1
|
Charles M, Gaiani N, Sanchez MP, Boussaha M, Hozé C, Boichard D, Rocha D, Boulling A. Functional impact of splicing variants in the elaboration of complex traits in cattle. Nat Commun 2025; 16:3893. [PMID: 40274775 PMCID: PMC12022281 DOI: 10.1038/s41467-025-58970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
GWAS conducted directly on imputed whole genome sequence have led to the identification of numerous genetic variants associated with agronomic traits in cattle. However, such variants are often simply markers in linkage disequilibrium with the actual causal variants, which is a limiting factor for the development of accurate genomic predictions. It is possible to identify causal variants by integrating information on how variants impact gene expression into GWAS output. RNA splicing plays a major role in regulating gene expression. Thus, assessing the effect of variants on RNA splicing may explain their function. Here, we use a high-throughput strategy to functionally analyse putative splice-disrupting variants in the bovine genome. Using GWAS, massively parallel reporter assay and deep learning algorithms designed to predict splice-disrupting variants, we identify 38 splice-disrupting variants associated with complex traits in cattle, three of which could be classified as causal. Our results indicate that splice-disrupting variants are widely found in the quantitative trait loci related to these phenotypes. Using our combined approach, we also assess the validity of splicing predictors originally developed to analyse human variants in the context of the bovine genome.
Collapse
Affiliation(s)
- Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Nicolas Gaiani
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Arnaud Boulling
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Li X, Cheng D, Qi L, Zhan J, Li W. Regulation of age-dependent expression patterns of five transcription factors in Larix kaempferi. FORESTRY RESEARCH 2023; 3:18. [PMID: 39526262 PMCID: PMC11524251 DOI: 10.48130/fr-2023-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 11/16/2024]
Abstract
To reveal the regulatory mechanisms underlying age-dependent expression patterns, we characterized seven age-related genes, LaDAL1, LaAGL2-2, LaAGL2-3, LaAGL11, LaSOC1-1, LaAP2-1, and LaAP2-2 in terms of transcription and intron splicing in Larix kaempferi. Based on the exon-intron structures, we quantified the pre-mRNA levels and mature mRNA levels of these seven genes using quantitative reverse transcription polymerase chain reaction experiments. We found that the pre-mRNA levels manifested age-related patterns, indicating that their transcription was primarily regulated by age. By comparing the increasing or decreasing rates of the pre-mRNA and spliced mRNA levels, we found that their splicing efficiencies also changed with age. These results clearly show that both pre-mRNA transcription and splicing of five age-related genes are regulated by age, indicating that age-dependent expression patterns are controlled at both transcriptional and post-transcriptional levels, and unveiling the underlying regulatory molecular mechanisms should focus on the transcription factors, epigenetic regulation, and RNA splicing. These data provide new insights into the age-mediated regulation of gene expression in woody perennials in terms of longevity.
Collapse
Affiliation(s)
- Xiangyi Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| | - Dongxia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| | - Liwang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| | - Jinwei Zhan
- State-owned Dagujia Forestry Farm in Qingyuan Man Autonomous County, Liaoning 113305, People’s Republic of China
| | - Wanfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| |
Collapse
|
3
|
van Zyl E, Tolls V, Blackmore A, McKay BC. Isoginkgetin leads to decreased protein synthesis and activates an ATF4-dependent transcriptional response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119123. [PMID: 34419492 DOI: 10.1016/j.bbamcr.2021.119123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
Isoginkgetin (IGG) is a small molecule inhibitor of pre-mRNA splicing. Failure to accurately remove introns could lead to the production of aberrant mRNAs and proteins. The cellular responses to splicing stress are not well defined. Here, we used oligonucleotide microarrays to assess genome wide changes in gene expression associated with exposure to IGG. Two of the 3 enriched pathways identified using PANTHER analysis of differentially expressed transcripts are linked to the ATF4 transcription factor. We confirmed that ATF4 was selectively translated and upregulated in response IGG despite an almost complete block to total protein synthesis. Importantly, partial disruption of the ATF4 gene using CRISPR-mediated gene editing prevented IGG-induced changes in gene expression. Remarkably, another spliceosome inhibitor, pladienolide B, did not inhibit translation, activate ATF4 or increase ATF4-dependent gene expression. Taken together, IGG activates ATF4 and an ATF4-dependent transcriptional response but these effects are not common to all spliceosome inhibitors.
