1
|
Pectin-based nanoencapsulation strategy to improve the bioavailability of bioactive compounds. Int J Biol Macromol 2023; 229:11-21. [PMID: 36586647 DOI: 10.1016/j.ijbiomac.2022.12.292] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Pectin is one of the polysaccharides to be used as a coating nanomaterial. The characteristics of pectin are suitable to form nanostructures for protection, increased absorption, and bioavailability of different active compounds. This review aims to point out the structural features of pectins and their use as nanocarriers. It also indicates the principal methodologies for the elaboration and application of foods. The research carried out shows that pectin is easily extracted from natural sources, biodegradable, biocompatible, and non-toxic. The mechanical resistance and stability in different pH ranges and the action of digestive enzymes allow the nanostructures to pass intact through the gastrointestinal system and be effectively absorbed. Pectin can bind to macromolecules, especially proteins, to form stable nanostructures, which can be formed by different methods; polyelectrolyte complexes are the most frequent ones. The pectin-derived nanoparticles could be added to foods and dietary supplements, demonstrating a promising nanocarrier with a broad technological application.
Collapse
|
2
|
Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1808. [PMID: 36416026 PMCID: PMC9699155 DOI: 10.1002/wnan.1808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
The rapid growth of nanomaterial applications has raised safety concerns for human health. A number of studies have been conducted to assess the toxicokinetics, toxicology, dose-response, and risk assessment of different nanomaterials using in vitro and in vivo animal and human models. However, current studies cannot meet the demand for efficient assessment of toxicokinetics, dose-response relationships, or the toxicological risk arising from the rapidly increasing number of newly synthesized nanomaterials. In this article, we review the methods for conducting toxicokinetics, hazard identification, dose-response, exposure, and risk assessment studies of nanomaterials, identify the knowledge gaps, and discuss the challenges remaining. We provide the rationale behind the appropriate design of nanomaterial plasma toxicokinetic and tissue distribution studies, including caveats on the interpretation and correlation of in vitro and in vivo toxicology studies. The potential of using physiologically based pharmacokinetic (PBPK) models to extrapolate toxicokinetic and toxicity findings from in vitro to in vivo and from animals to humans is discussed, and the knowledge gaps of PBPK modeling for nanomaterials are identified. While challenges still exist, there has been progress in the toxicokinetics, hazard identification, and risk assessment of nanomaterials in the past two decades. Recent advancements in the field are highlighted with relevant examples. We also share latest guidelines as well as our perspectives on future studies needed to characterize the toxicokinetics, toxicity, and dose-response relationship in support of nanomaterial risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Jim E. Riviere
- 1Data Consortium, Kansas State University, Olathe, Kansas, USA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Li K, Xu D, Liao H, Xue Y, Sun M, Su H, Xiu X, Zhao T. A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO 2 in sewage and surface-water and related research prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153866. [PMID: 35181357 DOI: 10.1016/j.scitotenv.2022.153866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/28/2023]
Abstract
This article reviews the nano-effects and applications of different crystalline nano‑titanium dioxide (nano-TiO2), identifies their discharge, distribution, behavior, and toxicity to aquatic organisms (focusing on microbial aggregates) in sewage and surface-water, summarizes related toxicity mechanisms, and critically proposes future perspectives. The results show that: 1) based on crystal type, application boundaries of nano-TiO2 have become clear, extending from traditional manufacturing to high-tech fields; 2) concentration of nano-TiO2 in water is as high as hundreds of thousands of μg/L (sewage) or several to dozens of μg/L (surface-water) due to direct application or indirect release; 3) water environmental behaviors of nano-TiO2 are mainly controlled by hydration conditions and particle characteristics; 4) aquatic toxicities of nano-TiO2 are closely related to their water environmental behavior, in which crystal type and tested species (such as single species and microbial aggregates) also play the key role. Going forward, the exploration of the toxicity mechanism will surely become a hot topic in the aquatic-toxicology of nano-TiO2, because most of the research so far has focused on the responses of biological indicators (such as metabolism and damage), while little is known about the stress imprint caused by the crystal structures of nano-TiO2 in water environments. Additionally, the aging of nano-TiO2 in a water environment should be heeded to because the continuously changing surface structure is bound to have a significant impact on its behavior and toxicity. Moreover, for microbial aggregates, comprehensive response analysis should be conducted in terms of the functional activity, surface features, composition structure, internal microenvironment, cellular and molecular level changes, etc., to find the key point of the interaction between nano-TiO2 and microbial aggregates, and to take mitigation or beneficial measures to deal with the aquatic-toxicity of nano-TiO2. In short, this article contributes by 1) reviewing the research status of nano-TiO2 in all aspects: application and discharge, distribution and behavior, and its aquatic toxicity; 2) suggesting the response mechanism of microbial aggregates and putting forward the toxigenic mechanism of nanomaterial structure; 3) pointing out the future research direction of nano-TiO2 in water environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Defu Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingyang Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianyi Zhao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
4
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
5
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
6
|
