1
|
H Albehaijani S, Huynh T, Boyce KJ. Cellular and genetic changes during and after fluconazole exposure in Cryptococcus neoformans. Int J Antimicrob Agents 2025; 66:107519. [PMID: 40252781 DOI: 10.1016/j.ijantimicag.2025.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
The validity of genome replication is fundamental to fungal survival, and errors in this process can result in ploidy changes. These changes can have negative effects, such as developmental defects or reduced fitness, or positive effects such as fungal adaptation and resilience. In the fungal pathogen Cryptococcus neoformans, ploidy changes have been consistently observed in clinical populations, and isolates exposed to the antifungal drug fluconazole commonly exhibit chromosome 1 aneuploidy. Chromosomal and putative metabolic function changes due to drug exposure are not well studied and are important for understanding resistance. OBJECTIVES This study examined the fluconazole influence on C. neoformans transient aneuploidy and identified any potential genetic pathways that may be implicated. METHODS The study investigated 30 genes predicted to have a role in transient aneuploidy, which are related to chromosome organisation, DNA damage checkpoints and stress signalling. Other factors including ploidy status (haploid, diploid, polyploid) and species were also investigated to observe commonalities for a universal drug treatment strategy. RESULTS Fluconazole treatment increased DNA content, cell size and chromosomal changes in the wildtype and mutants. When fluconazole was removed, permanent changes were observed and were highly variable in the wildtypes and the 30 mutants. Additionally, some mutants lacked chromosomal changes such as tel1∆, mrc1∆ and hog1∆, highlighting the potential involvement in the aneuploidy process. CONCLUSIONS These findings highlight that fluconazole influences the entire genome rather than specific chromosomes, which increases the heterogeneity in permanent changes after fluconazole removal. This heterogeneity may result in long-term consequences, including drug resistance.
Collapse
Affiliation(s)
- Samah H Albehaijani
- School of Science, RMIT University, Melbourne, Victoria, Australia; Department of Biology, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Tien Huynh
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| | - Kylie J Boyce
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Staneva D, Vasileva B, Podlesniy P, Miloshev G, Georgieva M. Yeast Chromatin Mutants Reveal Altered mtDNA Copy Number and Impaired Mitochondrial Membrane Potential. J Fungi (Basel) 2023; 9:jof9030329. [PMID: 36983497 PMCID: PMC10058930 DOI: 10.3390/jof9030329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondria are multifunctional, dynamic organelles important for stress response, cell longevity, ageing and death. Although the mitochondrion has its genome, nuclear-encoded proteins are essential in regulating mitochondria biogenesis, morphology, dynamics and function. Moreover, chromatin structure and epigenetic mechanisms govern the accessibility to DNA and control gene transcription, indirectly influencing nucleo-mitochondrial communications. Thus, they exert crucial functions in maintaining proper chromatin structure, cell morphology, gene expression, stress resistance and ageing. Here, we present our studies on the mtDNA copy number in Saccharomyces cerevisiae chromatin mutants and investigate the mitochondrial membrane potential throughout their lifespan. The mutants are arp4 (with a point mutation in the ARP4 gene, coding for actin-related protein 4-Arp4p), hho1Δ (lacking the HHO1 gene, coding for the linker histone H1), and the double mutant arp4 hho1Δ cells with the two mutations. Our findings showed that the three chromatin mutants acquired strain-specific changes in the mtDNA copy number. Furthermore, we detected the disrupted mitochondrial membrane potential in their chronological lifespan. In addition, the expression of nuclear genes responsible for regulating mitochondria biogenesis and turnover was changed. The most pronounced were the alterations found in the double mutant arp4 hho1Δ strain, which appeared as the only petite colony-forming mutant, unable to grow on respiratory substrates and with partial depletion of the mitochondrial genome. The results suggest that in the studied chromatin mutants, hho1Δ, arp4 and arp4 hho1Δ, the nucleus-mitochondria communication was disrupted, leading to impaired mitochondrial function and premature ageing phenotype in these mutants, especially in the double mutant.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar Podlesniy
