1
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
2
|
Faria J, Calcat-I-Cervera S, Skovronova R, Broeksma BC, Berends AJ, Zaal EA, Bussolati B, O'Brien T, Mihăilă SM, Masereeuw R. Mesenchymal stromal cells secretome restores bioenergetic and redox homeostasis in human proximal tubule cells after ischemic injury. Stem Cell Res Ther 2023; 14:353. [PMID: 38072933 PMCID: PMC10712181 DOI: 10.1186/s13287-023-03563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ischemia/reperfusion injury is the leading cause of acute kidney injury (AKI). The current standard of care focuses on supporting kidney function, stating the need for more efficient and targeted therapies to enhance repair. Mesenchymal stromal cells (MSCs) and their secretome, either as conditioned medium (CM) or extracellular vesicles (EVs), have emerged as promising options for regenerative therapy; however, their full potential in treating AKI remains unknown. METHODS In this study, we employed an in vitro model of chemically induced ischemia using antimycin A combined with 2-deoxy-D-glucose to induce ischemic injury in proximal tubule epithelial cells. Afterwards we evaluated the effects of MSC secretome, CM or EVs obtained from adipose tissue, bone marrow, and umbilical cord, on ameliorating the detrimental effects of ischemia. To assess the damage and treatment outcomes, we analyzed cell morphology, mitochondrial health parameters (mitochondrial activity, ATP production, mass and membrane potential), and overall cell metabolism by metabolomics. RESULTS Our findings show that ischemic injury caused cytoskeletal changes confirmed by disruption of the F-actin network, energetic imbalance as revealed by a 50% decrease in the oxygen consumption rate, increased oxidative stress, mitochondrial dysfunction, and reduced cell metabolism. Upon treatment with MSC secretome, the morphological derangements were partly restored and ATP production increased by 40-50%, with umbilical cord-derived EVs being most effective. Furthermore, MSC treatment led to phenotype restoration as indicated by an increase in cell bioenergetics, including increased levels of glycolysis intermediates, as well as an accumulation of antioxidant metabolites. CONCLUSION Our in vitro model effectively replicated the in vivo-like morphological and molecular changes observed during ischemic injury. Additionally, treatment with MSC secretome ameliorated proximal tubule damage, highlighting its potential as a viable therapeutic option for targeting AKI.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sandra Calcat-I-Cervera
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Renata Skovronova
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Alinda J Berends
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Silvia M Mihăilă
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Sancho-Martínez SM, López-Hernández FJ. Pathophysiology of Acute Kidney Frailty. Physiology (Bethesda) 2023; 38:0. [PMID: 37738019 DOI: 10.1152/physiol.00011.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/23/2023] Open
Abstract
Acute kidney frailty is a premorbid condition of diminished renal functional reserve that predisposes to acute kidney injury; this condition results from subclinical wear or distortion of renal homeostatic responses that protect the renal excretory function. Knowledge of its pathophysiological basis is critical for the development of diagnostic and therapeutic strategies that allow for prophylactic intervention and disease prevention.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
- National Network for Kidney Research RICORS2040 RD21/0005/0004, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
- National Network for Kidney Research RICORS2040 RD21/0005/0004, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
- Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| |
Collapse
|
4
|
Ono Y, Sakamoto M, Makino K, Tayama K, Tada Y, Nakagawa Y, Nakajima J, Suzuki J, Suzuki T, Takahashi H, Inomata A, Moriyasu T. Hepatic and renal toxicities and metabolism of fentanyl analogues in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:149-159. [PMID: 36269341 DOI: 10.1007/s00210-022-02301-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
New synthetic opioids continue to emerge in the illicit market, and among them, fentanyl analogues pose a serious threat to the public health with their abuse and trafficking. We investigated the toxicity of fentanyl analogues on the liver and kidneys mediated by the µ-opioid receptor (MOR). Our study focused on 4-fluoro-isobutyrylfentanyl (4F-iBF), which is classified as a "narcotic" in Japan; structurally similar analogues 4-chloro-isobutyrylfentanyl (4Cl-iBF) and isobutyrylfentanyl (iBF) were also investigated. Rats that were intraperitoneally administered 4F-iBF (5 mg/kg (12.3 μmol/kg)) or iBF (12.3 μmol/kg) displayed hepatic and renal ischemic-like damage, but 4Cl-iBF (12.3 μmol/kg) did milder renal damage only. We found that the agonist activity of 4F-iBF, at MORs was approximately 7.2 times that of 4Cl-iBF, and that pretreatment with MOR antagonist naltrexone (0.8 mg/kg) alleviated liver and kidney injuries caused by 4F-iBF. These results suggested that 4F-iBF might cause ischemic damage to the liver and kidneys, induced by respiratory depression mediated by MORs. Furthermore, to elucidate the metabolism of fentanyl analogues, we investigated the change over time in the amount of 4F-iBF, 4Cl-iBF, iBF (6.15 μmol/kg, respectively), and their respective metabolites in serum after intraperitoneal administration to rats. The results showed that in 24-h post-dose serum, 4Cl-iBF and iBF were substantially eliminated while 4F-iBF remained at about 30% of the maximum level, and each of the N-dephenylethylated metabolites of 4F-iBF, 4Cl-iBF, and iBF was detected in 2-h post-dose serum. The results from this study revealed information on the hepatic and renal toxicities and metabolism related to fentanyl analogues.
Collapse
Affiliation(s)
- Yasushi Ono
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | - Miho Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Kuniaki Tayama
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yukie Tada
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yoshio Nakagawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Jun'ichi Nakajima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Toshinari Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Takako Moriyasu
- Food Research Laboratory, Tokyo Food Sanitation Association, 1-19-10 Tokumaru, Itabashi-ku, Tokyo, 175-0083, Japan
| |
Collapse
|
5
|
Yang W, Peng T, Shi C, Cui F, Chen M, Zhang T. The Mechanism of Delayed Ischemic Preconditioning in Alleviating Acute Ischemia/Reperfusion Renal Injury through Treg Mediated by Immature CD11c + Dendritic Cells. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:487-499. [PMID: 36590681 PMCID: PMC9798836 DOI: 10.1159/000527172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
Introduction Renal ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury, and its mechanism is complex involving multiple factors, while delayed ischemic preconditioning (DIPC) has a protective effect on the above process. In our previous study, we found that DIPC can exert its protection on renal IRI by inhibiting the maturation of dendritic cells (DCs), but the mechanism has not been clarified. This study aimed to investigate the protective mechanism of DIPC on renal IRI in mice through Treg mediated by immature DCs (imDCs). Methods The IRI mice model, DIPC treatment, and conditional CD11c+ DCs (CD11c-DTR) knockout mice were used to perform our study. The maturation and differentiation of DCs and Treg cells in the kidney and spleen were analyzed by flow cytometry. HE staining was used to evaluate the pathology of the kidney tissue. The level of creatinine (Cr), oxidative stress factors (SOD, MDA), and inflammatory factors (TNF-α, IL-10, IL-4) were also measured. Then, imDCs were co-cultured with HK-2 cells, and apoptosis was analyzed with flow cytometry and PI-Hoechst 33,342 fluorescence staining to assess the apoptosis rate of HK-2 cells under hypoxic-reoxygenated (H/R) conditions. Results DIPC could decrease renal Cr levels, alleviate pathological renal damage, and reduce oxidative stress and inflammation caused by IRI. Moreover, DIPC could decrease the number of mature DCs (mDCs) and increase Treg lymphocyte infiltration in the kidney tissue, while the reduction of DCs reversed this process. In addition, our in vitro experiment found that in the H/R model, the apoptosis of HK-2 cells decreased which were co-cultured with imDCs. Conclusion DIPC can regulate the differentiation of DCs into imDCs, thus affecting the differentiation level and distribution of Treg cells to exert its protective effect on renal IRI.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China,Wuxi People's Hospital, Wuxi, China,Ningxia Medical University, Yinchuan, China
| | - Tao Peng
- Ningxia Medical University, Yinchuan, China
| | - Chunli Shi
- Ningxia Medical University, Yinchuan, China,Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Fang Cui
- Ningxia Medical University, Yinchuan, China
| | - Menghua Chen
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Medical University, Yinchuan, China,*Menghua Chen,
| | - Ting Zhang
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Medical University, Yinchuan, China,*Menghua Chen,
| |
Collapse
|
6
|
Paul Owens E, Grania Healy H, Andrew Vesey D, Elizabeth Hoy W, Carolyn Gobe G. Targeted biomarkers of progression in chronic kidney disease. Clin Chim Acta 2022; 536:18-28. [PMID: 36041551 DOI: 10.1016/j.cca.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an increasingly significant health issue worldwide. Early stages of CKD can be asymptomatic and disease trajectory difficult to predict. Not everyone with CKD progresses to kidney failure, where kidney replacement therapy is the only life-sustaining therapy. Predicting which patients will progress to kidney failure would allow better use of targeted treatments and more effective allocation of health resources. Current diagnostic tests to identify patients with progressive disease perform poorly but there is a suite of new and emerging predictive biomarkers with great clinical promise. METHODS This narrative review describes new and emerging biomarkers of pathophysiologic processes of CKD development and progression, accessible in blood or urine liquid biopsies. Biomarkers were selected based on their reported pathobiological functions in kidney injury, inflammation, oxidative stress, repair and fibrosis. Biomarker function and evidence of involvement in CKD development and progression are reported. CONCLUSION Many biomarkers reviewed here have received little attention to date, perhaps because of conflicting conclusions of their utility in CKD. The functional roles of the selected biomarkers in the underlying pathobiology of progression of CKD are a powerful rationale for advancing and validating these molecules as prognosticators and predictors of CKD trajectory.