Barabadi H, Vahidi H, Damavandi Kamali K, Rashedi M, Hosseini O, Saravanan M. Emerging Theranostic Gold Nanomaterials to Combat Colorectal Cancer: A Systematic Review. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01681-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Single step formation of biocompatible bimetallic alloy nanoparticles of gold and silver using isonicotinylhydrazide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:286-294. [DOI: 10.1016/j.msec.2018.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/25/2023]
|
8
|
Shubha P, Gowda ML, Namratha K, Manjunatha H, Byrappa K. In vitro and In vivo evaluation of green-hydrothermal synthesized ZnO nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Andreescu D, Kirk KA, Narouei FH, Andreescu S. Electroanalytic Aspects of Single‐Entity Collision Methods for Bioanalytical and Environmental Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201800722] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Kevin A. Kirk
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | | | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| |
Collapse
|
10
|
Wang S, Li F, Hu X, Lv M, Fan C, Ling D. Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Fangyuan Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xi Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education; College of Biomedical Engineering and Instrument Science; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
11
|
Cohen JM, Beltran-Huarac J, Pyrgiotakis G, Demokritou P. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity. NANOIMPACT 2018; 10:81-86. [PMID: 29479575 PMCID: PMC5823521 DOI: 10.1016/j.impact.2017.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Typical in vitro assays used for high throughput toxicological screening and measuring nano-bio interactions are conducted by pipetting suspensions of engineered nanomaterials (ENMs) dispersed in nutrient-rich culture media directly onto cells. In order to achieve fairly monodisperse and stable suspensions of small agglomerates, ultrasonic energy is usually applied to break apart large agglomerates that can form upon suspension in liquid. Lack of standardized protocols and methods for delivering sonication energy can introduce variability in the ENM suspension properties (e.g. agglomerate size, polydispersity, suspension stability over time), and holds significant implications for in vitro dosimetry, toxicity, and other nano-bio interactions. Careful assessment of particle transformations during dispersion preparation and sonication is therefore critical for accurate interpretation of in vitro toxicity studies. In this short communication, the difficulties of preparing stable suspensions of rapidly settling ENMs are presented. Furthermore, methods to optimize the delivery of the critical sonication energy required to break large agglomerates and prepare stable, fairly monodispersed suspensions of fast settling ENMs are presented. A methodology for the efficient delivery of sonication energy in a discrete manner is presented and validated using various rapidly agglomerating and settling ENMs. The implications of continuous vs. discrete sonication on average hydrodynamic diameter, and polydispersity was also assessed for both fast and slow settling ENMs. For the rapidly agglomerating and settling ENMs (Ag15%/SiO2, Ag and CeO2), the proposed discrete sonication achieved a significant reduction in the agglomerate diameter and polydispersity. In contrast, the relatively slow agglomerating and settling Fe2O3 suspension did not exhibit statistically significant differences in average hydrodynamic diameter or polydispersity between the continuous and discrete sonication approaches. Our results highlight the importance of using the proposed material-specific discrete sonication method to effectively deliver the critical sonication energy necessary to reproducibly achieve stable and fairly monodispersed suspensions that are suitable for in vitro toxicity testing.
Collapse
Affiliation(s)
- Joel M. Cohen
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - Juan Beltran-Huarac
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 655 Huntington Ave Boston, MA 02115
| |
Collapse
|
12
|
Recent progress in electrochemical sensing of cardiac troponin by using nanomaterial-induced signal amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2219-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Kaya H, Duysak M, Akbulut M, Yılmaz S, Gürkan M, Arslan Z, Demir V, Ateş M. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY 2017; 32:1213-1225. [PMID: 27464841 PMCID: PMC5274611 DOI: 10.1002/tox.22318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Zinc nanoparticles (ZnNPs) are among the least investigated NPs and thus their toxicological effects are not known. In this study, tilapia (Oreochromis niloticus) were exposed to 1 and 10 mg/L suspensions of small size (SS, 40-60 nm) and large size (LS, 80-100 nm) ZnNPs for 14 days under semi-static conditions. Total Zn levels in the intestine, liver, kidney, gill, muscle tissue, and brain were measured. Blood serum glucose (GLU), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactate dehydrogenase (LDH) were examined to elucidate the physiological disturbances induced by ZnNPs. Organ pathologies were examined for the gills, liver, and kidney to identify injuries associated with exposure. Significant accumulation was observed in the order of intestine, liver, kidney, and gills. Zn levels exhibited time- and concentration-dependent increase in the organs. Accumulation in kidney was also dependent on particle size; NPs SS-ZnNPs were trapped more effectively than LS-ZnNPs. No significant accumulation occurred in the brain (p > 0.05) while Zn levels in muscle tissue increased only marginally (p ≥ 0.05). Significant disturbances were noted in serum GOT and LDH (p < 0.05). The GPT levels fluctuated and were not statistically different from those of controls (p > 0.05). Histopathological tubular deformations and mononuclear cell infiltrations were observed in kidney sections. In addition, an increase in melano-macrophage aggregation intensity was identified on the 7th day in treatments exposed to LS-ZnNPs. Mononuclear cell infiltrations were identified in liver sections for all treatments. Both ZnNPs caused basal hyperplasia in gill sections. Fusions appeared in the gills after the 7th day in fish treated with 10 mg/L suspensions of SS-ZnNPs. In addition, separations in the secondary lamella epithelia were observed. The results indicated that exposure to ZnNPs could lead to disturbances in blood biochemistry and cause histopathological injuries in the tissues of O. niloticus. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1213-1225, 2017.