Collapse
Affiliation(s)
- Erin van Zyl
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Victoria Tolls
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Alex Blackmore
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Bruce C McKay
- Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
4
|
DeJong CS, Dichmann DS, Exner CRT, Xu Y, Harland RM. The atypical RNA-binding protein Taf15 regulates dorsoanterior neural development through diverse mechanisms in Xenopus tropicalis. Development 2021; 148:271175. [PMID: 34345915 DOI: 10.1242/dev.191619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The FET family of atypical RNA-binding proteins includes Fused in sarcoma (FUS), Ewing's sarcoma (EWS) and the TATA-binding protein-associate factor 15 (TAF15). FET proteins are highly conserved, suggesting specialized requirements for each protein. Fus regulates splicing of transcripts required for mesoderm differentiation and cell adhesion in Xenopus, but the roles of Ews and Taf15 remain unknown. Here, we analyze the roles of maternally deposited and zygotically transcribed Taf15, which is essential for the correct development of dorsoanterior neural tissues. By measuring changes in exon usage and transcript abundance from Taf15-depleted embryos, we found that Taf15 may regulate dorsoanterior neural development through fgfr4 and ventx2.1. Taf15 uses distinct mechanisms to downregulate Fgfr4 expression, namely retention of a single intron within fgfr4 when maternal and zygotic Taf15 is depleted, and reduction in the total fgfr4 transcript when zygotic Taf15 alone is depleted. The two mechanisms of gene regulation (post-transcriptional versus transcriptional) suggest that Taf15-mediated gene regulation is target and co-factor dependent, contingent on the milieu of factors that are present at different stages of development.
Collapse
Affiliation(s)
- Caitlin S DeJong
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Darwin S Dichmann
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Cruz MAD, Lund D, Szekeres F, Karlsson S, Faresjö M, Larsson D. Cis-regulatory elements in conserved non-coding sequences of nuclear receptor genes indicate for crosstalk between endocrine systems. Open Med (Wars) 2021; 16:640-650. [PMID: 33954257 PMCID: PMC8051167 DOI: 10.1515/med-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression when bound to specific DNA sequences. Crosstalk between steroid NR systems has been studied for understanding the development of hormone-driven cancers but not to an extent at a genetic level. This study aimed to investigate crosstalk between steroid NRs in conserved intron and exon sequences, with a focus on steroid NRs involved in prostate cancer etiology. For this purpose, we evaluated conserved intron and exon sequences among all 49 members of the NR Superfamily (NRS) and their relevance as regulatory sequences and NR-binding sequences. Sequence conservation was found to be higher in the first intron (35%), when compared with downstream introns. Seventy-nine percent of the conserved regions in the NRS contained putative transcription factor binding sites (TFBS) and a large fraction of these sequences contained splicing sites (SS). Analysis of transcription factors binding to putative intronic and exonic TFBS revealed that 5 and 16%, respectively, were NRs. The present study suggests crosstalk between steroid NRs, e.g., vitamin D, estrogen, progesterone, and retinoic acid endocrine systems, through cis-regulatory elements in conserved sequences of introns and exons. This investigation gives evidence for crosstalk between steroid hormones and contributes to novel targets for steroid NR regulation.