Collapse
Affiliation(s)
- Evan Paul Owens
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - Helen Grania Healy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - David Andrew Vesey
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Wendy Elizabeth Hoy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Centre for Chronic Disease, The University of Queensland, Brisbane 4072, Australia
| | - Glenda Carolyn Gobe
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia.
| |
Collapse
|
7
|
Choi AY, Anand J, Bishawi M, Halpern SE, Contreras FJ, Mendiola MA, Daneshmand MA, Schroder JN, Vatsaas C, Agarwal SM, Milano CA. Incidence and Diagnostic Challenges of Bowel Ischemia after Continuous-flow Left Ventricular Assist Device Therapy. ASAIO J 2022; 68:676-682. [PMID: 34437327 PMCID: PMC8866539 DOI: 10.1097/mat.0000000000001553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Long-term continuous-flow left ventricular assist device (CFLVAD) therapy is limited by complications. Compared with stroke and renal dysfunction, post-CFLVAD bowel ischemia is poorly characterized. Adult patients who underwent first-time durable CFLVAD implantation at our institution between 2008 and 2018 were identified and screened for bowel ischemia using Current Procedural Terminology codes for abdominal surgical exploration and International Classification of Disease codes for intestinal vascular insufficiency. Patients who developed biopsy-proven bowel ischemia (cases) were matched to controls (1:1, nearest neighbor, caliper = 0.29) based on preoperative characteristics. Incidences of postoperative right heart failure and renal replacement therapy were compared using McNemar's test. One year survival was estimated using the Kaplan-Meier method. Overall, 711 patients underwent CFLVAD implantation. Nineteen (2.7%) developed bowel ischemia (cases) median 17 days postimplantation (IQR 8-71). The majority of cases were male (78.9%), Black (63.2%), received HeartMate II (57.9%), treated as destination therapy (78.9%), and had a history of hypertension (89.5%), chronic kidney disease (84.2%), hyperlipidemia (84.2%), smoking (78.9%), and atrial fibrillation (57.9%). Post-LVAD, case patients were more likely to develop moderate-severe right heart failure (89.5% vs. 68.4%, p = 0.005), require renal replacement therapy (21.1% vs. 0%, p < 0.001), and less likely to survive to discharge (52.6% vs. 89.5%, p = 0.02) compared with controls. Case subjects demonstrated worse 1 year survival. While less common than stroke and renal dysfunction, post-CFLVAD bowel ischemia is associated with high 1 year mortality. Multi-institutional registries should consider reporting abdominal complications such as bowel ischemia as an adverse event to further investigate these trends and identify predictors of this complication to reduce patient mortality.
Collapse
Affiliation(s)
| | - Jatin Anand
- Division of Cardiothoracic Surgery, Duke University Medical Center, Durham, NC
| | - Muath Bishawi
- Division of Cardiothoracic Surgery, Duke University Medical Center, Durham, NC
| | | | | | | | - Mani A. Daneshmand
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, Atlanta, GA
| | - Jacob N. Schroder
- Division of Cardiothoracic Surgery, Duke University Medical Center, Durham, NC
| | - Cory Vatsaas
- Division of Trauma and Critical Care Surgery, Department of Surgery, Duke University, Durham, NC
| | - Suresh M. Agarwal
- Division of Trauma and Critical Care Surgery, Department of Surgery, Duke University, Durham, NC
| | - Carmelo A. Milano
- Division of Cardiothoracic Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
8
|
Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022; 10:biomedicines10040905. [PMID: 35453655 PMCID: PMC9028564 DOI: 10.3390/biomedicines10040905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023] Open
Abstract
Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases. In this review, we summarize the most recent knowledge on the modulatory effects of aloperine on various critical biological processes and signaling mechanisms, including the PI3K, Akt, NF-κB, Ras, and Nrf2 pathways. These data demonstrate that aloperine is a promising therapeutic candidate. Being a potent modulator of signaling mechanisms, aloperine can be employed in clinical settings to treat various human disorders in the future.
Collapse
|
9
|
Shibata K, Hashimoto T, Hasumi K, Nobe K. Potent efficacy of Stachybotrys microspora triprenyl phenol-7, a small molecule having anti-inflammatory and antioxidant activities, in a mouse model of acute kidney injury. Eur J Pharmacol 2021; 910:174496. [PMID: 34506776 DOI: 10.1016/j.ejphar.2021.174496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/11/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) increases the risk of chronic kidney disease (CKD), complicates existing CKD, and can lead to the end-stage renal disease. However, there are no approved effective therapeutics for AKI. Recent studies have suggested that inflammation and oxidative stress are the primary causes of AKI. We previously reported the potential anti-inflammatory and antioxidant activities of Stachybotrys microspora triprenyl phenol-7 (SMTP-7). The aim of the present study was to evaluate the efficacy of SMTP-7 in AKI model mice. AKI was induced in mice by ischemia of the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the removal of right kidney. The efficacy of SMTP-7 was determined by measuring the renal function using urine and serum samples and morphological assessment. For deciphering the mechanism of action of SMTP-7, inflammatory cytokines and oxidative stress in kidney were detected. SMTP-7 (0.01, 0.1, 1, 10 mg/kg) dose-dependently improved the renal function. In addition, it improved the damage to renal tubules and exhibited anti-inflammatory and antioxidant activities in the kidney of AKI mice. These results indicate the potential of SMTP-7 as a medicinal compound for the treatment of AKI.
Collapse
Affiliation(s)
- Keita Shibata
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Terumasa Hashimoto
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
10
|
Jin Y, Zhang M, Li M, Zhang H, Zhang F, Zhang H, Yin Z, Zhou M, Wan X, Li R, Cao C. Generation of Urine-Derived Induced Pluripotent Stem Cell Line from Patients with Acute Kidney Injury. Cell Reprogram 2021; 23:290-303. [PMID: 34648385 DOI: 10.1089/cell.2021.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acute kidney injury (AKI) is mainly characterized by rapid decline of renal function. Currently, the strategy of stem cells might be a therapy to treat AKI. The objective of this study was to obtain human urine-derived cells (HUCs) from patients with AKI, followed by establishing induced pluripotent stem (iPS) cell line. We isolated urine cells from patients with AKI and found that the cells could survive long term with epithelioid morphology and maintain a normal karyotype. The cell line had expression of renal-specific markers and renal development-related genes. After induction, the urine cells cotransfecting with TET-ON vectors were converted into iPS cells. The HUC-derived iPS (HUC-iPS) was positive for alkaline phosphatase staining, and had expression of pluripotency markers, consistent with human embryonic fibroblast-derived iPS cell. Notably, HUC-iPS could be induced to undergo directional kidney precursor cells (KPCs) differentiation under defined conditions, and transplantation of KPCs resulted in reducing kidney damage from ischemia-reperfusion injury in mice. Therefore, we successfully established HUC-iPS cell from patients with AKI and provided a novel stem cell resource for cell therapy in AKI.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Jin Y, Zhang M, Li M, Zhang H, Zhao L, Qian C, Li S, Zhang H, Gao M, Pan B, Li R, Wan X, Cao C. SIX1 Activation Is Involved in Cell Proliferation, Migration, and Anti-inflammation of Acute Ischemia/Reperfusion Injury in Mice. Front Mol Biosci 2021; 8:725319. [PMID: 34513929 PMCID: PMC8427868 DOI: 10.3389/fmolb.2021.725319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nephrogenic proteins are re-expressed after ischemia/reperfusion (I/R) injury; however, the role of these proteins is still unknown. We found that sine oculis homeobox 1 (SIX1), a developmentally regulated homeoprotein, is reactivated in tubular epithelial cells after I/R injury associated with cell proliferation/migration and anti-inflammation. We demonstrated that SIX1 promoted cell proliferation by upregulating cyclin and glycolytic genes, and might increase cell migration by upregulating the expression of matrix metalloproteinase 9 (MMP9) directly or indirectly in the cell model. Notably, SIX1 targeted the promoters of the amino-terminal enhancer of split (AES) and fused in sarcoma (FUS), which are cofactors of nuclear factor-κB (NF-κB) subunit RELA, and then inhibited the transactivation function of RELA. The expression of monocyte chemotactic protein-1 (MCP-1) was decreased by the SIX1-mediated NF-κB pathway. Our results showed that the expression of cyclin, glycolytic genes, and MMP9 were significantly increased, and the infiltration of monocytes/macrophages (Mophs) was suppressed in SIX1 overexpression kidney at 1, 2, and 3 days after reperfusion. The overexpression of SIX1 resulted in reducing kidney damage from I/R injury in mice by promoting cell proliferation and migration and by inhibiting inflammation. Our study provides evidence that SIX1 involved in cell proliferation, migration, and anti-inflammation in the I/R model, which might be a potential therapeutic target that could be used to ameliorate kidney damage.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Shensen Li
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Gao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Ni W, Zhang Y, Yin Z. The protective mechanism of Klotho gene-modified bone marrow mesenchymal stem cells on acute kidney injury induced by rhabdomyolysis. Regen Ther 2021; 18:255-267. [PMID: 34466631 PMCID: PMC8367782 DOI: 10.1016/j.reth.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Studies have shown that the Klotho gene has tremendous potential for future therapeutic purposes in both acute and chronic kidney diseases (CKD). This study aimed to investigate the possible protective mechanisms of the Klotho gene against acute kidney injury (AKI) induced by rhabdomyolysis (RM). Methods In this study, bone marrow mesenchymal stem cells (BMSCs) were transfected with recombinant adenoviruses expressing the Klotho gene (BMSCs-Klotho) and by those expressing empty vector (BMSCs-EV). After successful transfection, we tested the proliferation, secretion and migration abilities of the BMSCs-Klotho compared with those of the BMSCs-EV and BMSCs. Then, 30 male C57BL/6 mice were examined, with 6 mice randomly assigned to the control group (PBS injected into the tail vein, CON) or one of the four treatment groups treated with either BMSCs-Klotho (AKI+BMSCs-Klotho), BMSCs-EV (AKI+BMSCs-EV), BMSCs (AKI+BMSCs) or PBS (AKI+PBS) after induction of RM. Seventy-two h after treatment, serum creatinine (SCr) and blood urea nitrogen (BUN) levels were obtained to assess renal function, and renal tissue was obtained to measure kidney tissue damage. Additionally, kidney protective mechanism-related indexes, such as EPO, IGF-1, KIM-1 and HIF-1, were analysed using Western blot analysis and immunohistochemistry. Results The results obtained showed that the proliferation, secretory and migration abilities of the BMSCs were significantly increased after transfection with the Klotho gene. Treatment with BMSCs-Klotho, BMSCs-EV or BMSCs improved renal function compared to treatment with PBS. However, the improvement observed in renal function in the BMSCs-Klotho group was better than that of the other groups. Histological analysis demonstrated that tissue damage was significantly decreased in the mice in the AKI+BMSCs-Klotho, AKI+BMSCs-EV or AKI+BMSCs groups compared to that in the mice in the AKI+PBS group. However, the best recovery was observed in the mice treated with BMSCs-Klotho concomitantly. Furthermore, the expression of protective factors erythropoietin (EPO) and insulin-like growth factor 1 (IGF-1) increased obviously, and the injury biomarkers kidney injury molecule 1 (KIM-1) and hypoxia inducible factor 1 (HIF-1) decreased notably in the group of BMSCs-Klotho, BMSCs-EV and BMSCs. Additionally, the levels of the aforementioned protein indicators in the AKI+BMSCs-Klotho group were not different from those in the CON group. Conclusion Klotho overexpression exerted positive effects on BMSCs and markedly promoted recovery from RM-induced AKI. These findings suggest that the overexpression of the Klotho gene might be a good candidate for further therapy for AKI in clinical trials.