Collapse
Affiliation(s)
- Hasan Kaya
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Müge Duysak
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Mehmet Akbulut
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Sevdan Yılmaz
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Mert Gürkan
- Faculty of Arts and Sciences, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, 39217, USA
| | - Veysel Demir
- Engineering Faculty, Department of Environmental Engineering, Tunceli University, Tunceli, 62000, Turkey
| | - Mehmet Ateş
- Engineering Faculty, Department of Bioengineering, Tunceli University, Tunceli, 62000, Turkey
| |
Collapse
|
14
|
DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 2017; 12:355-371. [PMID: 28102836 DOI: 10.1038/nprot.2016.172] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. To ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for (i) generation of stable ENM suspensions in cell culture media; (ii) colloidal characterization of suspended ENMs, particularly of properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density); and (iii) robust numerical fate and transport modeling for accurate determination of the ENM dose delivered to cells over the course of the in vitro exposure. Here we present an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical aims. The entire protocol requires ∼6-12 h to complete.
Collapse
Affiliation(s)
- Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Joel M Cohen
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:171. [PMID: 28553159 PMCID: PMC5423989 DOI: 10.1007/s11051-017-3850-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/10/2017] [Indexed: 05/14/2023]
Abstract
As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as 'qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Karin Wiench
- Regulatory Toxicology, BASF SE, 67056 Ludwigshafen, Germany
| | - Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
- Advanced Materials Research, BASF SE, 67056 Ludwigshafen, Germany
| | - Ursula G. Sauer
- Scientific Consultancy—Animal Welfare, Hallstattfeld 16, 85579 Neubiberg, Germany
| |
Collapse
|
16
|
Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Arch Toxicol 2016; 91:163-177. [DOI: 10.1007/s00204-016-1701-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/21/2016] [Indexed: 12/20/2022]
|
17
|
Versiani AF, Andrade LM, Martins EMN, Scalzo S, Geraldo JM, Chaves CR, Ferreira DC, Ladeira M, Guatimosim S, Ladeira LO, da Fonseca FG. Gold nanoparticles and their applications in biomedicine. Future Virol 2016. [DOI: 10.2217/fvl-2015-0010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although used in medical applications for centuries, the development of nanotechnology has shed new light in the plethora of possible medical and biological applications using gold-based nanostructures. Gold nanostructures are stable and relatively inert in biological systems, leading to low reatogenicity, biocompatibility and general lack of toxicity. Allied to that, gold nanoparticles present optical and electronic properties that have been exploited in a range of biomedical applications. In this review we discuss biologically relevant properties of gold nanoparticles and how they are used in some biomedicine fields, especially those involving biosensing of biological analytes – including viruses and antibodies against them, cancer therapies, and antigen delivery, including viral antigens – as part of nonclassic vaccine strategies.
Collapse
Affiliation(s)
- Alice F Versiani
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270–901, Belo Horizonte, MG, Brazil
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lídia M Andrade
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Estefânia MN Martins
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Química de Nanoestruturas de Carbono. Centro de Desenvolvimento da Tecnologia Nuclear – CDTN/CNEN, Belo Horizonte, MG, Brazil
| | - Sérgio Scalzo
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Sinalização Intracelular, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jony M Geraldo
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Anatomia por Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudilene R Chaves
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniele C Ferreira
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina Ladeira
- Laboratório de Sinalização Intracelular, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Guatimosim
- Laboratório de Sinalização Intracelular, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz O Ladeira
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio G da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270–901, Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
Labib S, Williams A, Yauk CL, Nikota JK, Wallin H, Vogel U, Halappanavar S. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol 2016; 13:15. [PMID: 26979667 PMCID: PMC4792104 DOI: 10.1186/s12989-016-0125-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A diverse class of engineered nanomaterials (ENMs) exhibiting a wide array of physical-chemical properties that are associated with toxicological effects in experimental animals is in commercial use. However, an integrated framework for human health risk assessment (HHRA) of ENMs has yet to be established. Rodent 2-year cancer bioassays, clinical chemistry, and histopathological endpoints are still considered the 'gold standard' for detecting substance-induced toxicity in animal models. However, the use of data derived from alternative toxicological tools, such as genome-wide expression profiling and in vitro high-throughput assays, are gaining acceptance by the regulatory community for hazard identification and for understanding the underlying mode-of-action. Here, we conducted a case study to evaluate the application of global gene expression data in deriving pathway-based points of departure (PODs) for multi-walled carbon nanotube (MWCNT)-induced lung fibrosis, a non-cancer endpoint of regulatory importance. METHODS Gene expression profiles from the lungs of mice exposed to three individual MWCNTs with different physical-chemical properties were used within the framework of an adverse outcome pathway (AOP) for lung fibrosis to identify key biological events linking MWCNT exposure to lung fibrosis. Significantly perturbed pathways were categorized along the key events described in the AOP. Benchmark doses (BMDs) were calculated for each perturbed pathway and were used to derive transcriptional BMDs for each MWCNT. RESULTS Similar biological pathways were perturbed by the different MWCNT types across the doses and post-exposure time points studied. The pathway BMD values showed a time-dependent trend, with lower BMDs for pathways perturbed at the earlier post-exposure time points (24 h, 3d). The transcriptional BMDs were compared to the apical BMDs derived by the National Institute for Occupational Safety and Health (NIOSH) using alveolar septal thickness and fibrotic lesions endpoints. We found that regardless of the type of MWCNT, the BMD values for pathways associated with fibrosis were 14.0-30.4 μg/mouse, which are comparable to the BMDs derived by NIOSH for MWCNT-induced lung fibrotic lesions (21.0-27.1 μg/mouse). CONCLUSIONS The results demonstrate that transcriptomic data can be used to as an effective mechanism-based method to derive acceptable levels of exposure to nanomaterials in product development when epidemiological data are unavailable.