Collapse
Affiliation(s)
- Maria Araceli Diaz Cruz
- Research School of Health and Welfare, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Dan Lund
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Ferenc Szekeres
- Department of Biomedicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Sandra Karlsson
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Maria Faresjö
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Dennis Larsson
- Sahlgrenska University Hospital, Gothia Forum for Clinical Research, Gothenburg, Sweden
| |
Collapse
|
6
|
Freedman JA, Al Abo M, Allen TA, Piwarski SA, Wegermann K, Patierno SR. Biological Aspects of Cancer Health Disparities. Annu Rev Med 2021; 72:229-241. [PMID: 33502900 DOI: 10.1146/annurev-med-070119-120305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Racial and ethnic disparities span the continuum of cancer care and are driven by a complex interplay among social, psychosocial, lifestyle, environmental, health system, and biological determinants of health. Research is needed to identify these determinants of cancer health disparities and to develop interventions to achieve cancer health equity. Herein, we focus on the overall burden of ancestry-related molecular alterations, the functional significance of the alterations in hallmarks of cancer, and the implications of the alterations for precision oncology and immuno-oncology. In conclusion, we reflect on the importance of estimating ancestry, improving diverse racial and ethnic participation in cancer clinical trials, and examining the intersection among determinants of cancer health disparities.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| | - Tyler A Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| | - Sean A Piwarski
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Kara Wegermann
- Division of Gastroenterology, Duke University Health System, Durham, North Carolina 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
7
|
Manjarín R, Boutry-Regard C, Suryawan A, Canovas A, Piccolo BD, Maj M, Abo-Ismail M, Nguyen HV, Fiorotto ML, Davis TA. Intermittent leucine pulses during continuous feeding alters novel components involved in skeletal muscle growth of neonatal pigs. Amino Acids 2020; 52:1319-1335. [PMID: 32974749 DOI: 10.1007/s00726-020-02894-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 μmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, β-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA.
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA.
| | - Claire Boutry-Regard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Agus Suryawan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Angela Canovas
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, U.S. Department of Agriculture/Agricultural Research Service, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Magdalena Maj
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mohammed Abo-Ismail
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA
| | - Hanh V Nguyen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Teresa A Davis
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
9
|
Slusher AL, Kim JJJ, Ludlow AT. The Role of Alternative RNA Splicing in the Regulation of hTERT, Telomerase, and Telomeres: Implications for Cancer Therapeutics. Cancers (Basel) 2020; 12:E1514. [PMID: 32531916 PMCID: PMC7352778 DOI: 10.3390/cancers12061514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative RNA splicing impacts the majority (>90%) of eukaryotic multi-exon genes, expanding the coding capacity and regulating the abundance of gene isoforms. Telomerase (hTERT) is a key example of a gene that is alternatively spliced during human fetal development and becomes dysregulated in nearly all cancers. Approximately 90% of human tumors use telomerase to synthesize de novo telomere repeats and obtain telomere-dependent cellular immortality. Paradigm shifting data indicates that hTERT alternative splicing, in addition to transcription, plays an important role in the regulation of active telomerase in cells. Our group and others are pursuing the basic science studies to progress this emerging area of telomerase biology. Recent evidence demonstrates that switching splicing of hTERT from the telomerase activity producing full-length hTERT isoform to alternatively spliced, non-coding isoforms may be a novel telomerase inhibition strategy to prevent cancer growth and survival. Thus, the goals of this review are to detail the general roles of telomerase in cancer development, explore the emerging regulatory mechanisms of alternative RNA splicing of the hTERT gene in various somatic and cancer cell types, define the known and potential roles of hTERT splice isoforms in cancer cell biology, and provide insight into new treatment strategies targeting hTERT in telomerase-positive cancers.
Collapse
Affiliation(s)
| | | | - Andrew T. Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA; (A.L.S.); (J.J.K.)