- CiberNed (Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas), 28029 Barcelona, Spain
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Leite AC, Martins TS, Cesário RR, Teixeira V, Costa V, Pereira C. Mitochondrial respiration promotes Cdc37-dependent stability of the Cdk1 homolog Cdc28. J Cell Sci 2023; 136:286215. [PMID: 36594787 DOI: 10.1242/jcs.260279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
Cdc28, the homolog of mammalian Cdk1, is a conserved key regulatory kinase for all major cell cycle transitions in yeast. We have found that defects in mitochondrial respiration (including deletion of ATP2, an ATP synthase subunit) inhibit growth of cells carrying a degron allele of Cdc28 (cdc28td) or Cdc28 temperature-sensitive mutations (cdc28-1 and cdc28-1N) at semi-permissive temperatures. Loss of cell proliferation in the atp2Δcdc28td double mutant is associated with aggravated cell cycle arrest and mitochondrial dysfunction, including mitochondrial hyperpolarization and fragmentation. Unexpectedly, in mutants defective in mitochondrial respiration, steady-state protein levels of mutant cdc28 are strongly reduced, accounting for the aggravated growth defects. Stability of Cdc28 is promoted by the Hsp90-Cdc37 chaperone complex. Our results show that atp2Δcdc28td double-mutant cells, but not single mutants, are sensitive to chemical inhibition of the Hsp90-Cdc37 complex, and exhibit reduced levels of additional Hsp90-Cdc37 client kinases, suggesting an inhibition of this complex. In agreement, overexpression of CDC37 improved atp2Δcdc28td cell growth and Cdc28 levels. Overall, our study shows that simultaneous disturbance of mitochondrial respiration and Cdc28 activity reduces the capacity of Cdc37 to chaperone client kinases, leading to growth arrest.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Telma S Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rute R Cesário
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
4
|
Mathiasen DP, Lisby M. Cell cycle regulation of homologous recombination inSaccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:172-84. [DOI: 10.1111/1574-6976.12066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022] Open
|
5
|
Koltovaya NA. Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413050086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Chen S, Liu D, Finley RL, Greenberg ML. Loss of mitochondrial DNA in the yeast cardiolipin synthase crd1 mutant leads to up-regulation of the protein kinase Swe1p that regulates the G2/M transition. J Biol Chem 2010; 285:10397-407. [PMID: 20086012 DOI: 10.1074/jbc.m110.100784] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The anionic phospholipid cardiolipin and its precursor phosphatidylglycerol are synthesized and localized in the mitochondrial inner membrane of eukaryotes. They are required for structural integrity and optimal activities of a large number of mitochondrial proteins and complexes. Previous studies showed that loss of anionic phospholipids leads to cell inviability in the absence of mitochondrial DNA. However, the mechanism linking loss of anionic phospholipids to petite lethality was unclear. To elucidate the mechanism, we constructed a crd1Deltarho degrees mutant, which is viable and mimics phenotypes of pgs1Delta in the petite background. We found that loss of cardiolipin in rho degrees cells leads to elevated expression of Swe1p, a morphogenesis checkpoint protein. Moreover, the retrograde pathway is activated in crd1Deltarho degrees cells, most likely due to the exacerbation of mitochondrial dysfunction. Interestingly, the expression of SWE1 is dependent on retrograde regulation as elevated expression of SWE1 is suppressed by deletion of RTG2 or RTG3. Taken together, these findings indicate that activation of the retrograde pathway leads to up-regulation of SWE1 in crd1Deltarho degrees cells. These results suggest that anionic phospholipids are required for processes that are essential for normal cell division in rho degrees cells.