Collapse
Affiliation(s)
- Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Jake K. Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|
19
|
Williams A, Halappanavar S. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:2438-48. [PMID: 26885455 PMCID: PMC4734442 DOI: 10.3762/bjnano.6.252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND The presence of diverse types of nanomaterials (NMs) in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2), carbon black (CB) or carbon nanotubes (CNTs) to determine the disease significance of these data-driven gene sets. RESULTS Biclusters representing inflammation (chemokine activity), DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS) and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032). The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles. CONCLUSION The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several previously defined, functionally relevant gene sets, the present study also identified two novel genes sets: a gene set associated with pulmonary fibrosis and a gene set associated with ROS, underlining the advantage of using a data-driven approach to identify novel, functionally related gene sets. The results can be used in future gene set enrichment analysis studies involving NMs or as features for clustering and classifying NMs of diverse properties.
Collapse
Affiliation(s)
- Andrew Williams
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa K1A 0K9, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa K1A 0K9, Canada
| |
Collapse
|
20
|
Nakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Ema M, Endoh S, Shimada M, Ogami A, Myojyo T, Oyabu T, Gamo M, Kishimoto A, Igarashi T, Hanai S. Risk Assessment of the Carbon Nanotube Group. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:1940-56. [PMID: 25943334 PMCID: PMC4736668 DOI: 10.1111/risa.12394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study assessed the health risks via inhalation and derived the occupational exposure limit (OEL) for the carbon nanotube (CNT) group rather than individual CNT material. We devised two methods: the integration of the intratracheal instillation (IT) data with the inhalation (IH) data, and the "biaxial approach." A four-week IH test and IT test were performed in rats exposed to representative materials to obtain the no observed adverse effect level, based on which the OEL was derived. We used the biaxial approach to conduct a relative toxicity assessment of six types of CNTs. An OEL of 0.03 mg/m(3) was selected as the criterion for the CNT group. We proposed that the OEL be limited to 15 years. We adopted adaptive management, in which the values are reviewed whenever new data are obtained. The toxicity level was found to be correlated with the Brunauer-Emmett-Teller (BET)-specific surface area (BET-SSA) of CNT, suggesting the BET-SSA to have potential for use in toxicity estimation. We used the published exposure data and measurement results of dustiness tests to compute the risk in relation to particle size at the workplace and showed that controlling micron-sized respirable particles was of utmost importance. Our genotoxicity studies indicated that CNT did not directly interact with genetic materials. They supported the concept that, even if CNT is genotoxic, it is secondary genotoxicity mediated via a pathway of genotoxic damage resulting from oxidative DNA attack by free radicals generated during CNT-elicited inflammation. Secondary genotoxicity appears to involve a threshold.
Collapse
Affiliation(s)
- Junko Nakanishi
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Yasuo Morimoto
- Institute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Isamu Ogura
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Norihiro Kobayashi
- Division of Environmental ChemistryNational Institute of Health SciencesTokyoJapan
| | - Masato Naya
- Public Interest Incorporated Foundation BioSafety Research Center (BSRC)IwataJapan
| | - Makoto Ema
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Shigehisa Endoh
- Research Institute for Environmental Management TechnologyNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Manabu Shimada
- Department of Chemical Engineering, Faculty of EngineeringHiroshima UniversityHigashihiroshimaJapan
| | - Akira Ogami
- Institute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Toshihiko Myojyo
- Institute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Takako Oyabu
- Institute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Masashi Gamo
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Atsuo Kishimoto
- Policy Alternatives Research Institute, Graduate School of Public Policythe Tokyo UniversityTokyoJapan
| | - Takuya Igarashi
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Sosuke Hanai
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|
21
|
Cohen JM, DeLoid GM, Demokritou P. A critical review of in vitro dosimetry for engineered nanomaterials. Nanomedicine (Lond) 2015; 10:3015-3032. [PMID: 26419834 DOI: 10.2217/nnm.15.129] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major obstacle in the development of accurate cellular models for investigating nanobio interactions in vitro is determination of physiologically relevant measures of dose. Comparison of biological responses to nanoparticle exposure typically relies on administered dose metrics such as mass concentration of suspended particles, rather than the effective dose of particles that actually comes in contact with the cells over the time of exposure. Adoption of recently developed dosimetric methodologies will facilitate determination of effective dose delivered to cells in vitro, thereby improving the accuracy and reliability of in vitro screening data, validation of in vitro with in vivo data, and comparison across multiple datasets for the large variety of nanomaterials currently in the market.
Collapse
Affiliation(s)
- Joel M Cohen
- Center for Nanotechnology & Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| | - Glen M DeLoid
- Center for Nanotechnology & Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology & Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
22
|
Lai DY. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials. Food Chem Toxicol 2015; 85:120-6. [PMID: 26111809 DOI: 10.1016/j.fct.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022]
Abstract
With the increasing use and development of engineered nanoparticles in electronics, consumer products, pesticides, food and pharmaceutical industries, there is a growing concern about potential human health hazards of these materials. A number of studies have demonstrated that nanoparticle toxicity is extremely complex, and that the biological activity of nanoparticles will depend on a variety of physicochemical properties such as particle size, shape, agglomeration state, crystal structure, chemical composition, surface area and surface properties. Nanoparticle toxicity can be attributed to nonspecific interaction with biological structures due to their physical properties (e.g., size and shape) and biopersistence, or to specific interaction with biomolecules through their surface properties (e.g., surface chemistry and reactivity) or release of toxic ions. The toxic effects of most nanomaterials have not been adequately characterized and currently, there are many issues and challenges in toxicity testing and risk assessment of nanoparticles. Based on the possible mechanisms of action and available in vitro and in vivo toxicity database, this paper proposes an approach to using mechanism-based SAR analysis to assess the relative human health hazard/risk potential of various types of nanomaterials.