| |
Collapse
|
10
|
Xu B, Shi Y, Wu Y, Meng Y, Jin Y. Role of RNA secondary structures in regulating Dscam alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194381. [DOI: 10.1016/j.bbagrm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
|
11
|
Sperling R. Small non-coding RNA within the endogenous spliceosome and alternative splicing regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194406. [PMID: 31323432 DOI: 10.1016/j.bbagrm.2019.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Splicing and alternative splicing (AS), which occur in the endogenous spliceosome, play major roles in regulating gene expression, and defects in them are involved in numerous human diseases including cancer. Although the mechanism of the splicing reaction is well understood, the regulation of AS remains to be elucidated. A group of essential regulatory factors in gene expression are small non-coding RNAs (sncRNA): e.g. microRNA, mainly known for their inhibitory role in translation in the cytoplasm; and small nucleolar RNA, known for their role in methylating non-coding RNA in the nucleolus. Here I highlight a new aspect of sncRNAs found within the endogenous spliceosome. Assembled in non-canonical complexes and through different base pairing than their canonical ones, spliceosomal sncRNAs can potentially target different RNAs. Examples of spliceosomal sncRNAs regulating AS, regulating gene expression, and acting in a quality control of AS are reviewed, suggesting novel functions for spliceosomal sncRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Akpulat U, Wang H, Becker K, Contreras A, Partridge TA, Novak JS, Cirak S. Shorter Phosphorodiamidate Morpholino Splice-Switching Oligonucleotides May Increase Exon-Skipping Efficacy in DMD. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:534-542. [PMID: 30396145 PMCID: PMC6222172 DOI: 10.1016/j.omtn.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy is a fatal muscle disease, caused by mutations in DMD, leading to loss of dystrophin expression. Phosphorodiamidate morpholino splice-switching oligonucleotides (PMO-SSOs) have been used to elicit the restoration of a partially functional truncated dystrophin by excluding disruptive exons from the DMD messenger. The 30-mer PMO eteplirsen (EXONDYS51) developed for exon 51 skipping is the first dystrophin-restoring, conditionally FDA-approved drug in history. Clinical trials had shown a dose-dependent variable and patchy dystrophin restoration. The main obstacle for efficient dystrophin restoration is the inadequate uptake of PMOs into skeletal muscle fibers at low doses. The excessive cost of longer PMOs has limited the utilization of higher dosing. We designed shorter 25-mer PMOs directed to the same eteplirsen-targeted region of exon 51 and compared their efficacies in vitro and in vivo in the mdx52 murine model. Our results showed that skipped-dystrophin induction was comparable between the 30-mer PMO sequence of eteplirsen and one of the shorter PMOs, while the other 25-mer PMOs showed lower exon-skipping efficacies. Shorter PMOs would make higher doses economically feasible, and high dosing would result in better drug uptake into muscle, induce higher levels of dystrophin restoration in DMD muscle, and, ultimately, increase the clinical efficacy.
Collapse
Affiliation(s)
- Ugur Akpulat
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany; Department of Medical Biology, Faculty of Medicine, Kastamonu University, Kastamonu 37100, Turkey
| | - Haicui Wang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany
| | - Kerstin Becker
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany
| | - Adriana Contreras
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Sebahattin Cirak
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
13
|
Abstract
Breast cancer is known to be a heterogeneous disease driven by a large repertoire of molecular abnormalities, which contribute to its diverse clinical behaviour. Despite the success of targeted therapy approaches for breast cancer patient management, there is still a lack of the molecular understanding of aggressive forms of the disease and clinical management of these patients remains difficult. The advent of high-throughput sequencing technologies has paved the way for a more complete understanding of the molecular make-up of the breast cancer genome. As such, it is becoming apparent that disruption of canonical splicing within breast cancer governs its clinical progression. In this review, we discuss the role of dysregulation of spliceosomal component genes and associated factors in the progression of breast cancer, their role in therapy resistance and the use of quantitative isoform expression as potential prognostic and predictive biomarkers with a particular focus on oestrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Abigail Read
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| |
Collapse
|
14
|
Lin J, Xu R, Wu X, Shen Y, Li QQ. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:829-839. [PMID: 28621907 DOI: 10.1111/tpj.13611] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 05/28/2023]
Abstract
CPSF100 is a core component of the cleavage and polyadenylation specificity factor (CPSF) complex for 3'-end formation of mRNA, but it still has no clear functional assignment. CPSF100 was reported to play a role in RNA silencing and promote flowering in Arabidopsis. However, the molecular mechanisms underlying these phenomena are not fully understood. Our genetics analyses indicate that plants with a hypomorphic mutant of CPSF100 (esp5) show defects in embryogenesis, reduced seed production or altered root morphology. To unravel this puzzle, we employed a poly(A) tag sequencing protocol and uncovered a different poly(A) profile in esp5. This transcriptome-wide analysis revealed alternative polyadenylation of thousands of genes, most of which result in transcriptional read-through in protein-coding genes. AtCPSF100 also affects poly(A) signal recognition on the far-upstream elements; in particular it prefers less U-rich sequences. Importantly, AtCPSF100 was found to exert its functions through the change of poly(A) sites on genes encoding binding proteins, such as nucleotide-binding, RNA-binding and poly(U)-binding proteins. In addition, through its interaction with RNA Polymerase II C-terminal domain (CTD) and affecting the expression level of CTD phosphatase-like 3 (CPL3), AtCPSF100 is shown to potentially ensure transcriptional termination by dephosphorylation of Ser2 on the CTD. These data suggest a key role for CPSF100 in locating poly(A) sites and affecting transcription termination.
