1
|
Colombo S, Longoni E, Gnugnoli M, Busti S, Martegani E. Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 2022; 92:110262. [DOI: 10.1016/j.cellsig.2022.110262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
|
2
|
Schneider KL, Wollman AJM, Nyström T, Shashkova S. Comparison of endogenously expressed fluorescent protein fusions behaviour for protein quality control and cellular ageing research. Sci Rep 2021; 11:12819. [PMID: 34140587 PMCID: PMC8211707 DOI: 10.1038/s41598-021-92249-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The yeast Hsp104 protein disaggregase is often used as a reporter for misfolded or damaged protein aggregates and protein quality control and ageing research. Observing Hsp104 fusions with fluorescent proteins is a popular approach to follow post stress protein aggregation, inclusion formation and disaggregation. While concerns that bigger protein tags, such as genetically encoded fluorescent tags, may affect protein behaviour and function have been around for quite some time, experimental evidence of how exactly the physiology of the protein of interest is altered within fluorescent protein fusions remains limited. To address this issue, we performed a comparative assessment of endogenously expressed Hsp104 fluorescent fusions function and behaviour. We provide experimental evidence that molecular behaviour may not only be altered by introducing a fluorescent protein tag but also varies depending on such a tag within the fusion. Although our findings are especially applicable to protein quality control and ageing research in yeast, similar effects may play a role in other eukaryotic systems.
Collapse
Affiliation(s)
- Kara L Schneider
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Adam J M Wollman
- Newcastle University Biosciences Institute, Newcastle, NE2 4HH, UK
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
3
|
Fan L, Xiao W. Study Essential Gene Functions by Plasmid Shuffling. Methods Mol Biol 2020; 2196:53-62. [PMID: 32889712 DOI: 10.1007/978-1-0716-0868-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
An essential gene is defined as a gene that cannot be completely removed from the genome. Investigation of an essential gene function is limited because its deletion strain cannot be readily created. Here we describe a protocol called plasmid shuffling that can be conveniently employed in yeast to study essential gene functions. The essential gene is first cloned into a YCp-based plasmid with URA3 as a selectable marker and then transformed into host cells. The transformed cells can then be used to delete the chromosomal copy of the essential gene. The gene is then cloned into another YCp-based plasmid with a different selectable marker, and the gene sequence can be altered in vitro. Plasmids carrying the mutated gene sequences are transformed into the above cells, resulting in carrying two plasmids. These cells are grown in medium containing 5-FOA that selects ura3 cells. The 5-FOA-resistant cells are expected to only carry the plasmid containing the mutated essential gene, whose functions can be assessed.
Collapse
Affiliation(s)
- Li Fan
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.,College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada. .,College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
4
|
Persson S, Welkenhuysen N, Shashkova S, Cvijovic M. Fine-Tuning of Energy Levels Regulates SUC2 via a SNF1-Dependent Feedback Loop. Front Physiol 2020; 11:954. [PMID: 32922308 PMCID: PMC7456839 DOI: 10.3389/fphys.2020.00954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022] Open
Abstract
Nutrient sensing pathways are playing an important role in cellular response to different energy levels. In budding yeast, Saccharomyces cerevisiae, the sucrose non-fermenting protein kinase complex SNF1 is a master regulator of energy homeostasis. It is affected by multiple inputs, among which energy levels is the most prominent. Cells which are exposed to a switch in carbon source availability display a change in the gene expression machinery. It has been shown that the magnitude of the change varies from cell to cell. In a glucose rich environment Snf1/Mig1 pathway represses the expression of its downstream target, such as SUC2. However, upon glucose depletion SNF1 is activated which leads to an increase in SUC2 expression. Our single cell experiments indicate that upon starvation, gene expression pattern of SUC2 shows rapid increase followed by a decrease to initial state with high cell-to-cell variability. The mechanism behind this behavior is currently unknown. In this work we study the long-term behavior of the Snf1/Mig1 pathway upon glucose starvation with a microfluidics and non-linear mixed effect modeling approach. We show a negative feedback mechanism, involving Snf1 and Reg1, which reduces SUC2 expression after the initial strong activation. Snf1 kinase activity plays a key role in this feedback mechanism. Our systems biology approach proposes a negative feedback mechanism that works through the SNF1 complex and is controlled by energy levels. We further show that Reg1 likely is involved in the negative feedback mechanism.
Collapse
Affiliation(s)
- Sebastian Persson
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Extranuclear Structural Components that Mediate Dynamic Chromosome Movements in Yeast Meiosis. Curr Biol 2020; 30:1207-1216.e4. [PMID: 32059771 DOI: 10.1016/j.cub.2020.01.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/20/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
Telomere-led rapid chromosome movements or rapid prophase movements direct fundamental meiotic processes required for successful haploidization of the genome. Critical components of the machinery that generates rapid prophase movements are unknown, and the mechanism underlying rapid prophase movements remains poorly understood. We identified S. cerevisiae Mps2 as the outer nuclear membrane protein that connects the LINC complex with the cytoskeleton. We also demonstrate that the motor Myo2 works together with Mps2 to couple the telomeres to the actin cytoskeleton. Further, we show that Csm4 interacts with Mps2 and is required for perinuclear localization of Myo2, implicating Csm4 as a regulator of the Mps2-Myo2 interaction. We propose a model in which the newly identified functions of Mps2 and Myo2 cooperate with Csm4 to drive chromosome movements in meiotic prophase by coupling telomeres to the actin cytoskeleton.