Collapse
Affiliation(s)
- David Y Lai
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Risk Assessment Division, 1200 Pennsylvania Ave. N.W., Washington, DC, USA.
| |
Collapse
|
23
|
Martins JT, Ramos ÓL, Pinheiro AC, Bourbon AI, Silva HD, Rivera MC, Cerqueira MA, Pastrana L, Malcata FX, González-Fernández Á, Vicente AA. Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9116-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
ZHOU HAN, MA XIAOFENG, LIU YONGZE, DONG LEI, LUO YI, ZHU GUANGJIE, QIAN XIAOYUN, CHEN JIE, LU LIN, WANG JUNGUO, GAO XIA. Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Mol Med Rep 2015; 11:4381-8. [DOI: 10.3892/mmr.2015.3306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 01/15/2015] [Indexed: 11/06/2022] Open
|
25
|
A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol 2014; 70:492-506. [DOI: 10.1016/j.yrtph.2014.07.025] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/19/2023]
|
26
|
Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine (Lond) 2014; 9:2557-85. [DOI: 10.2217/nnm.14.149] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To date, guidance on how to incorporate in vitro assays into integrated approaches for testing and assessment of nanomaterials is unavailable. In addressing this shortage, this review compares data from in vitro studies to results from in vivo inhalation or intratracheal instillation studies. Globular nanomaterials (ion-shedding silver and zinc oxide, poorly soluble titanium dioxide and cerium dioxide, and partly soluble amorphous silicon dioxide) and nanomaterials with higher aspect ratios (multiwalled carbon nanotubes) were assessed focusing on the Organisation for Economic Co-Operation and Development (OECD) reference nanomaterials for these substances. If in vitro assays are performed with dosages that reflect effective in vivo dosages, the mechanisms of nanomaterial toxicity can be assessed. In early tiers of integrated approaches for testing and assessment, knowledge on mechanisms of toxicity serves to group nanomaterials thereby reducing the need for animal testing.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy – Animal Welfare, Neubiberg, Germany
| | | | - Jürgen Schnekenburger
- Biomedical Technology Centre of the Medical Faculty of Westphalian Wilhelms University Münster, Münster, Germany
| | - Martin Wiemann
- IBE R&D gGmbH Institute for Lung Health, Münster, Germany
| |
Collapse
|
27
|
Buesen R, Landsiedel R, Sauer UG, Wohlleben W, Groeters S, Strauss V, Kamp H, van Ravenzwaay B. Effects of SiO₂, ZrO₂, and BaSO₄ nanomaterials with or without surface functionalization upon 28-day oral exposure to rats. Arch Toxicol 2014; 88:1881-906. [PMID: 25164825 PMCID: PMC4161931 DOI: 10.1007/s00204-014-1337-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/12/2014] [Indexed: 01/03/2023]
Abstract
The effects of seven nanomaterials (four amorphous silicon dioxides with or without surface functionalization, two surface-functionalized zirconium dioxides, and barium sulfate) upon 28-day oral exposure to male or female rats were investigated. The studies were performed as limit tests in accordance with OECD Test Guideline 407 applying 1,000 mg test substance/kg body weight/day. Additionally, the acute phase proteins haptoglobin and α2-macroglobulin as well as cardiac troponin I were determined, and metabolome analysis was performed in plasma samples. There were no test substance-related adverse effects for any of the seven nanomaterials. Moreover, metabolomics changes were below the threshold of effects. Since test substance organ burden was not analyzed, it was not possible to establish whether the lack of findings related to the absence of systemic exposure of the tested nanomaterials or if the substances are devoid of any potential for toxicity. The few published subacute oral or short-term inhalation studies investigating comparable nanomaterials (SiO₂, ZrO₂, and BaSO₄) also do not report the occurrence of pronounced treatment-related findings. Overall, the results of the present survey provide a first indication that the tested nanomaterials neither cause local nor systemic effects upon subacute oral administration under the selected experimental conditions. Further investigations should aim at elucidating the extent of gastrointestinal absorption of surface-functionalized nanomaterials.
Collapse
Affiliation(s)
- Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Ursula G. Sauer
- Scientific Consultancy - Animal Welfare, 85579 Neubiberg, Germany
| | - Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
- Polymer Physics, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Sibylle Groeters
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Hennicke Kamp
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
28
|
Özel RE, Liu X, Alkasir RS, Andreescu S. Electrochemical methods for nanotoxicity assessment. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Cohen JM, Teeguarden JG, Demokritou P. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 2014; 11:20. [PMID: 24885440 PMCID: PMC4024018 DOI: 10.1186/1743-8977-11-20] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND There is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of exposure time using the ISDD model. The approach is validated against experimentally measured doses, and simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20 ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area (RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time. RESULTS The proposed methodology was used to derive the effective density, agglomerate diameter and RID functions for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured effective density was on average 60% below the material density. We report great variability in delivered dose metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology for a number of ENMs (measured delivered to cell dose within 9% of estimated). CONCLUSIONS Our findings confirm and extend experimental and computational evidence that agglomerate characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for effective use of in vitro systems for nanotoxicology. The mixed experimental/computational approach to cellular dosimetry proposed and validated here can be used by nanotoxicologists to accurately calculate the delivered to cell dose metrics for various ENMs and in vitro conditions as a function of exposure time. The RID functions and characterization data for widely used ENMs presented here can together be used by experimentalists to design and interpret toxicity studies.
