due to a lack of characterized mutants, our understanding of the gene remains poor. Here we show that the dimerization property required for mammalian FOXP function is conserved in Drosophila. In flies, FoxP is enriched in the adult brain, showing strong expression in ~1000 neurons of cholinergic, glutamatergic and GABAergic nature. We generate Drosophila loss-of-function mutants and UAS-FoxP transgenic lines for ectopic expression, and use them to characterize FoxP function in the nervous system. At the cellular level, we demonstrate that Drosophila FoxP is required in larvae for synaptic morphogenesis at axonal terminals of the neuromuscular junction and for dendrite development of dorsal multidendritic sensory neurons. In the developing brain, we find that FoxP plays important roles in α-lobe mushroom body formation. Finally, at a behavioral level, we show that Drosophila FoxP is important for locomotion, habituation learning and social space behavior of adult flies. Our work shows that Drosophila FoxP is important for regulating several neurodevelopmental processes and behaviors that are related to human disease or vertebrate disease model phenotypes. This suggests a high degree of functional conservation with vertebrate FOXP orthologues and established flies as a model system for understanding FOXP related pathologies.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Jolanda M. Scheffer-de Gooyert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sheren Christine
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosa L. Schellevis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kiran van der Laan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine Quentin
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa van Ninhuijs
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Falko Hofmann
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Radoslaw Ejsmont
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute of Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jamie M. Kramer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephan J. Sigrist
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anne F. Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Alyagor I, Berkun V, Keren-Shaul H, Marmor-Kollet N, David E, Mayseless O, Issman-Zecharya N, Amit I, Schuldiner O. Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling. Dev Cell 2019; 47:38-52.e6. [PMID: 30300589 PMCID: PMC6179959 DOI: 10.1016/j.devcel.2018.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Developmental neuronal remodeling is an evolutionarily conserved mechanism required for precise wiring of nervous systems. Despite its fundamental role in neurodevelopment and proposed contribution to various neuropsychiatric disorders, the underlying mechanisms are largely unknown. Here, we uncover the fine temporal transcriptional landscape of Drosophila mushroom body γ neurons undergoing stereotypical remodeling. Our data reveal rapid and dramatic changes in the transcriptional landscape during development. Focusing on DNA binding proteins, we identify eleven that are required for remodeling. Furthermore, we sequence developing γ neurons perturbed for three key transcription factors required for pruning. We describe a hierarchical network featuring positive and negative feedback loops. Superimposing the perturbation-seq on the developmental expression atlas highlights a framework of transcriptional modules that together drive remodeling. Overall, this study provides a broad and detailed molecular insight into the complex regulatory dynamics of developmental remodeling and thus offers a pipeline to dissect developmental processes via RNA profiling.
Collapse
Affiliation(s)
- Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel; Life Science Core Facility, Weizmann Institute of Sciences, Rehovot, Israel
| | - Neta Marmor-Kollet
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Noa Issman-Zecharya
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel.
| |
Collapse
|
45
|
Razetti A, Medioni C, Malandain G, Besse F, Descombes X. A stochastic framework to model axon interactions within growing neuronal populations. PLoS Comput Biol 2018; 14:e1006627. [PMID: 30507939 PMCID: PMC6292646 DOI: 10.1371/journal.pcbi.1006627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/13/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The confined and crowded environment of developing brains imposes spatial constraints on neuronal cells that have evolved individual and collective strategies to optimize their growth. These include organizing neurons into populations extending their axons to common target territories. How individual axons interact with each other within such populations to optimize innervation is currently unclear and difficult to analyze experimentally in vivo. Here, we developed a stochastic model of 3D axon growth that takes into account spatial environmental constraints, physical interactions between neighboring axons, and branch formation. This general, predictive and robust model, when fed with parameters estimated on real neurons from the Drosophila brain, enabled the study of the mechanistic principles underlying the growth of axonal populations. First, it provided a novel explanation for the diversity of growth and branching patterns observed in vivo within populations of genetically identical neurons. Second, it uncovered that axon branching could be a strategy optimizing the overall growth of axons competing with others in contexts of high axonal density. The flexibility of this framework will make it possible to investigate the rules underlying axon growth and regeneration in the context of various neuronal populations. Understanding how neuronal cells establish complex circuits with specific functions within a developing brain is a major current challenge. Over the last past years, enormous progress has been done to precisely resolve brain anatomy and to dissect the mechanisms controlling the establishment of precise neuronal networks. However, due to the extreme complexity of the brain, it is still experimentally difficult to investigate in vivo how neurons interact with each other and with their physical environments to innervate target territories during development. Here, we have developed a framework that integrates a dynamic 3D mathematical model of single axonal growth with parameters estimated from neurons grown in vivo and simulations of entire populations of growing axons. The emergent properties of our model enable the study of the mechanistic principles underlying the growth of axonal population in developing brains. Specifically, our results highlight the impact of mechanical interactions on both individual and collective axon growth, and uncover how branching regulate this process.