Collapse
Affiliation(s)
- WenHui Ni
- Department of Renal Medicine, First People's Hospital of Zhangjiagang City, China
| | - Ying Zhang
- Department of Renal Medicine, Xuzhou Medical University Affiliated Hospital, China
| | - Zhongcheng Yin
- Department of Renal Medicine, Xuzhou Medical University Affiliated Hospital, China
| |
Collapse
|
13
|
Pool MBF, Hamelink TL, van Goor H, van den Heuvel MC, Leuvenink HGD, Moers C. Prolonged ex-vivo normothermic kidney perfusion: The impact of perfusate composition. PLoS One 2021; 16:e0251595. [PMID: 34003874 PMCID: PMC8130974 DOI: 10.1371/journal.pone.0251595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity for improved graft preservation and objective pre-transplant ex-vivo organ assessment. Currently, a multitude of perfusion solutions exist for renal NMP. This study aimed to evaluate four different perfusion solutions side-by-side and determine the influence of different perfusate compositions on measured renal perfusion parameters. Porcine kidneys and blood were obtained from a slaughterhouse. Kidneys underwent NMP at 37°C for 7 hours, with 4 different perfusion solutions (n = 5 per group). Group 1 consisted of red blood cells (RBCs) and a perfusion solution based on Williams’ Medium E. Group 2 consisted of RBCs, albumin and a balanced electrolyte composition. Group 3 contained RBCs and a medium based on a British clinical NMP solution. Group 4 contained RBCs and a medium used in 24-hour perfusion experiments. NMP flow patterns for solutions 1 and 2 were similar, solutions 3 and 4 showed lower but more stable flow rates. Thiobarbituric acid reactive substances were significantly higher in solution 1 and 4 compared to the other groups. Levels of injury marker N-acetyl-β-D glucosaminidase were significantly lower in solution 2 in comparison with solution 3 and 4. This study illustrates that the perfusate composition during NMP significantly impacts the measured perfusion and injury parameters and thus affects the interpretation of potential viability markers. Further research is required to investigate the individual influences of principal perfusate components to determine the most optimal conditions during NMP and eventually develop universal organ assessment criteria.
Collapse
Affiliation(s)
- Merel B. F. Pool
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Tim L. Hamelink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Ali R, Patel S, Hussain T. Angiotensin type 2 receptor activation limits kidney injury during the early phase and induces Treg cells during the late phase of renal ischemia. Am J Physiol Renal Physiol 2021; 320:F814-F825. [PMID: 33719572 PMCID: PMC8424555 DOI: 10.1152/ajprenal.00507.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 01/30/2023] Open
Abstract
Kidney infiltrating immune cells such as monocytes, neutrophils, and T cells play critical roles in renal ischemia-reperfusion (IR) injury and repair. Recently, the angiotensin II type 2 receptor (AT2R) has been implicated in protecting kidneys against injury and monocyte infiltration, particularly in chronic kidney disease. However, the role of AT2R in IR injury and repair phases and T cell modulation is unknown. To address this question, Sprague-Dawley rats were subjected to IR with or without AT2R agonist C21 treatment. IR caused early (2 h postreperfusion) renal functional injury (proteinuria, plasma urea, and creatinine) and enhanced immune cells (T cells and CD4 T cells) infiltration and levels of the proinflammatory cytokines monocyte chemoattractant protein-1, TNF-α, and IL-6. C21 treatment reversed these changes but increased the anti-inflammatory IL-10 level. On day 3, C21 treatment increased CD4+FoxP3+ (regulatory T cells) and CD4+IL-10+ cells and reduced kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in the kidney compared with the IR control, suggesting the involvement of AT2R in kidney repair. These data indicate that AT2R activation protects the kidney against IR injury and immune cell infiltration in the early phase and modulates CD4 T cells toward the regulatory T cell phenotype, which may have long-term beneficial effects on kidney function.NEW & NOTEWORTHY The angiotensin II type 2 receptor agonist C21 has been known to have a renoprotective role in various kidney pathologies. C21 treatment (before renal ischemia) attenuated postischemic kidney injury, kidney dysfunction, and immune cell infiltration during the injury phase. Also, C21 treatment modulated the kidney microenvironment by enhancing anti-inflammatory responses mainly mediated by IL-10. During the repair phase, C21 treatment enhanced IL-10-secreting CD4 T cells and FoxP3-secreting regulatory T cells in Sprague-Dawley rats.
Collapse
MESH Headings
- Acute Kidney Injury/immunology
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/pathology
- Acute Kidney Injury/prevention & control
- Animals
- Anti-Inflammatory Agents/pharmacology
- Chemotaxis, Leukocyte/drug effects
- Cytokines/metabolism
- Disease Models, Animal
- Kidney/drug effects
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Phenotype
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Signal Transduction
- Sulfonamides/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thiophenes/pharmacology
- Time Factors
- Rats
Collapse
Affiliation(s)
- Riyasat Ali
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
15
|
Weng X, Zhao H, Guan Q, Shi G, Feng S, Gleave ME, Nguan CC, Du C. Clusterin regulates macrophage expansion, polarization and phagocytic activity in response to inflammation in the kidneys. Immunol Cell Biol 2020; 99:274-287. [PMID: 32935392 PMCID: PMC7984284 DOI: 10.1111/imcb.12405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
Clusterin (CLU) is a multifunctional protein localized extracellularly and intracellularly. Although CLU-knockout (KO) mice are more susceptible to renal ischemia-reperfusion injury (IRI), the mechanisms underlying the actions of CLU in IRI are not fully understood. Macrophages are key regulators of IRI severity and tissue repair. Therefore, we investigated the role of CLU in macrophage polarization and phagocytosis. Renal IRI was induced in wild-type (WT) or CLU-KO C57BL/6 mice by clamping the renal pedicles for 30 min at 32°C. Peritoneal macrophages were activated via an intraperitoneal injection of lipopolysaccharide (LPS). Renal tissue damage was examined using histology, whereas leukocyte phenotypes were assessed using flow cytometry and immunohistochemistry. We found that monocytes/macrophages expressed the CLU protein that was upregulated by hypoxia. The percentages of macrophages (F4/80+ , CD11b+ or MAC3+ ) infiltrating the kidneys of WT mice were significantly less than those in CLU-KO mice after IRI. The M1/M2 phenotype ratio of the macrophages in WT kidneys decreased at day 7 post-IRI when the injury was repaired, whereas that in KO kidneys increased consistently as tissue injury persisted. In response to LPS stimulation, WT mice produced fewer M1 macrophages, but not M2, than the control did. Phagocytosis was stimulated by CLU expression in macrophages compared with the CLU null controls and by the exogenous CLU protein. In conclusion, CLU suppresses macrophage infiltration and proinflammatory M1 polarization during the recovery period following IRI, and enhances phagocytic activity, which may be partly responsible for tissue repair in the kidneys of WT mice after injury.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Haimei Zhao
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Qiunong Guan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Ganggang Shi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shijian Feng
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Cy Nguan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
16
|
Vlasakova K, Troth SP, Sistare FD, Glaab WE. Evaluation of 10 Urinary Biomarkers for Renal Safety With 5 Nephrotoxicants in Nonhuman Primates. Toxicol Pathol 2020; 48:633-648. [PMID: 32633702 DOI: 10.1177/0192623320932159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To date, there has been very little published data evaluating the performance of novel urinary kidney biomarkers in nonhuman primates (NHPs). To assess the biomarker performance and characterize the corresponding histomorphologic patterns of tubular renal injury in the NHP, several studies were conducted using mechanistically diverse nephrotoxicants including cefpirome, cisplatin, naproxen, cyclosporine, and a combination of gentamicin with everninomicin. An evaluation of 10 urinary biomarkers (albumin, clusterin, cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, liver-type fatty acid-binding protein, N-acetyl-β-D-glucosaminidase, osteopontin, retinol binding protein 4 and total protein) was performed on urine collected from these studies. Each of these 5 treatments resulted in kidney proximal tubule injury of various severities. Histomorphologic features observed following treatment were generally consistent with analogous drug-induced changes in humans described in the literature. Most of the analyzed biomarkers were able to detect the injury earlier and with greater sensitivity than blood urea nitrogen and serum creatinine. Across all studies, KIM-1 and clusterin showed the highest overall performance. Differences in the patterns of biomarker responsiveness were noted among certain studies that may be informing tubular injury severity and recovery potential, underlying histopathologic processes, and prognosis. These findings demonstrate the utility of urinary kidney translational safety biomarkers in NHPs and provide additional supporting evidence for translating these biomarkers for use in clinical trial settings to further ensure patient safety.