Collapse
Affiliation(s)
| | | | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
30
|
Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 2014; 5:3514. [PMID: 24675174 PMCID: PMC4038248 DOI: 10.1038/ncomms4514] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/26/2014] [Indexed: 01/18/2023] Open
Abstract
The need for accurate in vitro dosimetry remains a major obstacle to the development of cost-effective toxicological screening methods for engineered nanomaterials. An important key to accurate in vitro dosimetry is the characterization of sedimentation and diffusion rates of nanoparticles suspended in culture media, which largely depend upon the effective density and diameter of formed agglomerates in suspension. Here we present a rapid and inexpensive method for accurately measuring the effective density of nano-agglomerates in suspension. This novel method is based on the volume of the pellet obtained by bench-top centrifugation of nanomaterial suspensions in a packed cell volume tube, and is validated against gold-standard analytical ultracentrifugation data. This simple and cost-effective method allows nanotoxicologists to correctly model nanoparticle transport, and thus attain accurate dosimetry in cell culture systems, which will greatly advance the development of reliable and efficient methods for toxicological testing and investigation of nano-bio interactions in vitro.
Collapse
|
31
|
Zimmer CC, Liu YX, Morgan JT, Yang G, Wang KH, Kennedy IM, Barakat AI, Liu GY. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B 2014; 118:1246-55. [PMID: 24417356 PMCID: PMC3980960 DOI: 10.1021/jp410764f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current in vitro methods to assess nanomaterial cytotoxicity involve various assays to monitor specific cellular dysfunction, such as metabolic imbalance or inflammation. Although high throughput, fast, and animal-free, these in vitro methods suffer from unreliability and lack of relevance to in vivo situations. New approaches, especially with the potential to reliably relate to in vivo studies directly, are in critical need. This work introduces a new approach, single cell mechanics, derived from atomic force microscopy-based single cell compression. The single cell based approach is intrinsically advantageous in terms of being able to directly correlate to in vivo investigations. Its reliability and potential to measure cytotoxicity is evaluated using known systems: zinc oxide (ZnO) and silicon dioxide (SiO2) nanoparticles (NP) on human aortic endothelial cells (HAECs). This investigation clearly indicates the reliability of single cell compression. For example, ZnO NPs cause significant changes in force vs relative deformation profiles, whereas SiO2 NPs do not. New insights into NPs-cell interactions pertaining to cytotoxicity are also revealed from this single cell mechanics approach, in addition to a qualitative cytotoxicity conclusion. The advantages and disadvantages of this approach are also compared with conventional cytotoxicity assays.
Collapse
Affiliation(s)
- Christopher C Zimmer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Burello E. Profiling the biological activity of oxide nanomaterials with mechanistic models. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1749-4699/6/1/014009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Choi SJ, Lee JK, Jeong J, Choy JH. Toxicity evaluation of inorganic nanoparticles: considerations and challenges. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0026-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Shahbazi MA, Hamidi M, Mäkilä EM, Zhang H, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonen JT, Santos HA. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 2013; 34:7776-89. [DOI: 10.1016/j.biomaterials.2013.06.052] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/26/2013] [Indexed: 01/17/2023]
|
36
|
Juillerat-Jeanneret L, Dusinska M, Fjellsbø LM, Collins AR, Handy RD, Riediker M. Biological impact assessment of nanomaterial used in nanomedicine. introduction to the NanoTEST project. Nanotoxicology 2013; 9 Suppl 1:5-12. [PMID: 23875681 DOI: 10.3109/17435390.2013.826743] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Therapeutic nanoparticles (NPs) are used in nanomedicine as drug carriers or imaging agents, providing increased selectivity/specificity for diseased tissues. The first NPs in nanomedicine were developed for increasing the efficacy of known drugs displaying dose-limiting toxicity and poor bioavailability and for enhancing disease detection. Nanotechnologies have gained much interest owing to their huge potential for applications in industry and medicine. It is necessary to ensure and control the biocompatibility of the components of therapeutic NPs to guarantee that intrinsic toxicity does not overtake the benefits. In addition to monitoring their toxicity in vitro, in vivo and in silico, it is also necessary to understand their distribution in the human body, their biodegradation and excretion routes and dispersion in the environment. Therefore, a deep understanding of their interactions with living tissues and of their possible effects in the human (and animal) body is required for the safe use of nanoparticulate formulations. Obtaining this information was the main aim of the NanoTEST project, and the goals of the reports collected together in this special issue are to summarise the observations and results obtained by the participating research teams and to provide methodological tools for evaluating the biological impact of NPs.
Collapse
|
37
|
Xu M, Li J, Hanagata N, Su H, Chen H, Fujita D. Challenge to assess the toxic contribution of metal cation released from nanomaterials for nanotoxicology--the case of ZnO nanoparticles. NANOSCALE 2013; 5:4763-4769. [PMID: 23604040 DOI: 10.1039/c3nr34251d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The identification of physicochemical factors that govern toxic effects of nanomaterials (NMs) is important for the safe design and synthesis of NMs. The release of metal cations from NMs in cell culture medium and the role of the metal cations in cytotoxicity are still under dispute. Here, we report that removal of NMs such as ZnO nanoparticles (NPs) by centrifugation, the procedure commonly used for the estimation of released ion concentration in nanotoxicology, was incomplete even at a relative centrifugal force of 150,000 × g. In this sense, the Zn concentration in supernatant measured by inductively coupled plasma-mass spectrometry cannot be regarded as the concentration of free Zn(2+) ions which were released from ZnO NPs in cell culture medium. This suggests the urgent need to develop relevant analytical techniques for nanotoxicology. The toxic contribution of released Zn(2+) ions to the A549 cell lines was estimated to be only about 10%. We conclude that the cytotoxicity associated with ZnO NPs is not a function of the Zn concentration, suggesting that other factors play an important role in the toxic effect of ZnO NPs.