Collapse
|
6
|
Pinneh EC, Mina JG, Stark MJR, Lindell SD, Luemmen P, Knight MR, Steel PG, Denny PW. The identification of small molecule inhibitors of the plant inositol phosphorylceramide synthase which demonstrate herbicidal activity. Sci Rep 2019; 9:8083. [PMID: 31147620 PMCID: PMC6542793 DOI: 10.1038/s41598-019-44544-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Resistance to 157 different herbicides and 88% of known sites of action has been observed, with many weeds resistant to two or more modes. Coupled with tighter environmental regulation, this demonstrates the need to identify new modes of action and novel herbicides. The plant sphingolipid biosynthetic enzyme, inositol phosphorylceramide synthase (IPCS), has been identified as a novel, putative herbicide target. The non-mammalian nature of this enzyme offers the potential of discovering plant specific inhibitory compounds with minimal impact on animals and humans, perhaps leading to the development of new non-toxic herbicides. The best characterised and most highly expressed isoform of the enzyme in the model-dicot Arabidopsis, AtIPCS2, was formatted into a yeast-based assay which was then utilized to screen a proprietary library of over 11,000 compounds provided by Bayer AG. Hits from this screen were validated in a secondary in vitro enzyme assay. These studies led to the identification of a potent inhibitor that showed selectivity for AtIPCS2 over the yeast orthologue, and activity against Arabidopsis seedlings. This work highlighted the use of a yeast-based screening assay to discover herbicidal compounds and the status of the plant IPCS as a novel herbicidal target.
Collapse
Affiliation(s)
- Elizabeth C Pinneh
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - John G Mina
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Michael J R Stark
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Stephen D Lindell
- Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Peter Luemmen
- Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Marc R Knight
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | - Paul W Denny
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
7
|
Construction and characterization of a Saccharomyces cerevisiae strain able to grow on glucosamine as sole carbon and nitrogen source. Sci Rep 2018; 8:16949. [PMID: 30446667 PMCID: PMC6240059 DOI: 10.1038/s41598-018-35045-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023] Open
Abstract
Saccharomyces cerevisiae can transport and phosphorylate glucosamine, but cannot grow on this amino sugar. While an enzyme catalyzing the reaction from glucosamine-6-phosphate to fructose-6-phosphate, necessary for glucosamine catabolism, is present in yeasts using N-acetylglucosamine as carbon source, a sequence homology search suggested that such an enzyme is absent from Saccharomyces cerevisiae. The gene YlNAG1 encoding glucosamine-6-phosphate deaminase from Yarrowia lipolytica was introduced into S. cerevisiae and growth in glucosamine tested. The constructed strain grew in glucosamine as only carbon and nitrogen source. Growth on the amino sugar required respiration and caused an important ammonium excretion. Strains overexpressing YlNAG1 and one of the S. cerevisiae glucose transporters HXT1, 2, 3, 4, 6 or 7 grew in glucosamine. The amino sugar caused catabolite repression of different enzymes to a lower extent than that produced by glucose. The availability of a strain of S. cerevisiae able to grow on glucosamine opens new possibilities to investigate or manipulate pathways related with glucosamine metabolism in a well-studied organism.
Collapse
|
8
|
Gali VK, Dickerson D, Katou Y, Fujiki K, Shirahige K, Owen-Hughes T, Kubota T, Donaldson AD. Identification of Elg1 interaction partners and effects on post-replication chromatin re-formation. PLoS Genet 2018; 14:e1007783. [PMID: 30418970 PMCID: PMC6258251 DOI: 10.1371/journal.pgen.1007783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/26/2018] [Accepted: 10/23/2018] [Indexed: 12/04/2022] Open
Abstract
Elg1, the major subunit of a Replication Factor C-like complex, is critical to ensure genomic stability during DNA replication, and is implicated in controlling chromatin structure. We investigated the consequences of Elg1 loss for the dynamics of chromatin re-formation following DNA replication. Measurement of Okazaki fragment length and the micrococcal nuclease sensitivity of newly replicated DNA revealed a defect in nucleosome organization in the absence of Elg1. Using a proteomic approach to identify Elg1 binding partners, we discovered that Elg1 interacts with Rtt106, a histone chaperone implicated in replication-coupled nucleosome assembly that also regulates transcription. A central role for Elg1 is the unloading of PCNA from chromatin following DNA replication, so we examined the relative importance of Rtt106 and PCNA unloading for chromatin reassembly following DNA replication. We find that the major cause of the chromatin organization defects of an ELG1 mutant is PCNA retention on DNA following replication, with Rtt106-Elg1 interaction potentially playing a contributory role.
Collapse
Affiliation(s)
- Vamsi K. Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - David Dickerson
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Katsunori Fujiki
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
| | - Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Anne D. Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
9
|
Silva A, Cavero S, Begley V, Solé C, Böttcher R, Chávez S, Posas F, de Nadal E. Regulation of transcription elongation in response to osmostress. PLoS Genet 2017; 13:e1007090. [PMID: 29155810 PMCID: PMC5720810 DOI: 10.1371/journal.pgen.1007090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Cells trigger massive changes in gene expression upon environmental fluctuations. The Hog1 stress-activated protein kinase (SAPK) is an important regulator of the transcriptional activation program that maximizes cell fitness when yeast cells are exposed to osmostress. Besides being associated with transcription factors bound at target promoters to stimulate transcriptional initiation, activated Hog1 behaves as a transcriptional elongation factor that is selective for stress-responsive genes. Here, we provide insights into how this signaling kinase functions in transcription elongation. Hog1 phosphorylates the Spt4 elongation factor at Thr42 and Ser43 and such phosphorylations are essential for the overall transcriptional response upon osmostress. The phosphorylation of Spt4 by Hog1 regulates RNA polymerase II processivity at stress-responsive genes, which is critical for cell survival under high osmostress conditions. Thus, the direct regulation of Spt4 upon environmental insults serves to stimulate RNA Pol II elongation efficiency.