Collapse
Affiliation(s)
- Katerina Vlasakova
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co, Inc, West Point, PA, USA
| | - Sean P. Troth
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co, Inc, West Point, PA, USA
| | - Frank D. Sistare
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co, Inc, West Point, PA, USA
| | - Warren E. Glaab
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co, Inc, West Point, PA, USA
| |
Collapse
|
17
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
18
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
19
|
Park JS, Park JH, Seo KW, Song KH. Correlation between NT-proBNP and lipase levels according to the severity of chronic mitral valve disease in dogs. J Vet Sci 2019; 20:e43. [PMID: 31364327 PMCID: PMC6669210 DOI: 10.4142/jvs.2019.20.e43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 11/20/2022] Open
Abstract
Chronic mitral valve disease (CMVD) is the most common cardiovascular disease in dogs, causing decreased cardiac output that results in poor tissue perfusion and tissue damage to kidneys, pancreas, and other organs. The purpose of this study was to evaluate the relationships between heart disease severity and N-terminal pro B-type natriuretic peptide (NT-proBNP) and lipase in dogs with CMVD, as well as to evaluate longitudinal changes in these values. A total of 84 dogs participated in this 2015 to 2017 study. Serum values of NT-proBNP and lipase were analyzed; radiography was used to measure the vertebral heart score and assess various echocardiographic values. NT-proBNP showed a strong positive correlation with increasing stage of heart disease; lipase showed a mild positive correlation with heart disease stage. When the three values (NT-proBNP, lipase and month) were continuously measured at 6-month intervals, all showed a correlation with the increasing length of the disease.
Collapse
Affiliation(s)
- Jun Seok Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jae Hong Park
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Kyoung Won Seo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Kun Ho Song
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
20
|
Nonaka K, Bando M, Sakamoto E, Inagaki Y, Naruishi K, Yumoto H, Kido JI. 6-Shogaol Inhibits Advanced Glycation End-Products-Induced IL-6 and ICAM-1 Expression by Regulating Oxidative Responses in Human Gingival Fibroblasts. Molecules 2019; 24:molecules24203705. [PMID: 31619000 PMCID: PMC6832546 DOI: 10.3390/molecules24203705] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end-products (AGEs) cause diabetes mellitus (DM) complications and accumulate more highly in periodontal tissues of patients with periodontitis and DM. AGEs aggravate periodontitis with DM by increasing the expression of inflammation-related factors in periodontal tissues. 6-Shogaol, a major compound in ginger, has anti-inflammatory and anti-oxidative activities. However, the influence of shogaol on DM-associated periodontitis is not well known. In this study, the effects of 6-shogaol on AGEs-induced oxidative and anti-oxidative responses, and IL-6 and ICAM-1 expression in human gingival fibroblasts (HGFs) were investigated. When HGFs were cultured with 6-shogaol and AGEs, the activities of reactive oxygen species (ROS) and antioxidant enzymes (heme oxygenase-1 [HO-1] and NAD(P)H quinone dehydrogenase 1 [NQO1]), and IL-6 and ICAM-1 expressions were investigated. RAGE expression and phosphorylation of MAPKs and NF-κB were examined by western blotting. 6-Shogaol significantly inhibited AGEs-induced ROS activity, and increased HO-1 and NQO1 levels compared with the AGEs-treated cells. The AGEs-stimulated expression levels of receptor of AGE (RAGE), IL-6 and ICAM-1 and the phosphorylation of p38, ERK and p65 were attenuated by 6-shogaol. These results suggested that 6-shogaol inhibits AGEs-induced inflammatory responses by regulating oxidative and anti-oxidative activities and may have protective effects on periodontitis with DM.
Collapse
Affiliation(s)
- Kohei Nonaka
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan.
| | - Mika Bando
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan.
| | - Eijiro Sakamoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan.
| | - Yuji Inagaki
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan.
| | - Koji Naruishi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan.
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Jun-Ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan.
| |
Collapse
|
21
|
Barnett LMA, Cummings BS. Nephrotoxicity and Renal Pathophysiology: A Contemporary Perspective. Toxicol Sci 2019; 164:379-390. [PMID: 29939355 DOI: 10.1093/toxsci/kfy159] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney consists of numerous cell types organized into the nephron, which is the basic functional unit of the kidney. Any stimuli that induce loss of these cells can induce kidney damage and renal failure. The cause of renal failure can be intrinsic or extrinsic. Extrinsic causes include cardiovascular disease, obesity, diabetes, sepsis, and lung and liver failure. Intrinsic causes include glomerular nephritis, polycystic kidney disease, renal fibrosis, tubular cell death, and stones. The kidney plays a prominent role in mediating the toxicity of numerous drugs, environmental pollutants and natural substances. Drugs known to be nephrotoxic include several cancer therapeutics, drugs of abuse, antibiotics, and radiocontrast agents. Environmental pollutants known to target the kidney include cadmium, mercury, arsenic, lead, trichloroethylene, bromate, brominated-flame retardants, diglycolic acid, and ethylene glycol. Natural nephrotoxicants include aristolochic acids and mycotoxins such as ochratoxin, fumonisin B1, and citrinin. There are several common characteristics between mechanisms of renal failure induced by nephrotoxicants and extrinsic causes. This common ground exists primarily due to similarities in the molecular mechanisms mediating renal cell death. This review summarizes the current state of the field of nephrotoxicity. It emphasizes integrating our understanding of nephrotoxicity with pathological-induced renal failure. Such approaches are needed to address major questions in the field, which include the diagnosis, prognosis and treatment of both acute and chronic renal failure, and the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
| | - Brian S Cummings
- Interdisciplinary Toxicology Program.,Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
22
|
Jung H, Choi EK, Baek SI, Cho C, Jin Y, Kwak KH, Jeon Y, Park SS, Kim S, Lim DG. The Effect of Nitric Oxide on Remote Ischemic Preconditioning in Renal Ischemia Reperfusion Injury in Rats. Dose Response 2019; 17:1559325819853651. [PMID: 31191188 PMCID: PMC6542129 DOI: 10.1177/1559325819853651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Although remote ischemic preconditioning (RIPC) is an organ-protective maneuver from subsequent ischemia reperfusion injury (IRI) by application of brief ischemia and reperfusion to other organs, its mechanism remains unclear. However, it is known that RIPC reduces the heart, brain, and liver IRI, and that nitric oxide (NO) is involved in the mechanism of this effect. To identify the role of NO in the protective effect of RIPC in renal IRI, this study examined renal function, oxidative status, and histopathological changes using N-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor. Remote ischemic preconditioning was produced by 3 cycles of 5 minutes ischemia and 5 minutes reperfusion. Blood urea nitrogen, creatinine (Cr), and renal tissue malondialdehyde levels were lower, histopathological damage was less severe, and superoxide dismutase level was higher in the RIPC + IRI group than in the IRI group. The renoprotective effect was reversed by L-NAME. Obtained results suggest that RIPC before renal IRI contributes to improvement of renal function, increases antioxidative marker levels, and decreases oxidative stress marker levels and histopathological damage. Moreover, NO is likely to play an important role in this protective effect of RIPC on renal IRI.
Collapse
Affiliation(s)
- Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Kyung Choi
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Seung Ik Baek
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Changhee Cho
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yehun Jin
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Hwa Kwak
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Younghoon Jeon
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Sik Park
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sioh Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
23
|
Xie LB, Chen X, Chen B, Wang XD, Jiang R, Lu YP. Protective effect of bone marrow mesenchymal stem cells modified with klotho on renal ischemia-reperfusion injury. Ren Fail 2019; 41:175-182. [PMID: 30942135 PMCID: PMC6450585 DOI: 10.1080/0886022x.2019.1588131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: To detect the combination protective effect of bone marrow mesenchymal stem cells (BMSCs) and Klotho gene on the renal ischemia-reperfusion injury (RIRI). Methods: BMSCs isolated from rats were transfected with Klotho gene to form BMSCKl. We injected BMSCKl to allogenic rat RIRI model. After 24 h and 72 h, we detected the serum creatinine (SCr), malondialdehyde (MDA), and superoxide dismutase (SOD) in renal tissue, Hematoxylin-eosin (HE) staining, and TUNEL of renal pathology. The expression of FoxO1 and p-FoxO1 in post-hypoxia tubular epithelial cells of normal rat kidney (NRK-52E) were detected by Western blot after cocultured with BMSCKl. Results: Comparing with BMSCCon group, Rats in BMSCKl group had lower SCr and MDA but higher SOD. Both HE and TUNEL score of renal tissue in BMSCKl group were lower than that of BMSCCon group. Western blot indicated that FoxO1 was upregulated, while p-FoxO1 was downregulated in post-hypoxia NRK-52E cells. Conclusions: BMSCs transfected with Klotho gene can further ameliorate RIRI. The possible mechanism may be attributed to the upregulation of SOD in NRK-52E caused by Klotho-FoxO1 axis.