Collapse
Affiliation(s)
- Mingsheng Xu
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | | | | | | | | | | |
Collapse
|
38
|
Wang A, Marinakos SM, Badireddy AR, M. Powers C, A. Houck K. Characterization of physicochemical properties of nanomaterials and their immediate environments in high‐throughput screening of nanomaterial biological activity. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:430-48. [DOI: 10.1002/wnan.1229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/23/2013] [Accepted: 04/03/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Amy Wang
- National Center for Computational Toxicology (NCCT)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| | - Stella M. Marinakos
- Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamNCUSA
| | - Appala Raju Badireddy
- Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamNCUSA
| | - Christina M. Powers
- National Center for Environmental Assessment (NCEA)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| | - Keith A. Houck
- National Center for Computational Toxicology (NCCT)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| |
Collapse
|
39
|
MacPhail RC, Grulke EA, Yokel RA. Assessing nanoparticle risk poses prodigious challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:374-87. [PMID: 23568806 DOI: 10.1002/wnan.1216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Risk assessment is used both formally and informally to estimate the likelihood of an adverse event occurring, for example, as a consequence of exposure to a hazardous chemical, drug, or other agent. Formal risk assessments in government regulatory agencies have a long history of practice. The precision with which risk can be estimated is inevitably constrained, however, by uncertainties arising from the lack of pertinent data. Developing accurate risk assessments for nanoparticles and nanoparticle-containing products may present further challenges because of the unique properties of the particles, uncertainties about their composition and the populations exposed to them, and how these may change throughout the particle's life cycle. This review introduces the evolving practice of risk assessment followed by some of the uncertainties that need to be addressed to improve our understanding of nanoparticle risks. Given the clarion call for life-cycle assessments of nanoparticles, an unprecedented degree of national and international coordination between scientific organizations, regulatory agencies, and stakeholders will be required to achieve this goal.
Collapse
Affiliation(s)
- Robert C MacPhail
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | | | | |
Collapse
|
40
|
Cohen Y, Rallo R, Liu R, Liu HAOYANGHAVEN. In silico analysis of nanomaterials hazard and risk. Acc Chem Res 2013; 46:802-12. [PMID: 23138971 DOI: 10.1021/ar300049e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Because a variety of human-related activities, engineer-ed nanoparticles (ENMs) may be released to various environmental media and may cross environmental boundaries, and thus will be found in most media. Therefore, the potential environmental impacts of ENMs must be assessed from a multimedia perspective and with an integrated risk management approach that considers rapid developments and increasing use of new nanomaterials. Accordingly, this Account presents a rational process for the integration of in silico ENM toxicity and fate and transport analyses for environmental impact assessment. This approach requires knowledge of ENM toxicity and environmental exposure concentrations. Considering the large number of current different types of ENMs and that those numbers are likely to increase, there is an urgent need to accelerate the evaluation of their toxicity and the assessment of their potential distribution in the environment. Developments in high throughput screening (HTS) are now enabling the rapid generation of large data sets for ENM toxicity assessment. However, these analyses require the establishment of reliable toxicity metrics, especially when HTS includes data from multiple assays, cell lines, or organisms. Establishing toxicity metrics with HTS data requires advanced data processing techniques in order to clearly identify significant biological effects associated with exposure to ENMs. HTS data can form the basis for developing and validating in silico toxicity models (e.g., quantitative structure-activity relationships) and for generating data-driven hypotheses to aid in establishing and/or validating possible toxicity mechanisms. To correlate the toxicity of ENMs with their physicochemical properties, researchers will need to develop quantitative structure-activity relationships for nanomaterials (i.e., nano-SARs). However, as nano-SARs are applied in regulatory applications, researchers must consider their applicability and the acceptance level of false positive relative to false negative predictions and the reliability of toxicity data. To establish the environmental impact of ENMs identified as toxic, researchers will need to estimate the potential level of environmental exposure concentration of ENMs in the various media such as air, water, soil, and vegetation. When environmental monitoring data are not available, models of ENMs fate and transport (at various levels of complexity) serve as alternative approaches for estimating exposure concentrations. Risk management decisions regarding the manufacturing, use, and environmental regulations of ENMs would clearly benefit from both the assessment of potential ENMs exposure concentrations and suitable toxicity metrics. The decision process should consider the totality of available information: quantitative and qualitative data and the analysis of nanomaterials toxicity, and fate and transport behavior in the environment. Effective decision-making to address the potential impacts of nanomaterials will require considerations of the relevant environmental, ecological, technological, economic, and sociopolitical factors affecting the complete lifecycle of nanomaterials, while accounting for data and modeling uncertainties. Accordingly, researchers will need to establish standardized data management and analysis tools through nanoinformatics as a basis for the development of rational decision tools.