Collapse
Affiliation(s)
- Shuliang Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
7
|
Kadyshevskaya EY, Koltovaya NA. Participation of SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 genes in checkpoint control in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Koltovaya NA, Nikulushkina YV, Kadyshevskaya EY, Roshina MP, Devin AB. Interaction between checkpoint genes RAD9, RAD17, RAD24, RAD53, and genes SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408080048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Koltovaya NA, Nikulushkina YV, Roshina MP, Devin AB. Interaction between checkpoint genes RAD9, RAD17, RAD24, and RAD53 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408060057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kretov DA, Kholmurodov KT, Koltovaya NA. An analysis of ATP binding with kinase catalytic subunit by molecular dynamics simulation of the CDK2 active kinase crystal lattice. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2007. [DOI: 10.1134/s0036024407100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Kholmurodov KT, Kretov DA, Gerasimova AS, Koltovaya NA. Molecular dynamics simulation of the substitution of serine for the conserved glycine in the G-loop in the cdc28-srm yeast mutant using the crystal lattice of human CDK2 kinase. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Kretov DA, Kholmurodov KT, Koltovaya NA. Molecular dynamics simulations of human kinase protein: the influence of a conserved glycine by serine substitution in the G-loop of a CDK2 active complex. MENDELEEV COMMUNICATIONS 2006. [DOI: 10.1070/mc2006v016n04abeh002337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Koltovaya NA, Guerasimova AS, Tchekhouta IA, Devin AB. NET1 and HFI1 genes of yeast mediate both chromosome maintenance and mitochondrial rho(-) mutagenesis. Yeast 2003; 20:955-71. [PMID: 12898711 DOI: 10.1002/yea.1010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An increase in the mitochondrial rho(-) mutagenesis is a well-known response of yeast cells to mutations in numerous nuclear genes as well as to various kinds of stress. Despite extensive studies for several decades, the biological significance of this response is still not fully understood. The genetic approach to solving this enigma includes a study of genes that are required for the high incidence of spontaneous rho(-) mutants. We have obtained mutations of a few nuclear genes of that sort and found that mutations in certain genes, including CDC28, the central cell-cycle regulation gene, result in a decrease in spontaneous rho(-) mutability and simultaneously affect the maintenance of the yeast chromosomes and plasmids. Two more genes resembling CDC28 in this respect are identified in the present work as a result of the characterization of four new mutants. These two genes are NET1 and HFI1 which mediate important regulatory protein-protein interactions in the yeast cell. The effects of four mutations, including net1-srm and hfi1-srm, on the maintenance of the yeast mitochondrial genome, chromosomes and plasmids, as well as on the cell's sensitivity to ionizing radiation, are also described. The data presented suggest that the pleiotropic srm mutations determining coordinate changes in the fidelity of mitotic transmission of chromosomes, plasmids and mtDNA molecules identify genes that most probably operate high up in the hierarchy of the general genetic regulation of yeast.
Collapse
Affiliation(s)
- N A Koltovaya
- Joint Institute for Nuclear Research, Moscow Region, 141980 Dubna, Russia.
| | | | | | | |
Collapse
|
15
|
Kitazono AA, Kron SJ. An essential function of yeast cyclin-dependent kinase Cdc28 maintains chromosome stability. J Biol Chem 2002; 277:48627-34. [PMID: 12359726 DOI: 10.1074/jbc.m207247200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple surveillance pathways maintain genomic integrity in yeast during mitosis. Although the cyclin-dependent kinase Cdc28 is a well established regulator of mitotic progression, evidence for a direct role in mitotic surveillance has been lacking. We have now implicated a conserved sequence in the Cdc28 carboxyl terminus in maintaining chromosome stability through mitosis. Six temperature-sensitive mutants were isolated via random mutagenesis of 13 carboxyl-terminal residues. These mutants identify a Cdc28 domain necessary for proper mitotic arrest in the face of kinetochore defects or microtubule inhibitors. These chromosome stability-defective cdc28(CST) mutants inappropriately continue mitosis when the mitotic spindle is disrupted at 23 degrees C, display high rates of spontaneous chromosome loss at 30 degrees C, and suffer catastrophic aneuploidy at 35 degrees C. A dosage suppression screen identified Cak1, a kinase known to phosphorylate and activate Cdc28, as a specific high copy suppressor of cdc28(CST) temperature sensitivity and chromosome instability. Suppression is independent of the kinase activity of Cak1, suggesting that Cak1 may bind to the carboxyl terminus to serve a non-catalytic role in assembly and/or stabilization of active Cdc28 complexes. Significantly, these studies implicate Cdc28 and Cak1 in an essential surveillance function required to maintain genetic stability through mitosis.
Collapse
Affiliation(s)
- Ana A Kitazono
- Center for Molecular Oncology and Department of Molecular Genetics and Cell Biology, the University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
16
|
Koltovaya NA, Devin AB. On the role of some checkpoint genes in determination of the radiation sensitivity of the yeast Saccharomyces cerevisiae. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2002; 387:569-72. [PMID: 12577640 DOI: 10.1023/a:1021758012136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- N A Koltovaya
- Joint Institute for Nuclear Research, Dubna, Moscow Oblast, 141980 Russia
| | | |
Collapse
|
17
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
18
|
Genetic diversity of yeasts in wine production. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-5334(02)80005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 2000; 64:281-315. [PMID: 10839818 PMCID: PMC98995 DOI: 10.1128/mmbr.64.2.281-315.2000] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.