Collapse
Affiliation(s)
- Li-Bo Xie
- a Department of Urology , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Xi Chen
- b School of Biology Science , East China Normal University , Shanghai , China
| | - Bo Chen
- c Department of Human Anatomy , Southwest Medical University , Luzhou , China
| | - Xian-Ding Wang
- d Department of Urology , The Institution of Urology, West China Hospital, Sichuan University , Chengdu , China
| | - Rui Jiang
- a Department of Urology , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Yi-Ping Lu
- d Department of Urology , The Institution of Urology, West China Hospital, Sichuan University , Chengdu , China
| |
Collapse
|
24
|
Moradzadeh K, Gheisari Y. The analysis of a time-course transcriptome profile by systems biology approaches reveals key molecular processes in acute kidney injury. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:3. [PMID: 30815016 PMCID: PMC6383344 DOI: 10.4103/jrms.jrms_690_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 11/22/2022]
Abstract
Background: Acute kidney injury is a common debilitating disease with no curative treatment. The recent development of big biological data is expected to expand our understanding of the disorder if appropriately analyzed to generate translational knowledge. We have here re-analyzed a time-course microarray data on mRNA expression of rat kidneys exposed to ischemia-reperfusion to identify key underlying biological processes. Materials and Methods: The dataset was quality controlled by principal component analysis and hierarchical clustering. Using limma R package, differentially expressed (DE) genes were detected which were then clustered according to their expression trajectories. The biological processes related to each cluster were harvested using gene ontology enrichment analysis. In addition, the interaction map of proteins encoded by the DE genes was constructed, and the functions related to network central genes were determined. Furthermore, signaling pathways related to the DE genes were harvested using pathway enrichment analysis. Results: We found 8139 DE genes that drive critical processes such as the control of blood circulation, reactive species metabolism, mitochondrial respiration, apoptosis, cell proliferation, as well as inflammatory and immunological reactions. The role of less recognized pathways such as olfactory signaling in acute kidney injury is also proposed that remains to be investigated in future studies. Conclusion: Using systems biology top-down approach, we have suggested novel potential genes and pathways to be intervened toward kidney regeneration.
Collapse
Affiliation(s)
- Kobra Moradzadeh
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.,Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
26
|
Juriasingani S, Akbari M, Chan JYH, Whiteman M, Sener A. H2S supplementation: A novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide 2018; 81:57-66. [DOI: 10.1016/j.niox.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
|
27
|
Abstract
Kidney diseases including acute kidney injury and chronic kidney disease are among the largest health issues worldwide. Dialysis and kidney transplantation can replace a significant portion of renal function, however these treatments still have limitations. To overcome these shortcomings, a variety of innovative efforts have been introduced, including cell-based therapies. During the past decades, advances have been made in the stem cell and developmental biology, and tissue engineering. As part of such efforts, studies on renal cell therapy and artificial kidney developments have been conducted, and multiple therapeutic interventions have shown promise in the pre-clinical and clinical settings. More recently, therapeutic cell-secreting secretomes have emerged as a potential alternative to cell-based approaches. This approach involves the use of renotropic factors, such as growth factors and cytokines, that are produced by cells and these factors have shown effectiveness in facilitating kidney function recovery. This review focuses on the renotropic functions of bioactive compounds that provide protective and regenerative effects for kidney tissue repair, based on the available data in the literature.
Collapse
Affiliation(s)
- Kang Su Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
28
|
Perco P, Mayer G. Endogenous factors and mechanisms of renoprotection and renal repair. Eur J Clin Invest 2018; 48:e12914. [PMID: 29460289 DOI: 10.1111/eci.12914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND An imbalance between renal damaging molecules and nephroprotective factors contributes to the development and progression of kidney diseases. Molecules with renoprotective properties might serve as biomarkers, drug targets as well as therapeutic options themselves. MATERIALS AND METHODS For this review, we generated a set of renoprotective factors based on GeneRIF (Gene Reference Into Function) information available at NCBI's PubMed. The final set of manually curated renoprotective factors was investigated with respect to tissue-specific expression, subcellular location distribution and involvement in biological processes using information from gene ontology as well as information from protein-protein interaction databases. We furthermore investigated the factors in the context of clinical trials of renal disease and diabetes. RESULTS One hundred and ninety-three factors could be retrieved from the set of GeneRIFs on nephroprotection and renal repair. A large number of factors were either secretory molecules or plasma membrane receptors. Next to the elevated expression in renal tissue, also higher expression in connective tissue and pancreas was observed. The proteins could be assigned to the broad functional categories of cell proliferation and signalling, inflammatory response, apoptosis, blood pressure regulation as well as cellular response to different kinds of insults such as hypoxia, heat or mechanical stimulus. Eight factors are studied in clinical trials with additional ones being targeted by compounds. CONCLUSIONS We have generated a set of renoprotective factors based on the literature information, which was functionally annotated and evaluated with respect to tested compounds in kidney disease and diabetes clinical trials.
Collapse
Affiliation(s)
- Paul Perco
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Ghosh M, Thangada S, Dasgupta O, Khanna KM, Yamase HT, Kashgarian M, Hla T, Shapiro LH, Ferrer FA. Cell-intrinsic sphingosine kinase 2 promotes macrophage polarization and renal inflammation in response to unilateral ureteral obstruction. PLoS One 2018. [PMID: 29518138 PMCID: PMC5843290 DOI: 10.1371/journal.pone.0194053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sphingosine Kinase-2 (Sphk2) is responsible for the production of the bioactive lipid Sphingosine-1 Phosphate, a key regulator of tissue repair. Here we address the in vivo significance of Sphingosine Kinase -2 in renal inflammation/fibrosis in response to unilateral ureteral obstruction using both genetic and pharmacological strategies. Obstructed kidneys of Sphk2-/- mice showed reduced renal damage and diminished levels of the renal injury markers TGFβ1 and αSMA when compared to wild type controls. We found a consistently significant increase in anti-inflammatory (M2) macrophages in obstructed Sphk2-/- kidneys by flow cytometry and a decrease in mRNA levels of the inflammatory cytokines, MCP1, TNFα, CXCL1 and ILβ1, suggesting an anti-inflammatory bias in the absence of Sphk2. Indeed, metabolic profiling showed that the pro-inflammatory glycolytic pathway is largely inactive in Sphk2-/- bone marrow-derived macrophages. Furthermore, treatment with the M2-promoting cytokines IL-4 or IL-13 demonstrated that macrophages lacking Sphk2 polarized more efficiently to the M2 phenotype than wild type cells. Bone marrow transplant studies indicated that expression of Sphk2-/- on either the hematopoietic or parenchymal cells did not fully rescue the pro-healing phenotype, confirming that both infiltrating M2-macrophages and the kidney microenvironment contribute to the damaging Sphk2 effects. Importantly, obstructed kidneys from mice treated with an Sphk2 inhibitor recapitulated findings in the genetic model. These results demonstrate that reducing Sphk2 activity by genetic or pharmacological manipulation markedly decreases inflammatory and fibrotic responses to obstruction, resulting in diminished renal injury and supporting Sphk2 as a novel driver of the pro-inflammatory macrophage phenotype.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Shobha Thangada
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Oisharya Dasgupta
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Harold T. Yamase
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Michael Kashgarian
- Department of Pathology, Yale University Cancer Research Center, New Haven, CT, United States of America
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Linda H. Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- * E-mail: (FAF); (LHS)
| | - Fernando A. Ferrer
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Section of Pediatric Urology, Children's Hospital of Omaha, Department of Surgery, University of Nebraska School of Medicine, Omaha, NE, United States of America
- * E-mail: (FAF); (LHS)
| |
Collapse
|
30
|
De Miguel C, Obi IE, Ho DH, Loria AS, Pollock JS. Early life stress induces immune priming in kidneys of adult male rats. Am J Physiol Renal Physiol 2018; 314:F343-F355. [PMID: 28971994 PMCID: PMC5899229 DOI: 10.1152/ajprenal.00590.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Early life stress (ELS) in humans is associated with elevated proinflammatory markers. We hypothesized that ELS induces activation of the immune response in a rat model of ELS, maternal separation (MatSep), in adulthood. MatSep involves separating pups from the dam from postnatal day 2 to postnatal day 14 for 3 h/day. Control rats are nonseparated littermates. We determined circulating and renal immune cell numbers, renal immune cell activation markers, renal cytokine levels, and the renal inflammatory gene expression response to low-dose lipopolysaccharide (LPS) in male MatSep and control rats. We observed that MatSep did not change the percentage of gated events for circulating CD3+, CD4+, CD8+, and CD4+/Foxp3+ cells or absolute numbers of mononuclear and T cells in the circulation and kidneys; however, MatSep led to an increase in activation of renal neutrophils as well as CD44+ cells. Renal toll-like receptor 4 (TLR4) and interleukin 1 beta (IL-1β) was significantly increased in MatSep rats, specifically in the outer and inner medulla and distal nephron, respectively. Evaluation of renal inflammatory genes showed that in response to a low-dose LPS challenge (2 mg/kg iv) a total of 20 genes were significantly altered in kidneys from MatSep rats (17 genes were upregulated and 3 were downregulated), as opposed to no significant differences in gene expression in control vs. control + LPS groups. Taken together, these findings indicate that MatSep induces priming of the immune response in the kidney.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ijeoma E Obi
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Dao H Ho
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Medicine, Augusta University , Augusta, Georgia
| |
Collapse
|
31
|
Carvacrol attenuates histopathogic and functional impairments induced by bilateral renal ischemia/reperfusion in rats. Biomed Pharmacother 2018; 98:656-661. [DOI: 10.1016/j.biopha.2017.12.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 01/16/2023] Open
|
32
|
Shamloo K, Chen J, Sardar J, Sherpa RT, Pala R, Atkinson KF, Pearce WJ, Zhang L, Nauli SM. Chronic Hypobaric Hypoxia Modulates Primary Cilia Differently in Adult and Fetal Ovine Kidneys. Front Physiol 2017; 8:677. [PMID: 28979210 PMCID: PMC5611369 DOI: 10.3389/fphys.2017.00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022] Open
Abstract
Hypoxic environments at high altitude have significant effects on kidney injury. Following injury, renal primary cilia display length alterations. Primary cilia are mechanosensory organelles that regulate tubular architecture. The effect of hypoxia on cilia length is still controversial in cultured cells, and no corresponding in vivo study exists. Using fetal and adult sheep, we here study the effect of chronic hypobaric hypoxia on the renal injury, intracellular calcium signaling and the relationship between cilia length and cilia function. Our results show that although long-term hypoxia induces renal fibrosis in both fetal and adult kidneys, fetal kidneys are more susceptible to hypoxia-induced renal injury. Unlike hypoxic adult kidneys, hypoxic fetal kidneys are characterized by interstitial edema, tubular disparition and atrophy. We also noted that there is an increase in the cilia length as well as an increase in the cilia function in the hypoxic fetal proximal and distal collecting epithelia. Hypoxia, however, has no significant effect on primary cilia in the adult kidneys. Increased cilia length is also associated with greater flow-induced intracellular calcium signaling in renal epithelial cells from hypoxic fetuses. Our studies suggest that while hypoxia causes renal fibrosis in both adult and fetal kidneys, hypoxia-induced alteration in cilia length and function are specific to more severe renal injuries in fetal hypoxic kidneys.