Collapse
|
46
|
Developmental Coordination during Olfactory Circuit Remodeling in Drosophila. Neuron 2018; 99:1204-1215.e5. [PMID: 30146303 DOI: 10.1016/j.neuron.2018.07.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/03/2018] [Accepted: 07/27/2018] [Indexed: 02/03/2023]
Abstract
Developmental neuronal remodeling is crucial for proper wiring of the adult nervous system. While remodeling of individual neuronal populations has been studied, how neuronal circuits remodel-and whether remodeling of synaptic partners is coordinated-is unknown. We found that the Drosophila anterior paired lateral (APL) neuron undergoes stereotypic remodeling during metamorphosis in a similar time frame as the mushroom body (MB) ɣ-neurons, with whom it forms a functional circuit. By simultaneously manipulating both neuronal populations, we found that cell-autonomous inhibition of ɣ-neuron pruning resulted in the inhibition of APL pruning in a process that is mediated, at least in part, by Ca2+-Calmodulin and neuronal activity dependent interaction. Finally, ectopic unpruned MB ɣ axons display ectopic connections with the APL, as well as with other neurons, at the adult, suggesting that inhibiting remodeling of one neuronal type can affect the functional wiring of the entire micro-circuit.
Collapse
|
47
|
Fish Scales Dictate the Pattern of Adult Skin Innervation and Vascularization. Dev Cell 2018; 46:344-359.e4. [PMID: 30032992 DOI: 10.1016/j.devcel.2018.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/27/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022]
Abstract
As animals mature from embryonic to adult stages, the skin grows and acquires specialized appendages, like hairs, feathers, and scales. How cutaneous blood vessels and sensory axons adapt to these dramatic changes is poorly understood. By characterizing skin maturation in zebrafish, we discovered that sensory axons are delivered to the adult epidermis in organized nerves patterned by features in bony scales. These nerves associate with blood vessels and osteoblasts above scales. Osteoblasts create paths in scales that independently guide nerves and blood vessels during both development and regeneration. By preventing scale regeneration and examining mutants lacking scales, we found that scales recruit, organize, and polarize axons and blood vessels to evenly distribute them in the skin. These studies uncover mechanisms for achieving comprehensive innervation and vascularization of the adult skin and suggest that scales coordinate a metamorphosis-like transformation of the skin with sensory axon and vascular remodeling.
Collapse
|
48
|
Gruber L, Rybak J, Hansson BS, Cantera R. Synaptic Spinules in the Olfactory Circuit of Drosophila melanogaster. Front Cell Neurosci 2018; 12:86. [PMID: 29636666 PMCID: PMC5880883 DOI: 10.3389/fncel.2018.00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 11/14/2022] Open
Abstract
Here we report on ultrastructural features of brain synapses in the fly Drosophila melanogaster and outline a perspective for the study of their functional significance. Images taken with the aid of focused ion beam-scanning electron microscopy (EM) at 20 nm intervals across olfactory glomerulus DA2 revealed that some synaptic boutons are penetrated by protrusions emanating from other neurons. Similar structures in the brain of mammals are known as synaptic spinules. A survey with transmission EM (TEM) disclosed that these structures are frequent throughout the antennal lobe. Detailed neuronal tracings revealed that spinules are formed by all three major types of neurons innervating glomerulus DA2 but the olfactory sensory neurons (OSNs) receive significantly more spinules than other olfactory neurons. Double-membrane vesicles (DMVs) that appear to represent material that has pinched-off from spinules are also most abundant in presynaptic boutons of OSNs. Inside the host neuron, a close association was observed between spinules, the endoplasmic reticulum (ER) and mitochondria. We propose that by releasing material into the host neuron, through a process triggered by synaptic activity and analogous to axonal pruning, synaptic spinules could function as a mechanism for synapse tagging, synaptic remodeling and neural plasticity. Future directions of experimental work to investigate this theory are proposed.
Collapse
Affiliation(s)
- Lydia Gruber
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology (MPG)Jena, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology (MPG)Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology (MPG)Jena, Germany
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)Montevideo, Uruguay.,Zoology Department, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
49
|
Chen D, Dale RK, Lei EP. Shep regulates Drosophila neuronal remodeling by controlling transcription of its chromatin targets. Development 2018; 145:dev.154047. [PMID: 29158441 DOI: 10.1242/dev.154047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022]
Abstract
Neuronal remodeling is crucial for formation of the mature nervous system and disruption of this process can lead to neuropsychiatric diseases. Global gene expression changes in neurons during remodeling as well as the factors that regulate these changes remain poorly defined. To elucidate this process, we performed RNA-seq on isolated Drosophila larval and pupal neurons and found upregulated synaptic signaling and downregulated gene expression regulators as a result of normal neuronal metamorphosis. We further tested the role of alan shepard (shep), which encodes an evolutionarily conserved RNA-binding protein required for proper neuronal remodeling. Depletion of shep in neurons prevents the execution of metamorphic gene expression patterns, and shep-regulated genes correspond to Shep chromatin and/or RNA-binding targets. Reduced expression of a Shep-inhibited target gene that we identified, brat, is sufficient to rescue neuronal remodeling defects of shep knockdown flies. Our results reveal direct regulation of transcriptional programs by Shep to regulate neuronal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Dahong Chen
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Wang Q, Wang Y, Yu F. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis. Development 2018; 145:dev.164475. [DOI: 10.1242/dev.164475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023]
Abstract
Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila, ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning.
Collapse
Affiliation(s)
- Qiwei Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857
| |
Collapse
|