Collapse
Affiliation(s)
- Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Ruqiang Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
15
|
Sperling R. The nuts and bolts of the endogenous spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27465259 DOI: 10.1002/wrna.1377] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/09/2023]
Abstract
The complex life of pre-mRNA from transcription to the production of mRNA that can be exported from the nucleus to the cytoplasm to encode for proteins entails intricate coordination and regulation of a network of processing events. Coordination is required between transcription and splicing and between several processing events including 5' and 3' end processing, splicing, alternative splicing and editing that are major contributors to the diversity of the human proteome, and occur within a huge and dynamic macromolecular machine-the endogenous spliceosome. Detailed mechanistic insight of the splicing reaction was gained from studies of the in vitro spliceosome assembled on a single intron. Because most pre-mRNAs are multiintronic that undergo alternative splicing, the in vivo splicing machine requires additional elements to those of the in vitro machine, to account for all these diverse functions. Information about the endogenous spliceosome is emerging from imaging studies in intact and live cells that support the cotranscriptional commitment to splicing model and provide information about splicing kinetics in vivo. Another source comes from studies of the in vivo assembled spliceosome, isolated from cell nuclei under native conditions-the supraspliceosome-that individually package pre-mRNA transcripts of different sizes and number of introns into complexes of a unique structure, indicating their universal nature. Recent years have portrayed new players affecting alternative splicing and novel connections between splicing, transcription and chromatin. The challenge ahead is to elucidate the structure and function of the endogenous spliceosome and decipher the regulation and coordination of its network of processing activities. WIREs RNA 2017, 8:e1377. doi: 10.1002/wrna.1377 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Chiba M, Ariga H, Maita H. A Splicing Reporter Tuned to Non-AG Acceptor Sites Reveals that Luteolin Enhances the Recognition of Non-canonical Acceptor Sites. Chem Biol Drug Des 2015; 87:275-82. [PMID: 26348996 DOI: 10.1111/cbdd.12656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/31/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
Removal of an intron requires precise recognition of the splice donor and acceptor sites located at the 5' and 3' termini of introns. Although the roles of these sequences differ, mutations in both sites easily block normal splicing and produce an aberrant mRNA. For example, many splice-site mutations occur in patients with inherited diseases. Several approaches have been evaluated to restore expression of a functional protein; however, because of the strict requirement for an AG dinucleotide at the 3' terminus of a U2-type intron, no method is available to correct splicing at a mutated sequence. To identify compounds that allow splicing at the non-AG acceptor site, in the present study we constructed a reporter gene with a modified polypyrimidine tract. However, the modified polypyrimidine tract mediated splicing at adjacent non-canonical acceptor sites, including the original mutated site. Further, we show that certain flavones such as luteolin and apigenin enhanced aberrant splicing at the non-canonical acceptor site of the reporter gene. These results suggest that the reporter gene and luteolin may be useful for further screening to identify molecules that correct aberrant splicing caused by a disease-associated splice acceptor site mutation.