Collapse
Affiliation(s)
- Kiumars Shamloo
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Juan Chen
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Jasmine Sardar
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Rinzhin T Sherpa
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Kimberly F Atkinson
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - William J Pearce
- Departments of Basic Sciences, Physiology and Pharmacology, Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of MedicineLoma Linda, CA, United States
| | - Lubo Zhang
- Departments of Basic Sciences, Physiology and Pharmacology, Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of MedicineLoma Linda, CA, United States
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States.,Division of Nephrology and Hypertension, Department of Medicine, University of California, IrvineIrvine, CA, United States
| |
Collapse
|
33
|
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Collapse
|
34
|
Nephroprotective Effect of EDL Peptide at Acute Injury of Kidneys of Different Genesis. Bull Exp Biol Med 2017; 163:389-393. [PMID: 28744634 DOI: 10.1007/s10517-017-3811-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 10/19/2022]
Abstract
EDL peptide produced a nephroprotective effect on experimental models gentamycin-induced nephropathy and ischemia/reperfusion kidney injury in rats. The nephroprotective effect of EDL peptide manifested in prevention of oliguria and retention azotemia, a decrease in proteinuria and sodium excretion, prevention of critical decrease in activities of antioxidant enzymes, suppression of LPO, and normalization of energy supply to kidneys cells. Our findings confirm the prospects of further studies of the nephroprotective properties of peptide EDL in various pathologies of the kidneys.
Collapse
|
35
|
Kim KS, Yang HY, Song H, Kang YR, Kwon J, An J, Son JY, Kwack SJ, Kim YM, Bae ON, Ahn MY, Lee J, Yoon S, Lee BM, Kim HS. Identification of a sensitive urinary biomarker, selenium-binding protein 1, for early detection of acute kidney injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:453-464. [PMID: 28665768 DOI: 10.1080/15287394.2017.1299655] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Acute kidney injury (AKI) is associated with increased mortality rate in patients but clinically available biomarkers for disease detection are currently not available. Recently, a new biomarker, selenium-binding protein 1 (SBP1), was identified for detection of nephrotoxicity using proteomic analysis. The aim of this study was to assess the sensitivity of urinary SBP1 levels as an early detection of AKI using animal models such as cisplatin or ischemia/reperfusion (I/R). Sprague-Dawley rats were injected with cisplatin (6 mg/kg, once i.p.) and sacrificed at 1, 3, or 5 days after treatment. Ischemia was achieved by bilaterally occluding both kidneys with a microvascular clamp for 45 min and verified visually by a change in tissue color. After post-reperfusion, urine samples were collected at 9, 24, and 48 hr intervals. Urinary excretion of protein-based biomarkers was measured by Western blot analysis. In cisplatin-treated rats, mild histopathologic alterations were noted at day 1 which became severe at day 3. Blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly increased at day 3. Levels of urinary excretion of SBP1, neutrophil gelatinase-associated lipocalin (NGAL), and a tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly elevated at day 3 and 5 following drug treatment. In the vehicle-treated I/R group, serum levels of BUN and SCr and AST activity were significantly increased compared to sham. Urinary excretion of SBP1 and NGAL rose markedly following I/R. The urinary levels of SBP1, NGAL, TIMP-1, and KIM-1 proteins excreted by AKI patients and normal subjects were compared. Among these proteins, a marked rise in SBP1 was observed in urine of patients with AKI compared to normal subjects. Based upon receiver-operator curves (ROC), SBP1 displayed a higher area under the curve (AUC) scores than levels of SCr, BUN, total protein, and glucose. In particular, SBP1 protein was readily detected in small amounts of urine without purification. Data thus indicate that urinary excretion of SBP1 may be useful as a reliable biomarker for early diagnosis of AKI in patients.
Collapse
Affiliation(s)
- Kyeong Seok Kim
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Hun Yong Yang
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Hosup Song
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Ye Rim Kang
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - JiHoon Kwon
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - JiHye An
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Ji Yeon Son
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Seung Jun Kwack
- b Department of Biochemistry and Health Science , Changwon National University , Gyeongnam , Republic of Korea
| | - Young-Mi Kim
- c College of Pharmacy, Hanyang University , Ansan , Republic of Korea
| | - Ok-Nam Bae
- c College of Pharmacy, Hanyang University , Ansan , Republic of Korea
| | - Mee-Young Ahn
- d College of Medical and Life Sciences, Major in Pharmaceutical Engineering, Silla University , Busan , Republic of Korea
| | - Jaewon Lee
- e College of Pharmacy, Pusan National University , Busan , Republic of Korea
| | - Sungpil Yoon
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Byung Mu Lee
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Hyung Sik Kim
- a Division of Toxicology , School of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| |
Collapse
|
36
|
Huling J, Yoo JJ. Comparing adult renal stem cell identification, characterization and applications. J Biomed Sci 2017; 24:32. [PMID: 28511675 PMCID: PMC5434527 DOI: 10.1186/s12929-017-0339-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
Despite growing interest and effort, a consensus has yet to be reached in regards to the identification of adult renal stem cells. Organ complexity and low turnover of renal cells has made stem cell identification difficult and lead to the investigation of multiple possible populations. In this review, we summarize the work that has been done toward finding and characterizing an adult renal stem cell population. In addition to giving a general overview of what has been done, we aim to highlight the variation in methods and outcomes. The methods used to locate potential stem cell populations can vary widely, but even within the relatively standard practice of BrdU labeling of slowly dividing cells, there are significant differences in protocols and results. Additional diversity exists in cell marker profiles and apparent differentiation potential seen in potential stem cell sources. Cataloging the variety of methods and outcomes seen so far may help to streamline future investigation and stear the field toward consensus. But even without firmly defined populations, the application of renal stem cells holds tantalizing potential. Populations of highly proliferative, multipotent cells of renal origin show the ability to engraft in injured kidneys, mitigate functional loss and occasionally show the ability to generate nephrons de novo. The progress toward regenerative medicine applications is also summarized.
Collapse
Affiliation(s)
- Jennifer Huling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, USA.
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, USA
| |
Collapse
|
37
|
Yang K, Li WF, Yu JF, Yi C, Huang WF. Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J Surg Res 2017. [PMID: 28624062 DOI: 10.1016/j.jss.2017.02.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Renal ischemia/reperfusion (I/R)-induced acute kidney injury remains to be a troublesome condition in clinical practice. Although the exact molecular mechanisms underlying renal I/R injury are incompletely understood, the deleterious progress of renal I/R injury involves inflammation, apoptosis, and oxidative stress. Diosmetin is a member of the flavonoid glycosides family, which suppresses the inflammatory response and cellular apoptosis and enhances antioxidant activity. The purpose of this study was to investigate the protective effect of diosmetin on I/R-induced renal injury in mice. METHODS Thirty BALB/c mice were randomly divided into five groups. Four groups of mice received diosmetin (0.25, 0.5, and 1 mg/kg) or vehicle (I/R group) before ischemia. Another group received vehicle without ischemia to serve as a negative control (sham-operated group). Twenty-four hours after reperfusion, serum and renal tissues were harvested to evaluate renal function and histopathologic features. In addition, the expression of inflammation-related proteins, apoptotic molecules, and antioxidant enzymes was analyzed. RESULTS Compared with sham mice, the I/R group significantly exacerbated renal function and renal tube architecture and increased the inflammatory response and renal tubule apoptosis. Nevertheless, pretreatment with diosmetin reversed these changes. In addition, diosmetin treatment resulted in a marked increase in antioxidant protein expression compared with I/R mice. CONCLUSIONS The renoprotective effects of diosmetin involved suppression of the nuclear factor-κB and mitochondrial apoptosis pathways, as well as activation of the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Diosmetin has significant potential as a therapeutic intervention to ameliorate renal injury after renal I/R.
Collapse
Affiliation(s)
- Kang Yang
- Department of Urology, The First People's Hospital Of Yichang, China Three Gorges University, Yichang, Hubei, China; Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, China
| | - Wei-Fang Li
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, China
| | - Jun-Feng Yu
- Department of Urology, The First People's Hospital Of Yichang, China Three Gorges University, Yichang, Hubei, China
| | - Cheng Yi
- Department of Urology, The First People's Hospital Of Yichang, China Three Gorges University, Yichang, Hubei, China
| | - Wei-Feng Huang
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
38
|
Salehipour M, Monabbati A, Ensafdaran MR, Adib A, Babaei AH. The effect of zinc on healing of renal damage in rats. J Nephropathol 2017; 6:157-162. [PMID: 28975095 PMCID: PMC5607977 DOI: 10.15171/jnp.2017.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2016] [Indexed: 12/12/2022] Open
Abstract
Background:
Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats.