Collapse
Affiliation(s)
- Andrea Silva
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Santiago Cavero
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| |
Collapse
|
10
|
Scarcia P, Palmieri L, Agrimi G, Palmieri F, Rottensteiner H. Three mitochondrial transporters of Saccharomyces cerevisiae are essential for ammonium fixation and lysine biosynthesis in synthetic minimal medium. Mol Genet Metab 2017; 122:54-60. [PMID: 28784321 DOI: 10.1016/j.ymgme.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
The nuclear genes of Saccharomyces cerevisiae YHM2, ODC1 and ODC2 encode three transporters that are localized in the inner mitochondrial membrane. In this study, the roles of YHM2, ODC1 and ODC2 in the assimilation of nitrogen and in the biosynthesis of lysine have been investigated. Both the odc1Δodc2Δ double knockout and the yhm2Δ mutant grew similarly as the YPH499 wild-type strain on synthetic minimal medium (SM) containing 2% glucose and ammonia as the main nitrogen source. In contrast, the yhm2Δodc1Δodc2Δ triple knockout exhibited a marked growth defect under the same conditions. This defect was fully restored by the individual expression of YHM2, ODC1 or ODC2 in the triple deletion strain. Furthermore, the lack of growth of yhm2Δodc1Δodc2Δ on 2% glucose SM was rescued by the addition of glutamate, but not glutamine, to the medium. Using lysine-prototroph YPH499-derived strains, the yhm2Δodc1Δodc2Δ knockout (but not the odc1Δodc2Δ and yhm2Δ mutants) also displayed a growth defect in lysine biosynthesis on 2% glucose SM, which was rescued by the addition of lysine and, to a lesser extent, by the addition of 2-aminoadipate. Additional analysis of the triple mutant showed that it is not respiratory-deficient and does not display mitochondrial DNA instability. These results provide evidence that only the simultaneous absence of YHM2, ODC1 and ODC2 impairs the export from the mitochondrial matrix of i) 2-oxoglutarate which is necessary for the synthesis of glutamate and ammonium fixation in the cytosol and ii) 2-oxoadipate which is required for lysine biosynthesis in the cytosol. Finally, the data presented allow one to suggest that the yhm2Δodc1Δodc2Δ triple knockout is suitable in complementation studies aimed at assessing the pathogenic potential of human SLC25A21 (ODC) mutations.
Collapse
Affiliation(s)
- P Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - L Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Orabona 4, 70125 Bari, Italy
| | - G Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - F Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Orabona 4, 70125 Bari, Italy.
| | - H Rottensteiner
- Department of Physiological Chemistry, Ruhr-University of Bochum, 44780 Bochum, Germany
| |
Collapse
|
11
|
Mirallas O, Ballega E, Samper-Martín B, García-Márquez S, Carballar R, Ricco N, Jiménez J, Clotet J. Intertwined control of the cell cycle and nucleocytoplasmic transport by the cyclin-dependent kinase Pho85 and RanGTPase Gsp1 in Saccharomyces cerevisiae. Microbiol Res 2017; 206:168-176. [PMID: 29146254 DOI: 10.1016/j.micres.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Deciphering the molecular mechanisms that connect cell cycle progression and nucleocytoplasmic transport is of particular interest: this intertwined relationship, once understood, may provide useful insight on the diseases resulting from the malfunction of these processes. In the present study we report on findings that indicate a biochemical connection between the cell cycle regulator CDK Pho85 and Ran-GTPase Gsp1, an essential nucleocytoplasmic transport component. When Gsp1 cannot be phosphorylated by Pho85, the cell cycle progression is impaired. Accordingly, a nonphosphorylatable version of Gsp1 abnormally localizes to the nucleus, which impairs the nuclear transport of molecules, including key components of cell cycle progression. Furthermore, our results suggest that the physical interaction of Gsp1 and the Kap95 karyopherin, essential to the release of nuclear cargoes, is altered. Altogether, the present findings point to the involvement of a biochemical mechanism in the interlocked regulation of the cell cycle and nuclear transport.
Collapse
Affiliation(s)
- Oriol Mirallas
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elisabet Ballega
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper-Martín
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergio García-Márquez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Reyes Carballar
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Josep Clotet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
12
|
Sneha P, Thirumal Kumar D, Lijo J, Megha M, Siva R, George Priya Doss C. Probing the Protein-Protein Interaction Network of Proteins Causing Maturity Onset Diabetes of the Young. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:167-202. [PMID: 29412996 DOI: 10.1016/bs.apcsb.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions (PPIs) play vital roles in various cellular pathways. Most of the proteins perform their responsibilities by interacting with an enormous number of proteins. Understanding these interactions of the proteins and their interacting partners has shed light toward the field of drug discovery. Also, PPIs enable us to understand the functions of a protein by understanding their interacting partners. Consequently, in the current study, PPI network of the proteins causing MODY (Maturity Onset Diabetes of the Young) was drawn, and their correlation in causing a disease condition was marked. MODY is a monogenic type of diabetes caused by autosomal dominant inheritance. Extensive research on transcription factor and their corresponding genetic pathways have been studied over the last three decades, yet, very little is understood about the molecular modalities of highly dynamic interactions between transcription factors, genomic DNA, and the protein partners. The current study also reveals the interacting patterns of the various transcription factors. Consequently, in the current work, we have devised a PPI analysis to understand the plausible pathway through which the protein leads to a deformity in glucose uptake.
