1
|
Huo Y, Danecka W, Farquhar I, Mailliet K, Moses T, Wallace EWJ, Swain PS. The type of carbon source not the growth rate it supports can determine diauxie in Saccharomyces cerevisiae. Commun Biol 2025; 8:325. [PMID: 40016532 PMCID: PMC11868555 DOI: 10.1038/s42003-025-07747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
How cells choose between carbon sources is a classic example of cellular decision-making. Microbes often prioritise glucose, but there has been little investigation of whether other sugars are also preferred. Here we study budding yeast growing on mixtures of sugars with palatinose, a sucrose isomer that cells catabolise with the MAL regulon. We find that the decision-making involves more than carbon flux-sensing: yeast prioritise galactose over palatinose, but sucrose and fructose weakly if at all despite each allowing faster growth than palatinose. With genetic perturbations and transcriptomics, we show that the regulation is active with repression of the MAL genes via Gal4, the GAL regulon's master regulator. We argue, using mathematical modelling, that cells enforce their preference for galactose through weakening the MAL regulon's positive feedback. They do so through decreasing intracellular palatinose by repressing MAL11, the palatinose transporter, and expressing the isomaltases IMA1 and IMA5. Supporting these predictions, we show that deleting IMA1 abolishes diauxie. Our results demonstrate that budding yeast actively prioritises carbon sources other than glucose and that such priorities need not reflect differences in growth rates. They imply that carbon-sensing strategies even in model organisms are more complex than previously thought.
Collapse
Affiliation(s)
- Yu Huo
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Weronika Danecka
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Iseabail Farquhar
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kim Mailliet
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tessa Moses
- EdinOmics, RRID:SCR_021838, Centre for Engineering Biology, School of Biological Sciences, CH Waddington Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Edward W J Wallace
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter S Swain
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, United Kingdom.
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Semkiv MV, Ruchala J, Tsaruk AY, Zazulya AZ, Vasylyshyn RV, Dmytruk OV, Zuo M, Kang Y, Dmytruk KV, Sibirny AA. The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. Microb Cell Fact 2022; 21:162. [PMID: 35964033 PMCID: PMC9375311 DOI: 10.1186/s12934-022-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied. Results We isolated an insertional mutant of O.polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O.polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O.polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20–40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains. Conclusions This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.
Collapse
Affiliation(s)
- Marta V Semkiv
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | - Justyna Ruchala
- University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Aksynia Y Tsaruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | - Anastasiya Z Zazulya
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | | | - Olena V Dmytruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine.,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - MingXing Zuo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, 550014, Guiyang, China
| | - Yingqian Kang
- Department of Microbiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550014, Guiyang, China
| | - Kostyantyn V Dmytruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine.,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine. .,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
3
|
Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Appl Microbiol Biotechnol 2022; 106:4587-4606. [PMID: 35708749 DOI: 10.1007/s00253-022-12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.
Collapse
|
4
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
5
|
Influence of glucose on xylose metabolization by Spathaspora passalidarum. Fungal Genet Biol 2021; 157:103624. [PMID: 34536506 DOI: 10.1016/j.fgb.2021.103624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The yeast Spathaspora passalidarum is able to produce ethanol from D-xylose and D-glucose. However, it is not clear how xylose metabolism is affected by D-glucose when both sugars are available in the culture medium. The aims of this work were to evaluate the influence of D-glucose on D-xylose consumption, ethanol production, gene expression, and the activity of key xylose-metabolism enzymes under both aerobic and oxygen-limited conditions. Ethanol yields and productivities were increased in culture media containing D-xylose as the sole carbon source or a mixture of D-xylose and D-glucose. S. passalidarum preferentially consumed D-glucose in the co-fermentations, which is consistent with the reduction in expression of genes encoding the key xylose-metabolism enzymes. In the presence of D-glucose, the specific activities of xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) were lower. Interestingly, in accordance with other studies, the presence of 2-deoxyglucose (2DG) did not inhibit the growth of S. passalidarum in culture medium containing D-xylose as the sole carbon source. This indicates that a non-canonical repression pathway is acting in S. passalidarum. In conclusion, the results suggest that D-glucose inhibits D-xylose consumption and prevents the D-xylose-mediated induction of the genes encoding XR, XDH, and XK.