Collapse
Affiliation(s)
- V Contamine
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
20
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
21
|
Abstract
cdc28-srm, a non-temperature-sensitive (ts) mutation in the CDC28 gene of Saccharomyces cerevisiae that affects fidelity of mitotic transmission of both mitochondrial and nuclear genetic structures (Devin et al., 1990), also affected cell growth and sensitivity to lethal effects of ionizing radiation. At 30 degrees C cdc28-13, a ts mutation, was without appreciable effects on spontaneous mitochondrial rho(-)-mutagenesis, cell growth and radiation sensitivity, whereas all three cell characteristics mentioned were affected (although to a lesser degree than by cdc28-srm) by cdc28-1, another ts mutation. cdc28-srm was without any significant effect on the rates of spontaneous nuclear gene mutations and gamma-ray-induced mitotic recombination. An analysis of double mutants as regards their radiation sensitivity has revealed additive or even synergistic interactions between the cdc28-srm mutation and every one of the rad6-1 and rad52-1 mutations. The rad9 delta allele was found to be epistatic to cdc28-srm. These data suggest that the p34CDC28 protein is involved in the RAD9-dependent feedback control of DNA integrity operating at the cell cycle checkpoints.
Collapse
Affiliation(s)
- N A Koltovaya
- Department of Radiation and Radiobiological Research, Joint Institute for Nuclear Research, Moscow Region, Dubna, Russia
| | | | | |
Collapse
|
22
|
Codón AC, Gasent-Ramírez JM, Benítez T. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts. Appl Environ Microbiol 1995; 61:630-8. [PMID: 7574601 PMCID: PMC167324 DOI: 10.1128/aem.61.2.630-638.1995] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To clarify the role that respiration, the mitochondrial genome, and interactions of mitochondria and nucleus play on sporulation and to improve the sporogenic ability of several baker's yeasts, an investigation of the effects of different media and culture conditions on baker's yeast sporulation was undertaken. When standard protocols were followed, the sporulation frequency varied between 20 and 60% and the frequency of four-spore asci varied between 1 and 6%. Different presporulation and sporulation media, the use of solid versus liquid media, and incubation at 22 versus 30 degrees C were checked, and the cells were collected from presporulation media in either exponential or stationary phase. Best results, yielding sporulation and four-spore ascus formation frequencies up to 97 and 60%, respectively, were obtained by collection of the cells in exponential phase from liquid presporulation medium with 10% glucose and transfer of them to sporulation medium with 0.5% potassium acetate at 22 degrees C. Under these conditions, the most important factor was the growth phase (exponential versus stationary) at which cells from presporulation medium were collected. Changes in sporulation frequencies were also measured after transfer of mitochondria from different sources to baker's yeasts. When mitochondria from laboratory, baker's, and wine yeasts were transferred to baker's and laboratory petite strains, sporulation and four-spore ascus formation frequencies dropped dramatically either to no sporulation at all or to less than 50% in both parameters. This transfer also resulted in an increase in the frequency of petite mutant formation but yielded similar growth and respiration rates in glycerol.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A C Codón
- Departmento de Genética, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
23
|
An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 1994. [PMID: 8164683 DOI: 10.1128/mcb.14.5.3320] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells.
Collapse
|
24
|
Nugroho TT, Mendenhall MD. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 1994; 14:3320-8. [PMID: 8164683 PMCID: PMC358698 DOI: 10.1128/mcb.14.5.3320-3328.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells.
Collapse
Affiliation(s)
- T T Nugroho
- Department of Biochemistry, University of Kentucky, Lexington 40536-0096
| | | |
Collapse
|
25
|
Mortimer RK, Contopoulou CR, King JS. Genetic and physical maps of Saccharomyces cerevisiae, Edition 11. Yeast 1992; 8:817-902. [PMID: 1413997 DOI: 10.1002/yea.320081002] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|