Collapse
Affiliation(s)
- P Sneha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Jose Lijo
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - M Megha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - R Siva
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
13
|
Li F, Ball LG, Fan L, Hanna M, Xiao W. Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae. Curr Genet 2017; 64:459-468. [DOI: 10.1007/s00294-017-0753-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
14
|
Wollman AJ, Shashkova S, Hedlund EG, Friemann R, Hohmann S, Leake MC. Transcription factor clusters regulate genes in eukaryotic cells. eLife 2017; 6:27451. [PMID: 28841133 PMCID: PMC5602325 DOI: 10.7554/elife.27451] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression.
Collapse
Affiliation(s)
- Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Sviatlana Shashkova
- Biological Physical Sciences Institute, University of York, York, United Kingdom.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Erik G Hedlund
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
15
|
Franken J, Burger A, Swiegers JH, Bauer FF. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015; 99:6377-89. [PMID: 25851717 DOI: 10.1007/s00253-015-6561-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/11/2015] [Accepted: 03/19/2015] [Indexed: 12/30/2022]
Abstract
Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.
Collapse
Affiliation(s)
- Jaco Franken
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Matieland, 7602, South Africa
| | | | | | | |
Collapse
|
16
|
Li J, Biss M, Fu Y, Xu X, Moore SA, Xiao W. Two duplicated genes DDI2 and DDI3 in budding yeast encode a cyanamide hydratase and are induced by cyanamide. J Biol Chem 2015; 290:12664-75. [PMID: 25847245 DOI: 10.1074/jbc.m115.645408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Two DNA damage-inducible genes in Saccharomyces cerevisiae, DDI2 and DDI3, are identical and encode putative HD domain-containing proteins, whose functions are currently unknown. Because Ddi2/3 also shows limited homology to a fungal cyanamide hydratase that converts cyanamide to urea, we tested the enzymatic activity of recombinant Ddi2. To this end, we developed a novel enzymatic assay and determined that the Km value of the recombinant Ddi2/3 for cyanamide is 17.3 ± 0.05 mm, and its activity requires conserved residues in the HD domain. Unlike most other DNA damage-inducible genes, DDI2/3 is only induced by a specific set of alkylating agents and surprisingly is strongly induced by cyanamide. To characterize the biological function of DDI2/3, we sequentially deleted both DDI genes and found that the double mutant was unable to metabolize cyanamide and became much more sensitive to growth inhibition by cyanamide, suggesting that the DDI2/3 genes protect host cells from cyanamide toxicity. Despite the physiological relevance of the cyanamide induction, DDI2/3 is not involved in its own transcriptional regulation. The significance of cyanamide hydratase activity and its induced expression is discussed.
Collapse
Affiliation(s)
- Jia Li
- From the Departments of Microbiology and Immunology and
| | - Michael Biss
- From the Departments of Microbiology and Immunology and
| | - Yu Fu
- From the Departments of Microbiology and Immunology and
| | - Xin Xu
- the College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stanley A Moore
- Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Wei Xiao
- From the Departments of Microbiology and Immunology and the College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
17
|
Klassen R, Grunewald P, Thüring KL, Eichler C, Helm M, Schaffrath R. Loss of anticodon wobble uridine modifications affects tRNA(Lys) function and protein levels in Saccharomyces cerevisiae. PLoS One 2015; 10:e0119261. [PMID: 25747122 PMCID: PMC4352028 DOI: 10.1371/journal.pone.0119261] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
In eukaryotes, wobble uridines in the anticodons of tRNALysUUU, tRNAGluUUC and tRNAGlnUUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNALysUUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNALysUUU hypomodification and malfunction.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail: (RK); (RS)
| | - Pia Grunewald
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Kathrin L. Thüring
- Institut für Pharmazie und Biochemie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Christian Eichler
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Mark Helm
- Institut für Pharmazie und Biochemie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail: (RK); (RS)
| |
Collapse
|
18
|
Abdel-Fattah W, Jablonowski D, Di Santo R, Thüring KL, Scheidt V, Hammermeister A, ten Have S, Helm M, Schaffrath R, Stark MJR. Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genet 2015; 11:e1004931. [PMID: 25569479 PMCID: PMC4287497 DOI: 10.1371/journal.pgen.1004931] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022] Open
Abstract
Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase. tRNA molecules function as adapters in protein synthesis, bringing amino acids to the ribosome and reading the genetic code through codon-anticodon base pairing. When the tRNA contains a uridine residue in the “wobble position” of its anticodon, which base-pairs with purine residues in the third position of a cognate codon, it is almost always chemically modified and modification is required for efficient decoding. In eukaryotic cells, these wobble uridine modifications require a conserved protein complex called Elongator. Our work shows that Elp1, Elongator's largest subunit, is phosphorylated on several sites. By blocking phosphorylation at these positions using mutations, we identified four phosphorylation sites that are important for Elongator's role in tRNA modification. We have also shown that Hrr25 protein kinase, a member of the casein kinase I (CKI) family, is responsible for modification of two of the sites that are important for Elongator function. Phosphorylation appears to affect interaction of the Elongator complex both with its kinase (Hrr25) and with Kti12, an accessory protein previously implicated in Elongator function. Our studies imply that Elp1 phosphorylation plays a positive role in Elongator-mediated tRNA modification and raise the possibility that wobble uridine modification may be regulated, representing a potential translational control mechanism.