Collapse
|
6
|
Van Ende M, Wijnants S, Van Dijck P. Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Front Microbiol 2019; 10:99. [PMID: 30761119 PMCID: PMC6363656 DOI: 10.3389/fmicb.2019.00099] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Candida species, such as Candida albicans and Candida glabrata, cause infections at different host sites because they adapt their metabolism depending on the available nutrients. They are able to proliferate under both nutrient-rich and nutrient-poor conditions. This adaptation is what makes these fungi successful pathogens. For both species, sugars are very important nutrients and as the sugar level differs depending on the host niche, different sugar sensing systems must be present. Saccharomyces cerevisiae has been used as a model for the identification of these sugar sensing systems. One of the main carbon sources for yeast is glucose, for which three different pathways have been described. First, two transporter-like proteins, ScSnf3 and ScRgt2, sense glucose levels resulting in the induction of different hexose transporter genes. This situation is comparable in C. albicans and C. glabrata, where sensing of glucose by CaHgt4 and CgSnf3, respectively, also results in hexose transporter gene induction. The second glucose sensing mechanism in S. cerevisiae is via the G-protein coupled receptor ScGpr1, which causes the activation of the cAMP/PKA pathway, resulting in rapid adaptation to the presence of glucose. The main components of this glucose sensing system are also conserved in C. albicans and C. glabrata. However, it seems that the ligand(s) for CaGpr1 are not sugars but lactate and methionine. In C. glabrata, this pathway has not yet been investigated. Finally, the glucose repression pathway ensures repression of respiration and repression of the use of alternative carbon sources. This pathway is not well characterized in Candida species. It is important to note that, apart from glucose, other sugars and sugar-analogs, such as N-acetylglucosamine in the case of C. albicans, are also important carbon sources. In these fungal pathogens, sensing sugars is important for a number of virulence attributes, including adhesion, oxidative stress resistance, biofilm formation, morphogenesis, invasion, and antifungal drug tolerance. In this review, the sugar sensing and signaling mechanisms in these Candida species are compared to S. cerevisiae.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
7
|
Brink DP, Borgström C, Tueros FG, Gorwa-Grauslund MF. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling. Microb Cell Fact 2016; 15:183. [PMID: 27776527 PMCID: PMC5078928 DOI: 10.1186/s12934-016-0580-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background The sugar sensing and carbon catabolite repression in Baker’s yeast Saccharomyces cerevisiae is governed by three major signaling pathways that connect carbon source recognition with transcriptional regulation. Here we present a screening method based on a non-invasive in vivo reporter system for real-time, single-cell screening of the sugar signaling state in S. cerevisiae in response to changing carbon conditions, with a main focus on the response to glucose and xylose. Results The artificial reporter system was constructed by coupling a green fluorescent protein gene (yEGFP3) downstream of endogenous yeast promoters from the Snf3p/Rgt2p, SNF1/Mig1p and cAMP/PKA signaling pathways: HXT1p/2p/4p; SUC2p, CAT8p; TPS1p/2p and TEF4p respectively. A panel of eight biosensors strains was generated by single copy chromosomal integration of the different constructs in a W303-derived strain. The signaling biosensors were validated for their functionality with flow cytometry by comparing the fluorescence intensity (FI) response in the presence of high or nearly depleted glucose to the known induction/repression conditions of the eight different promoters. The FI signal correlated with the known patterns of the selected promoters while maintaining a non-invasive property on the cellular phenotype, as was demonstrated in terms of growth, metabolites and enzyme activity. Conclusions Once verified, the sensors were used to evaluate the signaling response to varying conditions of extracellular glucose, glycerol and xylose by screening in 96-well microtiter plates. We show that these yeast strains, which do not harbor any recombinant pathways for xylose utilization, are lacking a signaling response for extracellular xylose. However, for the HXT2p/4p sensors, a shift in the flow cytometry population dynamics indicated that internalized xylose does affect the signaling. These results suggest that the previously observed effects of this pentose on the S. cerevisiae physiology and gene regulation can be attributed to xylose and not only to a lack of glucose. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0580-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden.