Collapse
Affiliation(s)
- Masanori Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroshi Maita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
17
|
Herzel L, Neugebauer KM. Quantification of co-transcriptional splicing from RNA-Seq data. Methods 2015; 85:36-43. [PMID: 25929182 DOI: 10.1016/j.ymeth.2015.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
During gene expression, protein-coding transcripts are shaped by multiple processing events: 5' end capping, pre-mRNA splicing, RNA editing, and 3' end cleavage and polyadenylation. These events are required to produce mature mRNA, which can be subsequently translated. Nearly all of these RNA processing steps occur during transcription, while the nascent RNA is still attached to the DNA template by RNA polymerase II (i.e. co-transcriptionally). Polyadenylation occurs after 3' end cleavage or post-transcriptionally. Pre-mRNA splicing - the removal of introns and ligation of exons - can be initiated and concluded co-transcriptionally, although this is not strictly required. Recently, a number of studies using global methods have shown that the majority of splicing is co-transcriptional, yet not all published studies agree in their conclusions. Short read sequencing of RNA (RNA-Seq) is the prevailing approach to measuring splicing levels in nascent RNA, mRNA or total RNA. Here, we compare four different strategies for analyzing and quantifying co-transcriptional splicing. To do so, we reanalyze two nascent RNA-Seq datasets of the same species, but different cell type and RNA isolation procedure. Average co-transcriptional splicing values calculated on a per intron basis are similar, independent of the strategy used. We emphasize the technical requirements for identifying co-transcriptional splicing events with high confidence, e.g. how to calculate co-transcriptional splicing from nascent RNA- versus mRNA-Seq data, the number of biological replicates needed, depletion of polyA+RNA, and appropriate normalization. Finally, we present guidelines for planning a nascent RNA-Seq experiment.
Collapse
Affiliation(s)
- Lydia Herzel
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States.
| |
Collapse
|
18
|
Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev 2015; 29:63-80. [PMID: 25561496 PMCID: PMC4281565 DOI: 10.1101/gad.247361.114] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts. Boutz et al. identified thousands of these “detained” introns (DIs) in human and mouse cell lines as well as the adult mouse liver. Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs, altering transcript pools of >300 genes. Srsf4 regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
Collapse
Affiliation(s)
- Paul L Boutz
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arjun Bhutkar
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Phillip A Sharp
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
19
|
Liu G, Guo S, Kang H, Zhang F, Hu Y, Wang L, Li M, Ru Y, Camaschella C, Han B, Nie G. Mutation spectrum in Chinese patients affected by congenital sideroblastic anemia and a search for a genotype-phenotype relationship. Haematologica 2014; 98:e158-60. [PMID: 24323989 DOI: 10.3324/haematol.2013.095513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Identification of a new isoform of the murine Sh2d1a gene and its functional implications. SCIENCE CHINA-LIFE SCIENCES 2013; 57:81-7. [PMID: 24369347 DOI: 10.1007/s11427-013-4584-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/18/2013] [Indexed: 01/09/2023]
Abstract
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a Src homology (SH) domain 2-containing intracellular adaptor protein that is predominantly expressed in the hematopoietic system by T lymphocytes and NK cells. SAP protein is encoded by the SH2D1A gene located on the X chromosome. Loss-of-function mutations in SAP cause the X-linked lymphoproliferative disease (XLP), a severe immunodeficiency characterized by heightened susceptibility to Epstein-Barr virus and impaired humoral immunity. Normal individuals express several functional and non-functional isoforms of SAP as a result of alternative splicing. In this study, we identify a cryptic exon in the murine Sh2d1a gene. At the mRNA level, the new isoform of SAP (SAP-2) that includes this new exon is widely expressed in lymphoid tissues by C57BL/6 and 129 strains of inbred mice. SAP-2 accounts for approximately 1%-3% of total SAP transcripts, and it is dynamically regulated during lymphocyte activation. At the protein level, the SAP-2 isoform is a 144 amino-acid protein. Compared to the dominant 126 aminoacid SAP-1 isoform, the additional 18 amino acids are inserted into a structural region that is critical for phosphotyrosine binding. Our functional analysis in vitro indicates that SAP-2 is a non-functional isoform due to decreased protein stability. Thus, both human and mouse have multiple SAP splice isoforms that may or may not function. Modulation of relative proportions of these isoforms is potentially a mechanism whereby cells can regulate SAP-mediated biological activities.