Collapse
Affiliation(s)
- Wael Abdel-Fattah
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Germany
| | | | - Rachael Di Santo
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kathrin L. Thüring
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Germany
| | - Viktor Scheidt
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Germany
| | | | - Sara ten Have
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark Helm
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Germany
| | - Raffael Schaffrath
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Germany
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- * E-mail: (RS); (MJRS)
| | - Michael J. R. Stark
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (RS); (MJRS)
| |
Collapse
|
19
|
Canadell D, González A, Casado C, Ariño J. Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol Microbiol 2014; 95:555-72. [PMID: 25425491 DOI: 10.1111/mmi.12886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
Maintenance of ion homeostatic mechanisms is essential for living cells, including the budding yeast Saccharomyces cerevisiae. Whereas the impact of changes in phosphate metabolism on metal ion homeostasis has been recently examined, the inverse effect is still largely unexplored. We show here that depletion of potassium from the medium or alteration of diverse regulatory pathways controlling potassium uptake, such as the Trk potassium transporters or the Pma1 H(+) -ATPase, triggers a response that mimics that of phosphate (Pi) deprivation, exemplified by accumulation of the high-affinity Pi transporter Pho84. This response is mediated by and requires the integrity of the PHO signaling pathway. Removal of potassium from the medium does not alter the amount of total or free intracellular Pi, but is accompanied by decreased ATP and ADP levels and rapid depletion of cellular polyphosphates. Therefore, our data do not support the notion of Pi being the major signaling molecule triggering phosphate-starvation responses. We also observe that cells with compromised potassium uptake cannot grow under limiting Pi conditions. The link between potassium and phosphate homeostasis reported here could explain the invasive phenotype, characteristic of nutrient deprivation, observed in potassium-deficient yeast cells.
Collapse
Affiliation(s)
- David Canadell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | | | | |
Collapse
|
20
|
Ball LG, Hanna MD, Lambrecht AD, Mitchell BA, Ziola B, Cobb JA, Xiao W. The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair. PLoS One 2014; 9:e109292. [PMID: 25343618 PMCID: PMC4208732 DOI: 10.1371/journal.pone.0109292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 09/10/2014] [Indexed: 12/17/2022] Open
Abstract
Yeast DNA postreplication repair (PRR) bypasses replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA, namely translesion synthesis (TLS) and error-free PRR, which are regulated via sequential ubiquitination of proliferating cell nuclear antigen (PCNA). We previously demonstrated that error-free PRR utilizes homologous recombination to facilitate template switching. To our surprise, genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which are also required for homologous recombination, are epistatic to TLS mutations. Further genetic analyses indicated that two other nucleases involved in double-strand end resection, Sae2 and Exo1, are also variably required for efficient lesion bypass. The involvement of the above genes in TLS and/or error-free PRR could be distinguished by the mutagenesis assay and their differential effects on PCNA ubiquitination. Consistent with the observation that the MRX complex is required for both branches of PRR, the MRX complex was found to physically interact with Rad18 in vivo. In light of the distinct and overlapping activities of the above nucleases in the resection of double-strand breaks, we propose that the interplay between distinct single-strand nucleases dictate the preference between TLS and error-free PRR for lesion bypass.
Collapse
Affiliation(s)
- Lindsay G. Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Michelle D. Hanna
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amanda D. Lambrecht
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryan A. Mitchell
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Barry Ziola
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer A. Cobb
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Wei Xiao
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- College of Life Sciences, Capital Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Sau S, Conrad MN, Lee CY, Kaback DB, Dresser ME, Jayaram M. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation. ACTA ACUST UNITED AC 2014; 205:643-61. [PMID: 24914236 PMCID: PMC4050733 DOI: 10.1083/jcb.201312002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The yeast 2 micron plasmid engages a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Michael N Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - David B Kaback
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07101
| | - Michael E Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
22
|
Di Santo R, Bandau S, Stark MJR. A conserved and essential basic region mediates tRNA binding to the Elp1 subunit of the Saccharomyces cerevisiae Elongator complex. Mol Microbiol 2014; 92:1227-42. [PMID: 24750273 PMCID: PMC4150532 DOI: 10.1111/mmi.12624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 12/25/2022]
Abstract
Elongator is a conserved, multi-protein complex discovered in Saccharomyces cerevisiae, loss of which confers a range of pleiotropic phenotypes. Elongator in higher eukaryotes is required for normal growth and development and a mutation in the largest subunit of human Elongator (Elp1) causes familial dysautonomia, a severe recessive neuropathy. Elongator promotes addition of mcm(5) and ncm(5) modifications to uridine in the tRNA anticodon 'wobble' position in both yeast and higher eukaryotes. Since these modifications are required for the tRNAs to function efficiently, a translation defect caused by hypomodified tRNAs may therefore underlie the variety of phenotypes associated with Elongator dysfunction. The Elp1 carboxy-terminal domain contains a highly conserved arginine/lysine-rich region that resembles a nuclear localization sequence (NLS). Using alanine substitution mutagenesis, we show that this region is essential for Elongator's function in tRNA wobble uridine modification. However, rather than acting to determine the nucleo-cytoplasmic distribution of Elongator, we find that the basic region plays a critical role in a novel interaction between tRNA and the Elp1 carboxy-terminal domain. Thus the conserved basic region in Elp1 may be essential for tRNA wobble uridine modification by acting as tRNA binding motif.
Collapse
Affiliation(s)
- Rachael Di Santo
- Centre for Gene Regulation & Expression, College of Life Sciences, MSI/WTB Complex, University of DundeeDundee, DD1 5EH, Scotland, UK
| | | | - Michael J R Stark
- Centre for Gene Regulation & Expression, College of Life Sciences, MSI/WTB Complex, University of DundeeDundee, DD1 5EH, Scotland, UK
| |
Collapse
|
23
|
Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PLoS One 2013; 8:e77499. [PMID: 24147008 PMCID: PMC3795680 DOI: 10.1371/journal.pone.0077499] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023] Open
Abstract
Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.