Materials and Methods:
Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies.
Results:
In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries.
Conclusions:
Overall, Zinc can contribute to better healing of the rat’s kidneys after a traumatic injury.
Collapse
Affiliation(s)
- Mehdi Salehipour
- Department of Urology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabbati
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Adib
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Babaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Chen SJ, Wu P, Sun LJ, Zhou B, Niu W, Liu S, Lin FJ, Jiang GR. miR-204 regulates epithelial-mesenchymal transition by targeting SP1 in the tubular epithelial cells after acute kidney injury induced by ischemia-reperfusion. Oncol Rep 2016; 37:1148-1158. [PMID: 27959449 DOI: 10.3892/or.2016.5294] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/29/2016] [Indexed: 11/05/2022] Open
Abstract
Acute kidney injury (AKI) is a disease where kidney function is lost almost instantaneously; it can develop very rapidly over few hours to maximum of few days. Despite the advent of technology, the clinical management against this disease is very poor, and most of the time it is life-threatening. AKI has been actively regulated by extracellular matrix proteins (ECM), however, its underlying mechanism of regulation during AKI progression is very poorly understood. In this study, we explored the integrated network of mRNA and microRNAs (miRNAs) that maintains the progression of ECM after induction of AKI by lethal ischemia. To identify key regulators of ECM, we screened large number of transcriptomes using laser capture microdissection (LCM) technique in addition to microarray and RT-qPCR. Our result clearly showed that 9 miRNAs including miR-21, miR-483, miR-5115, miR-204e, miR-128, miR-181c, miR-203, miR-204 and miR-204c were highly regulated, out of which miR-204 expression change (decrease) was most drastic during ischemia/reperfusion. Detail mechanistic study utilizing combined experimental and computational approach revealed that TGF-β signaling pathway was potentially modulated by deregulated miRNA-204 through SP1, where the TGF-β signaling pathway plays a vital role in ECM regulation. Apart from targeting SP1 and antagonizing epithelial-mesenchymal transition (EMT) signaling our result also showed that miR-204 protects interstitial tissue of renal tubules from chronic fibrotic change. Altogether our study provides sufficient details of how miRNA mediated ECM regulation occur during AKI, which can be effectively utilized in future for better AKI management and diagnosis.
Collapse
Affiliation(s)
- Shun-Jie Chen
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Ping Wu
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Li-Jing Sun
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Bo Zhou
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Wei Niu
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Shuang Liu
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Fu-Jun Lin
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Geng-Ru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
40
|
Wilflingseder J, Jelencsics K, Bergmeister H, Sunzenauer J, Regele H, Eskandary F, Reindl-Schwaighofer R, Kainz A, Oberbauer R. miR-182-5p Inhibition Ameliorates Ischemic Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:70-79. [PMID: 27870928 DOI: 10.1016/j.ajpath.2016.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023]
Abstract
Acute kidney injury (AKI) remains a major clinical event with high mortality rates. We previously identified renal miR-182 as the main driver of post-transplantation AKI. Therefore, we tested the causal inference of miR-182 by inhibiting its renal expression in vivo. In 45 rats AKI was induced by right nephrectomy and contralateral clamping of the renal pedicle for 40 minutes. Systemically administered antisense oligonucleotide (ASO) inhibited miR-182 in the kidneys up to 96 hours. The maximum creatinine elevation was on day 2 after injury (mg/dL; median and interquartile range): ASO 2.5mg/kg: 1.9 (1.3; 3.2), ASO 25mg/kg: 2.8 (0.7; 5.0), mismatch oligonucleotide (MM) 25mg/kg: 5.7 (5,0; 5.8), saline: 4.4 (3.5; 5.8) (P = 0.016, analysis of variance). Blinded semiquantitative histologic evaluation of renal biopsies showed better preserved morphology in both ASO groups than saline- and MM-treated kidneys (median and interquartile range of overall injury scores): ASO both concentrations 1 (1, 1), saline 3 (3, 3) and MM 3 (3, 3) (P< 0.001, analysis of variance). ASO facilitated cell proliferation, metabolism, and angiogenesis on a genome-wide level. ASO when applied in normothermic kidney machine perfusion reduced renal miR-182 expression by more than two magnitudes. In summary, we showed that in vivo inhibition of miR-182 by ASO improved kidney function and morphology after AKI. This technique may be applicable to reduce the high rate of AKI in the human renal transplantation setting.
Collapse
Affiliation(s)
- Julia Wilflingseder
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Kíra Jelencsics
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Helga Bergmeister
- Department of Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Judith Sunzenauer
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Heinz Regele
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Farsad Eskandary
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | | | - Alexander Kainz
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Shen YL, Sun L, Hu YJ, Liu HJ, Kuang XY, Niu XL, Huang WY. P53 inhibitor pifithrin-α prevents the renal tubular epithelial cells against injury. Am J Transl Res 2016; 8:4040-4053. [PMID: 27829991 PMCID: PMC5095300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
The injury and repair of renal tubular epithelial cells play an important role in the pathological process of acute kidney injury (AKI). This study aimed to clarify the role of cell cycle change in renal tubular epithelial cell injury and repair in vivo and in vitro. Sprague-Dawley rats received bilateral renal pedicle clamping for 45 min (ischemia) followed by reperfusion. Pifithrin-α, a p53 inhibitor, was administered at 24 h before renal ischemia and 3 and 14 days after reperfusion. Results showed the tubular epithelial cells in M phase increased significantly at 2 h to 72 h after ischemia/reperfusion (I/R), while pifithrin-α decreased them. Renal I/R caused renal tubular epithelial damage in rats, which was improved by pifithrin-α. The α-SMA mRNA expression was up-regulated significantly after I/R, while it was down-regulated by pifithrin-α.NRK-52E cells were cultured in vitro, cell damage was induced by addition of TNF-α, and then cells were treated with pifithrin-α. Cells treated with TNF-α alone in G2/M phase increased significantly, but they were reduced in the presence of pifithrin-α. In NRK-52E cells treated with pifithrin-α for 6 h, NGAL mRNA expression was significantly lower than in cells without pifithrin-α treatment. After NRK-52E cells were treated with pifithrin-α for 24 h, α-SMA and FN mRNA expression was significantly lower than in cells without the treatment. In summary, pifithrin-α can facilitate the progression of renal tubular epithelial cells through G2/M phase, protecting them against injury.
Collapse
Affiliation(s)
- Yun-Lin Shen
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, China
| | - Lei Sun
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, China
| | - Yu-Jie Hu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, China
| | - Hua-Jie Liu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, China
| | - Xin-Yu Kuang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, China
| | - Xiao-Ling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, China
| |
Collapse
|
42
|
Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway. Food Chem Toxicol 2016; 96:215-25. [DOI: 10.1016/j.fct.2016.07.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
|
43
|
Shen YL, Liu HJ, Sun L, Niu XL, Kuang XY, Wang P, Hao S, Huang WY. Response gene to complement 32 regulates the G2/M phase checkpoint during renal tubular epithelial cell repair. Cell Mol Biol Lett 2016; 21:19. [PMID: 28536621 PMCID: PMC5415738 DOI: 10.1186/s11658-016-0021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to evaluate the influence of RGC-32 (response gene to complement 32) on cell cycle progression in renal tubular epithelial cell injury. Methods NRK-52E cells with overexpressed or silenced RGC-32 were constructed via transient transfection with RGC-32 expression plasmid and RGC-32 siRNA plasmid, and the cell cycle distribution was determined. The expression levels of fibrosis factors, including smooth muscle action (α-SMA), fibronectin (FN) and E-cadherin, were assessed in cells with silenced RGC-32. Results The cells were injured via TNF-α treatment, and the injury was detectable by the enhanced expression of neutrophil gelatinase-associated lipocalin (NGAL). RGC-32 expression also increased significantly. The number of cells at G2/M phase increased dramatically in RGC-32 silenced cells, indicating that RGC-32 silencing induced G2/M arrest. In addition, after treatment with TNF-α, the NRK-52E cells with silenced RGC-32 showed significantly increased expression of α-SMA and FN, but decreased expression of E-cadherin. Conclusions The results of this study suggest that RGC-32 probably has an important impact on the repair process of renal tubular epithelial cells in vitro by regulating the G2/M phase checkpoint, cell fibrosis and cell adhesion. However, the exact mechanism needs to be further elucidated.
Collapse
Affiliation(s)
- Yun-Lin Shen
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Hua-Jie Liu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Lei Sun
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xiao-Ling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xin-Yu Kuang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Ping Wang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
44
|
The Role of Activin A and B and the Benefit of Follistatin Treatment in Renal Ischemia-Reperfusion Injury in Mice. Transplant Direct 2016; 2:e87. [PMID: 27830181 PMCID: PMC5087569 DOI: 10.1097/txd.0000000000000601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
Abstract
Background Activins, members of the TGF-β superfamily, are key drivers of inflammation and are thought to play a significant role in ischemia-reperfusion injury (IRI), a process inherent to renal transplantation that negatively impacts early and late allograft function. Follistatin (FS) is a protein that binds activin and inhibits its activity. This study examined the response of activin A and B in mice after renal IRI and the effect of exogenous FS in modulating the severity of renal injury. Methods Mice were treated with recombinant FS288 or vehicle before renal IRI surgery. Activin A, B, and FS levels in the serum and kidney, and renal injury parameters were measured at 3, 6, and 24 hours after reperfusion. Results Serum and kidney activin B levels were increased within 6 hours postrenal IRI, accompanied by renal injury—increased serum creatinine, messenger (m)RNA expression of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL); endothelial activation—increased E-selectin mRNA; and systemic inflammation—increased serum levels of IL-6, monocyte chemotactic protein-1 and TNF-α. Further injury was potentiated by an upsurge in activin A by 24 hours, with further increases in serum creatinine, KIM-1 and NGAL mRNA expression. Follistatin treatment significantly reduced the level of serum activin B and subsequently blunted the increase in activin A. Renoprotection was evident with the attenuated rise in serum creatinine, KIM-1 and NGAL expression, tubular injury score, renal cell apoptosis, and serum IL-6 and monocyte chemotactic protein-1 levels. Conclusions We propose that activin B initiates and activin A potentiates renal injury after IRI. Follistatin treatment, through binding and neutralizing the actions of activin B and subsequently activin A, reduced renal IRI by minimizing endothelial cell activation and dampening the systemic inflammatory response. These data support the potential clinical application of FS treatment to limit IRI during renal transplantation.