Collapse
|
21
|
Pandya-Jones A, Bhatt DM, Lin CH, Tong AJ, Smale ST, Black DL. Splicing kinetics and transcript release from the chromatin compartment limit the rate of Lipid A-induced gene expression. RNA (NEW YORK, N.Y.) 2013; 19:811-27. [PMID: 23616639 PMCID: PMC3683915 DOI: 10.1261/rna.039081.113] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 05/26/2023]
Abstract
The expression of eukaryotic mRNAs is achieved though an intricate series of molecular processes that provide many steps for regulating the production of a final gene product. However, the relationships between individual steps in mRNA biosynthesis and the rates at which they occur are poorly understood. By applying RNA-seq to chromatin-associated and soluble nucleoplasmic fractions of RNA from Lipid A-stimulated macrophages, we examined the timing of exon ligation and transcript release from chromatin relative to the induction of transcription. We find that for a subset of genes in the Lipid A response, the ligation of certain exon pairs is delayed relative to the synthesis of the complete transcript. In contrast, 3' end cleavage and polyadenylation occur rapidly once transcription extends through the cleavage site. Our data indicate that these transcripts with delayed splicing are not released from the chromatin fraction until all the introns have been excised. These unusual kinetics result in a chromatin-associated pool of completely transcribed and 3'-processed transcripts that are not yet fully spliced. We also find that long introns containing repressed exons that will be excluded from the final mRNA are excised particularly slowly relative to other introns in a transcript. These results indicate that the kinetics of splicing and transcript release contribute to the timing of expression for multiple genes of the inflammatory response.
Collapse
Affiliation(s)
- Amy Pandya-Jones
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Dev M. Bhatt
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
| | - Ann-Jay Tong
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Stephen T. Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90025, USA
| |
Collapse
|
22
|
Brugiolo M, Herzel L, Neugebauer KM. Counting on co-transcriptional splicing. F1000PRIME REPORTS 2013; 5:9. [PMID: 23638305 PMCID: PMC3619158 DOI: 10.12703/p5-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Splicing is the removal of intron sequences from pre-mRNA by the spliceosome. Researchers working in multiple model organisms – notably yeast, insects and mammalian cells – have shown that pre-mRNA can be spliced during the process of transcription (i.e. co-transcriptionally), as well as after transcription termination (i.e. post-transcriptionally). Co-transcriptional splicing does not assume that transcription and splicing machineries are mechanistically coupled, yet it raises this possibility. Early studies were based on a limited number of genes, which were often chosen because of their experimental accessibility. Since 2010, eight studies have used global datasets as counting tools, in order to quantify co-transcriptional intron removal. The consensus view, based on four organisms, is that the majority of splicing events take place co-transcriptionally in most cells and tissues. Here, we discuss the nature of the various global datasets and how bioinformatic analyses were conducted. Considering the broad differences in experimental approach and analysis, the level of agreement on the prevalence of co-transcriptional splicing is remarkable.
Collapse
|
23
|
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47:360-78. [PMID: 22655688 DOI: 10.3109/10409238.2012.691456] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alternative splicing patterns are regulated by RNA binding proteins that assemble onto each pre-mRNA to form a complex RNP structure. The polypyrimidine tract binding protein, PTB, has served as an informative model for understanding how RNA binding proteins affect spliceosome assembly and how changes in the expression of these proteins can control complex programs of splicing in tissues. In this review, we describe the mechanisms of splicing regulation by PTB and its function, along with its paralog PTBP2, in neuronal development.
Collapse
Affiliation(s)
- Niroshika Keppetipola
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|