Collapse
|
24
|
González A, Casado C, Petrezsélyová S, Ruiz A, Ariño J. Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genet Biol 2013; 53:1-9. [PMID: 23454581 DOI: 10.1016/j.fgb.2013.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 12/25/2022]
Abstract
Yeast flocculation and invasive growth are processes of great interest in fundamental biology and also relevant in biotechnology and medicine. Hal3 and Vhs3 are moonlighting proteins acting in Saccharomyces cerevisiae both as inhibitors of the Ppz protein phosphatases and as components of a catalytic step in CoA biosynthesis. The double hal3 vhs3 mutant is not viable but, under semi-permissive conditions, the tetO:HAL3 vhs3 strain shows a flocculent phenotype, invasive growth and increased expression of the flocculin-encoding FLO11 gene. We show here that all these effects are caused by hyperactivation of Ppz1 as a result of depletion of its natural inhibitors. The evidence indicates that hyperactivation of Ppz1 would impair potassium transport through the Trk1/Trk2 transporters, thus resulting in a decrease in the intracellular pH and a subsequent increase in the levels of cAMP. Mutation of the TPK2 isoform of protein kinase A blocks the increase in FLO11 expression, and eliminates the flocculent and invasive phenotypes produced by depletion of Hal3 and Vhs3. Interestingly, mutation of RIM101 also significantly decreases FLO11 expression under these conditions. Cells lacking Trk1,2 display an invasive phenotype that is abolished by deletion of FLO8 or by increasing the potassium concentration in the medium. Therefore, our results support a model in which hyperactivation of Ppz phosphatases would result in alteration of potassium transport, activation of Tpk2 and signaling to the FLO11 promoter by means of the Flo8 transcription factor, thus modulating flocculation and invasive growth. This model highlights an unsuspected link between potassium homeostasis and these important morphogenetic events.
Collapse
Affiliation(s)
- Asier González
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Styger G, Jacobson D, Prior BA, Bauer FF. Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012; 97:4429-42. [PMID: 23111598 DOI: 10.1007/s00253-012-4522-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
During alcoholic fermentation, higher alcohols, esters, and acids are formed from amino acids via the Ehrlich pathway by yeast, but many of the genes encoding the enzymes have not yet been identified. When the BAT1/2 genes, encoding transaminases that deaminate amino acids in the first step of the Ehrlich pathway are deleted, higher metabolite formation is significantly decreased. Screening yeast strains with deletions of genes encoding decarboxylases, dehydrogenases, and reductases revealed nine genes whose absence had the most significant impact on higher alcohol production. The seven most promising genes (AAD6, BAT2, HOM2, PAD1, PRO2, SPE1, and THI3) were further investigated by constructing double- and triple-deletion mutants. All double-deletion strains showed a greater decrease in isobutanol, isoamyl alcohol, isobutyric, and isovaleric acid production than the corresponding single deletion strains with the double-deletion strains in combination with ∆bat2 and the ∆hom2-∆aad6 strain revealing the greatest impact. BAT2 is the dominant gene in these deletion strains and this suggests the initial transaminase step of the Ehrlich pathway is rate-limiting. The triple-deletion strains in combination with BAT2 (∆bat2-∆thi3-∆aad6 and ∆bat2-∆thi3-∆hom2) had the greatest impact on the end metabolite production with the exception of isoamyl alcohol and isovaleric acid. The strain deleted for two dehydrogenases and a reductase (∆hom2-∆pro2-∆aad6) had a greater effect on the levels of these two compounds. This study contributes to the elucidation of the Ehrlich pathway and its significance for aroma production by fermenting yeast cells.
Collapse
Affiliation(s)
- Gustav Styger
- Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | | |
Collapse
|
26
|
Oxidative stress responses involve oxidation of a conserved ubiquitin pathway enzyme. Mol Cell Biol 2012; 32:4472-81. [PMID: 22949505 DOI: 10.1128/mcb.00559-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although it is vital that cells detect and respond to oxidative stress to allow adaptation and repair damage, the underlying sensing and signaling mechanisms that control these responses are unclear. Protein ubiquitinylation plays an important role in controlling many biological processes, including cell division. In Saccharomyces cerevisiae, ubiquitinylation involves a single E1 enzyme, Uba1, with multiple E2s and E3s providing substrate specificity. For instance, the conserved E2 Cdc34 ubiquitinylates many substrates, including the cyclin-dependent kinase inhibitor Sic1, targeting it for degradation to allow cell cycle progression. Here we reveal that, in contrast to other ubiquitin pathway E2 enzymes, Cdc34 is particularly sensitive to oxidative inactivation, through sequestration of the catalytic cysteine in a disulfide complex with Uba1, by levels of oxidant that do not reduce global ubiquitinylation of proteins. This Cdc34 oxidation is associated with (i) reduced levels of Cdc34-ubiquitin thioester forms, (ii) increased stability of at least one Cdc34 substrate, Sic1, and (iii) Sic1-dependent delay in cell cycle progression. Together, these data reveal that the differential sensitivity of a ubiquitin pathway E2 enzyme to oxidation is utilized as a stress-sensing mechanism to respond to oxidative stress.