Collapse
Affiliation(s)
- Yoram Cohen
- Chemical and Biomolecular Engineering Department and Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, Los Angeles, California 90064, United States
| | - Robert Rallo
- Departament d’Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya, Spain
| | - Rong Liu
- Chemical and Biomolecular Engineering Department and Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, Los Angeles, California 90064, United States
| | - HAOYANG HAVEN Liu
- Chemical and Biomolecular Engineering Department and Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, Los Angeles, California 90064, United States
| |
Collapse
|
41
|
Di Bucchianico S, Fabbrizi MR, Misra SK, Valsami-Jones E, Berhanu D, Reip P, Bergamaschi E, Migliore L. Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 2013; 28:287-99. [DOI: 10.1093/mutage/get014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Fadeel B, Feliu N, Vogt C, Abdelmonem AM, Parak WJ. Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:111-29. [PMID: 23335558 DOI: 10.1002/wnan.1206] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Engineered nanomaterials offer exciting opportunities for 'smart' drug delivery and in vivo imaging of disease processes, as well as in regenerative medicine. The ability to manipulate matter at the nanoscale enables many new properties that are both desirable and exploitable, but the same properties could also give rise to unexpected toxicities that may adversely affect human health. Understanding the physicochemical properties that drive toxicological outcomes is a formidable challenge as it is not trivial to separate and, hence, to pinpoint individual material characteristics of nanomaterials. In addition, nanomaterials that interact with biological systems are likely to acquire a surface corona of biomolecules that may dictate their biological behavior. Indeed, we propose that it is the combination of material-intrinsic properties (the 'synthetic identity') and context-dependent properties determined, in part, by the bio-corona of a given biological compartment (the 'biological identity') that will determine the interactions of engineered nanomaterials with cells and tissues and subsequent outcomes. The delineation of these entwined 'identities' of engineered nanomaterials constitutes the bridge between nanotoxicological research and nanomedicine.
Collapse
Affiliation(s)
- Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
43
|
Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev 2013; 42:8339-59. [DOI: 10.1039/c3cs60145e] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Riding MJ, Trevisan J, Hirschmugl CJ, Jones KC, Semple KT, Martin FL. Mechanistic insights into nanotoxicity determined by synchrotron radiation-based Fourier-transform infrared imaging and multivariate analysis. ENVIRONMENT INTERNATIONAL 2012; 50:56-65. [PMID: 23085685 DOI: 10.1016/j.envint.2012.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 06/01/2023]
Abstract
Our ability to identify the mechanisms by which carbon-based nanomaterials (CBNs) exert toxicity in cells is constrained by the lack of standardized methodologies to assay endpoint effects. Herein we describe a method of mechanistically identifying the effects of various CBN types in both prokaryotic and eukaryotic cells using multi-beam synchrotron radiation-based Fourier-transform infrared imaging (SR-FTIRI) at diffraction-limited resolution. This technique overcomes many of the inherent difficulties of assaying nanotoxicity and demonstrates exceptional sensitivity in identifying the effects of CBNs in cells at environmentally-relevant concentrations. We identify key mechanisms of nanotoxicity as the alteration of Amide and lipid biomolecules, but propose more specific bioactivity of CBNs occurs as a result of specific interactions between CBN structural conformation and cellular characteristics.
Collapse
Affiliation(s)
- Matthew J Riding
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, UK
| | | | | | | | | | | |
Collapse
|
45
|
Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. SENSORS (BASEL, SWITZERLAND) 2012; 12:12347-60. [PMID: 23112716 PMCID: PMC3478843 DOI: 10.3390/s120912347] [Citation(s) in RCA: 658] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/21/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023]
Abstract
Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls.
Collapse
Affiliation(s)
- Sephra N Rampersad
- Department of Life Sciences, The University of the West Indies, West Indies, St Augustine, Trinidad and Tobago.
| |
Collapse
|
46
|
Maojo V, Fritts M, de la Iglesia D, Cachau RE, Garcia-Remesal M, Mitchell JA, Kulikowski C. Nanoinformatics: a new area of research in nanomedicine. Int J Nanomedicine 2012; 7:3867-90. [PMID: 22866003 PMCID: PMC3410693 DOI: 10.2147/ijn.s24582] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and -omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings.
Collapse
Affiliation(s)
- Victor Maojo
- Biomedical Informatics Group, Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
47
|
Cohen J, Deloid G, Pyrgiotakis G, Demokritou P. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 2012; 7:417-31. [PMID: 22393878 DOI: 10.3109/17435390.2012.666576] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In vitro toxicity assays are efficient and inexpensive tools for screening the increasing number of engineered nanomaterials (ENMs) entering the consumer market. However, the data produced by in vitro studies often vary substantially among different studies and from in vivo data. In part, these discrepancies may be attributable to lack of standardisation in dispersion protocols and inadequate characterisation of particle-media interactions which may affect the particle kinetics and the dose delivered to cells. In this study, a novel approach for preparation of monodisperse, stabilised liquid suspensions is presented and coupled with a numerical model which estimates delivered dose values. Empirically derived material- and media-specific functions are presented for each media-ENM system that can be used to convert administered doses to delivered doses. The interactions of ENMs with a variety of physiologic media were investigated and the importance of this approach was demonstrated by in vitro cytotoxicity assays using THP-1 macrophages.
Collapse
Affiliation(s)
- Joel Cohen
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, USA
| | | | | | | |
Collapse
|
48
|
Introduction to the Analysis and Risk of Nanomaterials in Environmental and Food Samples. COMPREHENSIVE ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-444-56328-6.00001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|