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Felipe G Tueros
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| |
Collapse
|
8
|
Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 2015; 44:D372-9. [PMID: 26546518 PMCID: PMC4702804 DOI: 10.1093/nar/gkv1103] [Citation(s) in RCA: 490] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/11/2015] [Indexed: 11/16/2022] Open
Abstract
The Transporter Classification Database (TCDB; http://www.tcdb.org) is a freely accessible reference database for transport protein research, which provides structural, functional, mechanistic, evolutionary and disease/medical information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB). It consists of more than 10 000 non-redundant transport systems with more than 11 000 reference citations, classified into over 1000 transporter families. Transporters in TCDB can be single or multi-component systems, categorized in a functional/phylogenetic hierarchical system of classes, subclasses, families, subfamilies and transport systems. TCDB also includes updated software designed to analyze the distinctive features of transport proteins, extending its usefulness. Here we present a comprehensive update of the database contents and features and summarize recent discoveries recorded in TCDB.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Vamsee S Reddy
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA Department of Medical Sciences, Boston University School of Medicine, 72 E Concord St., Boston, MA 02118, USA
| | - Brian V Tsu
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Muhammad Saad Ahmed
- Department of Biological Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chun Li
- Department of Biological Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Gabriel Moreno-Hagelsieb
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada N2L 3C5
| |
Collapse
|
9
|
Long W, Panwar P, Witkowska K, Wong K, O'Neill D, Chen XZ, Lemieux MJ, Cheeseman CI. Critical Roles of Two Hydrophobic Residues within Human Glucose Transporter 9 (hSLC2A9) in Substrate Selectivity and Urate Transport. J Biol Chem 2015; 290:15292-303. [PMID: 25922070 DOI: 10.1074/jbc.m114.611178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
High blood urate levels (hyperuricemia) have been found to be a significant risk factor for cardiovascular diseases and inflammatory arthritis, such as hypertension and gout. Human glucose transporter 9 (hSLC2A9) is an essential protein that mainly regulates urate/hexose homeostasis in human kidney and liver. hSLC2A9 is a high affinity-low capacity hexose transporter and a high capacity urate transporter. Our previous studies identified a single hydrophobic residue in trans-membrane domain 7 of class II glucose transporters as a determinant of fructose transport. A mutation of isoleucine 335 to valine (I355V) in hSLC2A9 can reduce fructose transport while not affecting glucose fluxes. This current study demonstrates that the I335V mutant transports urate similarly to the wild type hSLC2A9; however, Ile-335 is necessary for urate/fructose trans-acceleration exchange to occur. Furthermore, Trp-110 is a critical site for urate transport. Two structural models of the class II glucose transporters, hSLC2A9 and hSLC2A5, based on the crystal structure of hSLC2A1 (GLUT1), reveal that Ile-335 (or the homologous Ile-296 in hSLC2A5) is a key component for protein conformational changes when the protein translocates substrates. The hSLC2A9 model also predicted that Trp-110 is a crucial site that could directly interact with urate during transport. Together, these studies confirm that hSLC2A9 transports both urate and fructose, but it interacts with them in different ways. Therefore, this study advances our understanding of how hSLC2A9 mediates urate and fructose transport, providing further information for developing pharmacological agents to treat hyperuricemia and related diseases, such as gout, hypertension, and diabetes.
Collapse
Affiliation(s)
| | - Pankaj Panwar
- the Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Kate Witkowska
- the Department of Clinical Pharmacology, John Vane Science Centre, William Harvey Research Centre, Charter House Square Campus, QMUL, London EC16BQ, England
| | | | | | | | - M Joanne Lemieux
- the Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | | |
Collapse
|
10
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
11
|
Jouandot D, Roy A, Kim JH. Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem 2011; 112:3268-75. [PMID: 21748783 PMCID: PMC3341738 DOI: 10.1002/jcb.23253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The yeast Rgt1 repressor is a bifunctional protein that acts as a transcriptional repressor and activator. Under glucose-limited conditions, Rgt1 induces transcriptional repression by forming a repressive complex with its corepressors Mth1 and Std1. Here, we show that Rgt1 is converted from a transcriptional repressor into an activator under high glucose conditions and this occurs through two independent but consecutive events mediated by two glucose signaling pathways: (1) disruption of the repressive complex by the Rgt2/Snf3 pathway; (2) phosphorylation of Rgt1 by the cAMP-dependent protein kinase (cAMP-PKA) pathway. Rgt1 is phosphorylated by PKA at four serine residues within its amino-terminal region, but this does not occur until the repressive complex is disrupted. While phosphorylation of any one of these sites is sufficient to enable Rgt1 to induce transcriptional activation, phosphorylation of all the sites results in the release of Rgt1 from DNA. We discuss how the bifunctional properties of Rgt1 are regulated through differential phosphorylation.
Collapse
Affiliation(s)
- David Jouandot
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg MS 39406
| | | | - Jeong-Ho Kim
- Corresponding author: Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, Tel. 202-994-9937, Fax. 202-994-8974,
| |
Collapse
|
12
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|