Collapse
|
27
|
Hiraga SI, Botsios S, Donze D, Donaldson AD. TFIIIC localizes budding yeast ETC sites to the nuclear periphery. Mol Biol Cell 2012; 23:2741-54. [PMID: 22496415 PMCID: PMC3395662 DOI: 10.1091/mbc.e11-04-0365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes contain multiple extra TFIIIC (ETC) sites that bind the TFIIIC transcription factor without recruiting RNA polymerase. TFIIIC directs the localization of Saccharomyces cerevisiae ETC sites to the nuclear periphery. Remarkably, however, perinuclear localization is not required for ETC sites to act as chromatin boundaries. Chromatin function requires specific three-dimensional architectures of chromosomes. We investigated whether Saccharomyces cerevisiae extra TFIIIC (ETC) sites, which bind the TFIIIC transcription factor but do not recruit RNA polymerase III, show specific intranuclear positioning. We show that six of the eight known S. cerevisiae ETC sites localize predominantly at the nuclear periphery, and that ETC sites retain their tethering function when moved to a new chromosomal location. Several lines of evidence indicate that TFIIIC is central to the ETC peripheral localization mechanism. Mutating or deleting the TFIIIC-binding consensus ablated ETC -site peripheral positioning, and inducing degradation of the TFIIIC subunit Tfc3 led to rapid release of an ETC site from the nuclear periphery. We find, moreover, that anchoring one TFIIIC subunit at an ectopic chromosomal site causes recruitment of others and drives peripheral tethering. Localization of ETC sites at the nuclear periphery also requires Mps3, a Sad1-UNC-84–domain protein that spans the inner nuclear membrane. Surprisingly, we find that the chromatin barrier and insulator functions of an ETC site do not depend on correct peripheral localization. In summary, TFIIIC and Mps3 together direct the intranuclear positioning of a new class of S. cerevisiae genomic loci positioned at the nuclear periphery.
Collapse
Affiliation(s)
- Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | |
Collapse
|
28
|
Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:21. [PMID: 21798060 PMCID: PMC3162486 DOI: 10.1186/1754-6834-4-21] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/28/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. RESULTS The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. CONCLUSIONS Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media gave a substantial improvement in isobutanol production for the reference strain, but not for the ILV2 ILV3 ILV5 overexpression strain. This result implies that other constraints besides the enzyme activities for the supply of 2-ketoisovalerate may become bottlenecks for isobutanol production after ILV2, ILV3, and ILV5 have been overexpressed, which most probably includes the valine inhibition to Ilv2.
Collapse
Affiliation(s)
- Xiao Chen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Kristian F Nielsen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Irina Borodina
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Morten C Kielland-Brandt
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Kaisa Karhumaa
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
29
|
Jain VK, Divol B, Prior BA, Bauer FF. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Appl Microbiol Biotechnol 2011; 93:131-41. [PMID: 21720823 DOI: 10.1007/s00253-011-3431-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 12/01/2022]
Abstract
Saccharomyces cerevisiae maintains a redox balance under fermentative growth conditions by re-oxidizing NADH formed during glycolysis through ethanol formation. Excess NADH stimulates the synthesis of mainly glycerol, but also of other compounds. Here, we investigated the production of primary and secondary metabolites in S. cerevisiae strains where the glycerol production pathway was inactivated through deletion of the two glycerol-3-phosphate dehydrogenases genes (GPD1/GPD2) and replaced with alternative NAD(+)-generating pathways. While these modifications decreased fermentative ability compared to the wild-type strain, all improved growth and/or fermentative ability of the gpd1Δgpd2Δ strain in self-generated anaerobic high sugar medium. The partial NAD(+) regeneration ability of the mutants resulted in significant amounts of alternative products, but at lower yields than glycerol. Compared to the wild-type strain, pyruvate production increased in most genetically manipulated strains, whereas acetate and succinate production decreased in all strains. Malate production was similar in all strains. Isobutanol production increased substantially in all genetically manipulated strains compared to the wild-type strain, whereas only mutant strains expressing the sorbitol producing SOR1 and srlD genes showed increases in isoamyl alcohol and 2-phenyl alcohol. A marked reduction in ethyl acetate concentration was observed in the genetically manipulated strains, while isobutyric acid increased. The synthesis of some primary and secondary metabolites appears more readily influenced by the NAD(+)/NADH availability. The data provide an initial assessment of the impact of redox balance on the production of primary and secondary metabolites which play an essential role in the flavour and aroma character of beverages.
Collapse
Affiliation(s)
- Vishist K Jain
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, South Africa
| | | | | | | |
Collapse
|
30
|
Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2010; 38:1427-35. [PMID: 21188613 DOI: 10.1007/s10295-010-0928-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2-3% of the sugar fermented is converted to glycerol. Replacing the NAD(+)-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD(+) by transforming a double mutant (gpd1∆gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD(+) regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.
Collapse
|
31
|
Geymonat M, Spanos A, Jensen S, Sedgwick SG. Phosphorylation of Lte1 by Cdk prevents polarized growth during mitotic arrest in S. cerevisiae. J Cell Biol 2010; 191:1097-112. [PMID: 21149565 PMCID: PMC3002025 DOI: 10.1083/jcb.201005070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/09/2010] [Indexed: 01/19/2023] Open
Abstract
Lte1 is known as a regulator of mitotic progression in budding yeast. Here we demonstrate phosphorylation-dependent inhibition of polarized bud growth during G2/M by Lte1. Cla4 activity first localizes Lte1 to the polarity cap and thus specifically to the bud. This localization is a prerequisite for subsequent Clb-Cdk-dependent phosphorylation of Lte1 and its relocalization to the entire bud cortex. There, Lte1 interferes with activation of the small GTPases, Ras and Bud1. The inhibition of Bud1 prevents untimely polarization until mitosis is completed and Cdc14 phosphatase is released. Inhibition of Bud1 and Ras depends on Lte1's GEF-like domain, which unexpectedly inhibits these small G proteins. Thus, Lte1 has dual functions for regulation of mitotic progression: it both induces mitotic exit and prevents polarized growth during mitotic arrest, thereby coupling cell cycle progression and morphological development.