Collapse
|
45
|
Xu Y, Guo M, Jiang W, Dong H, Han Y, An XF, Zhang J. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury. Ren Fail 2016; 38:831-7. [DOI: 10.3109/0886022x.2016.1160724] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Sun L, Shen YL, Liu HJ, Hu YJ, Kang YL, Huang WY. The expression of response gene to complement 32 on renal ischemia reperfusion injury in rat. Ren Fail 2015; 38:276-81. [PMID: 26652201 DOI: 10.3109/0886022x.2015.1120118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To investigate the expression of response gene to complement 32 (RGC32) in rat with acute kidney injury (AKI) and to explore the role of RGC32 in renal injury and repair induced by ischemia reperfusion. Rats were randomly divided into two groups, including sham operation group (n = 48) and acute ischemia reperfusion injury (IRI) group (n = 48). Rats were sacrificed following reperfusion 2 h, 6 h, 24 h, 48 h, 72 h, 1 week (w), 2 w, and 4 w. The distribution and expression of RGC32 in renal tissue were observed by means of immunohistochemistry. The mean density of the images detected by Image-Pro Plus 6 was designated as the representative RGC32 expression levels. Meanwhile, RGC32 mRNA expression was measured by qPCR. RGC32 mainly expressed in cytoplasm of proximal tubular epithelial cells. However, RGC32 did not express in renal interstitium and vessels. The expression levels of RGC32 measured by immunohistochemistry at different reperfusion time were 0.0168 ± 0.0029, 0.0156 ± 0.0021, 0.0065 ± 0.0013, 0.0075 ± 0.0013, 0.0096 ± 0.0014, 0.0132 ± 0.0016, 0.0169 ± 0.0014, 0.0179 ± 0.0022, respectively. Compared with the sham group, the level of RGC32 expression in IRI group was significant lower at 24 h, 48 h, 72 h after IRI (p < 0.05). The expression levels of RGC32 mRNA at different reperfusion time measured by qPCR were corroborated the immunohistochemistry finding. The in vitro experiments show the expression of α-SMA and extracellular matrix expression increased signification when the RGC32 was silenced. Our data showed that the RGC32 expression in AKI rat decreased significantly reduces with different reperfusion time and performs a time-dependent manner. RGC32 may play an important role in the pathogenesis of AKI following IRI and repair in rat.
Collapse
Affiliation(s)
- Lei Sun
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yun-Lin Shen
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Hua-Jie Liu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Jie Hu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Lin Kang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Wen-Yan Huang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| |
Collapse
|
47
|
Tamay-Cach F, Quintana-Pérez JC, Trujillo-Ferrara JG, Cuevas-Hernández RI, Del Valle-Mondragón L, García-Trejo EM, Arellano-Mendoza MG. A review of the impact of oxidative stress and some antioxidant therapies on renal damage. Ren Fail 2015; 38:171-5. [DOI: 10.3109/0886022x.2015.1120097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
48
|
Hu S, Zhang Y, Zhang M, Guo Y, Yang P, Zhang S, Simsekyilmaz S, Xu JF, Li J, Xiang X, Yu Q, Wang CY. Aloperine Protects Mice against Ischemia-Reperfusion (IR)-Induced Renal Injury by Regulating PI3K/AKT/mTOR Signaling and AP-1 Activity. Mol Med 2015; 21:912-923. [PMID: 26552059 DOI: 10.2119/molmed.2015.00056] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/27/2015] [Indexed: 01/03/2023] Open
Abstract
Aloperine is a quinolizidine alkaloid extracted from the leaves of Sophora plants. It has been recognized with the potential to treat inflammatory and allergic diseases as well as tumors. In this report, we demonstrate that pretreatment with aloperine provided protection for mice against ischemia-reperfusion (IR)-induced acute renal injury as manifested by the attenuated inflammatory infiltration, reduced tubular apoptosis, and well-preserved renal function. Mechanistic studies revealed that aloperine selectively repressed IL-1β and IFN-γ expression by regulating PI3K/Akt/mTOR signaling and NF-κB transcriptional activity. However, aloperine did not show a perceptible impact on IL-6 and TGF-β expression and the related Jak2/Stat3 signaling. It was also noted that aloperine regulates AP-1 activity, through which it not only enhances SOD expression to increase reactive oxygen species (ROS) detoxification but also promotes the expression of antiapoptotic Bcl-2, thereby preventing tubular cells from IR-induced apoptosis. Collectively, our data suggest that administration of aloperine prior to IR insults, such as renal transplantation, could be a viable approach to prevent IR-induced injuries.
Collapse
Affiliation(s)
- Shuang Hu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanchao Guo
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sakine Simsekyilmaz
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, China
| | - Jinxiu Li
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xudong Xiang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, China.,Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Ortega-Trejo JA, Pérez-Villalva R, Barrera-Chimal J, Carrillo-Pérez DL, Morales-Buenrostro LE, Gamba G, Flores ME, Bobadilla NA. Heat shock protein 72 (Hsp72) specific induction and temporal stability in urine samples as a reliable biomarker of acute kidney injury (AKI). Biomarkers 2015; 20:453-9. [PMID: 26488549 DOI: 10.3109/1354750x.2015.1096305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We demonstrated that urinary heat shock protein of 72 KDa (Hsp72) is a sensitive biomarker for the early detection of acute kidney injury (AKI). However, whether Hsp72 induction during an AKI episode is kidney-specific is unknown, as well as, the degree of Hsp72 stability in urine samples. In rats that underwent bilateral renal ischemia and reperfusion (I/R), Hsp72 levels were evaluated in several tissues and in collected urines under different storage and temperature conditions, as well as in variable numbers of freeze-thaw cycles. The effect of room temperature and five freeze-thaw cycles on urinary Hsp72 levels was also evaluated in urine samples from AKI patients. We found that Hsp72 increased exclusively in the renal cortex of I/R group, emphasizing its performance as an AKI biomarker. Urinary-Hsp72 remained constant at room temperature (48 h), during 9 months of storage and was not affected by five freeze/thaw cycles.
Collapse
Affiliation(s)
- Juan Antonio Ortega-Trejo
- a Molecular Physiology Unit, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México , Mexico City , Mexico and.,b Department of Nephrology , Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán , Mexico City , Mexico
| | - Rosalba Pérez-Villalva
- a Molecular Physiology Unit, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México , Mexico City , Mexico and.,b Department of Nephrology , Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán , Mexico City , Mexico
| | - Jonatan Barrera-Chimal
- a Molecular Physiology Unit, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México , Mexico City , Mexico and.,b Department of Nephrology , Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán , Mexico City , Mexico
| | - Diego L Carrillo-Pérez
- b Department of Nephrology , Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán , Mexico City , Mexico
| | - Luis E Morales-Buenrostro
- b Department of Nephrology , Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán , Mexico City , Mexico
| | - Gerardo Gamba
- a Molecular Physiology Unit, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México , Mexico City , Mexico and.,b Department of Nephrology , Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán , Mexico City , Mexico
| | - María Elena Flores
- a Molecular Physiology Unit, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México , Mexico City , Mexico and
| | - Norma A Bobadilla
- a Molecular Physiology Unit, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México , Mexico City , Mexico and.,b Department of Nephrology , Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán , Mexico City , Mexico
| |
Collapse
|
50
|
Nephroprotective Effects of Polydatin against Ischemia/Reperfusion Injury: A Role for the PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:362158. [PMID: 26576221 PMCID: PMC4630419 DOI: 10.1155/2015/362158] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/30/2015] [Indexed: 01/24/2023]
Abstract
Oxidative stress and inflammation are involved in the pathogenesis in renal ischemia/reperfusion (I/R) injury. It has been demonstrated that polydatin processed the antioxidative, anti-inflammatory, and nephroprotective properties. However, whether it has beneficial effects and the possible mechanisms on renal I/R injury remain unclear. In our present study I/R models were simulated both in vitro and in vivo. Compared with vehicle control, the administration of polydatin significantly improved the renal function, accelerated the mitogenic response and reduced cell apoptosis in renal I/R injury models, strongly suppressed the I/R-induced upregulation of the expression of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, inducible nitric oxide synthase, prostaglandin E-2, and nitric oxide levels, and dramatically decreased contents of malondialdehyde, but it increased the activity of superoxide dismutase, glutathione transferase, glutathione peroxidase and catalase, and the level of glutathione. Further investigation showed that polydatin upregulated the phosphorylation of Akt in kidneys of I/R injury dose-dependently. However, all beneficial effects of polydatin mentioned above were counteracted when we inhibited PI3K/Akt pathway with its specific inhibitor, wortmannin. Taken together, the present findings provide the first evidence demonstrating that PD exhibited prominent nephroprotective effects against renal I/R injury by antioxidative stress and inflammation through PI3-K/Akt-dependent molecular mechanisms.
Collapse
|