Collapse
Affiliation(s)
- Marco Geymonat
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, England, UK.
| | | | | | | |
Collapse
|
32
|
Röther S, Burkert C, Brünger KM, Mayer A, Kieser A, Strässer K. Nucleocytoplasmic shuttling of the La motif-containing protein Sro9 might link its nuclear and cytoplasmic functions. RNA (NEW YORK, N.Y.) 2010; 16:1393-1401. [PMID: 20494970 PMCID: PMC2885688 DOI: 10.1261/rna.2089110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Diverse steps in gene expression are tightly coupled. Curiously, the La-motif-containing protein Sro9 has been shown to play a role in transcription and translation. Here, we show that Sro9 interacts with nuclear and cytoplasmic protein complexes involved in gene expression. In addition, Sro9 shuttles between nucleus and cytoplasm and is exported from the nucleus in an mRNA export-dependent manner. Importantly, Sro9 is recruited to transcribed genes. However, whole genome expression analysis shows that loss of Sro9 function does not greatly change the level of specific transcripts indicating that Sro9 does not markedly affect their synthesis and/or stability. Taken together, Sro9 might bind to the mRNP already during transcription and accompany the mature mRNP to the cytoplasm where it modulates translation of the mRNA.
Collapse
Affiliation(s)
- Susanne Röther
- Department of Biochemistry, Ludwig-Maximilians-University Munich, Gene Center and Center for Integrated Protein Science Munich, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
33
|
PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb Cell Fact 2010; 9:40. [PMID: 20507616 PMCID: PMC2896927 DOI: 10.1186/1475-2859-9-40] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Overexpression of PGM2 has previously been shown to enhance aerobic growth of S. cerevisiae in galactose medium. Results In the present study we show that overexpression of PGM2 under control of the HXT7'promoter from an integrative plasmid increased the PGM activity 5 to 6 times, which significantly reduced the lag phase of glucose-pregrown cells in an anaerobic galactose culture. PGM2 overexpression also increased the anaerobic specific growth rate whereas ethanol production was less influenced. When PGM2 was overexpressed from a multicopy plasmid instead, the PGM activity increased almost 32 times. However, this increase of PGM activity did not further improve aerobic galactose fermentation as compared to the strain carrying PGM2 on the integrative plasmid. Conclusion PGM2 overexpression in S. cerevisiae from an integrative plasmid is sufficient to reduce the lag phase and to enhance the growth rate in anaerobic galactose fermentation, which results in an overall decrease in fermentation duration. This observation is of particular importance for the future development of stable industrial strains with enhanced PGM activity.
Collapse
|
34
|
Gardarin A, Chédin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J. Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 2010; 76:1034-48. [PMID: 20444096 DOI: 10.1111/j.1365-2958.2010.07166.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd(2+)) is a very toxic metal that causes DNA damage, oxidative stress and apoptosis. Despite many studies, the cellular and molecular mechanisms underlying its high toxicity are not clearly understood. We show here that very low doses of Cd(2+) cause ER stress in Saccharomyces cerevisiae as evidenced by the induction of the unfolded protein response (UPR) and the splicing of HAC1 mRNA. Furthermore, mutant strains (Delta ire1 and Delta hac1) unable to induce the UPR are hypersensitive to Cd(2+), but not to arsenite and mercury. The full functionality of the pathways involved in ER stress response is required for Cd(2+) tolerance. The data also suggest that Cd(2+)-induced ER stress and Cd(2+) toxicity are a direct consequence of Cd(2+) accumulation in the ER. Cd(2+) does not inhibit disulfide bond formation but perturbs calcium metabolism. In particular, Cd(2+) activates the calcium channel Cch1/Mid1, which also contributes to Cd(2+) entry into the cell. The results reinforce the interest of using yeast as a cellular model to study toxicity mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Aurélie Gardarin
- Equipe Transports et Régulations Intracellulaires de Métaux, LCBM/iRTSV, CEA/Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Pastushok L, Hanna M, Xiao W. Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities. Nucleic Acids Res 2010; 38:5047-58. [PMID: 20385585 PMCID: PMC2926605 DOI: 10.1093/nar/gkq239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In response to replication-blocking DNA lesions, proliferating cell nuclear antigen (PCNA) can be conjugated with a single ubiquitin (Ub) or Lys63-linked Ub chains at the Lys164 residue, leading to two modes of DNA damage tolerance (DDT), namely translesion synthesis (TLS) and error-free DDT, respectively. Several reports suggest a model whereby monoubiquitylated PCNA recruits TLS polymerases through an enhanced physical association. We sought to examine this model in Saccharomyces cerevisiae through artificial fusions of Ub to PCNA in vivo. We created N- and C- terminal gene fusions of Ub to PCNA-K164R (collectively called PCNA.Ub) and found that both conferred tolerance to DNA damage. The creation of viable PCNA.Ub strains lacking endogenous PCNA enabled a thorough analysis of roles for PCNA mono-Ub in DDT. As expected, the DNA damage resistance provided by PCNA.Ub is not dependent on RAD18 or UBC13. Surprisingly, inactivation of TLS polymerases did not abolish PCNA.Ub resistance to DNA damage, nor did PCNA.Ub cause elevated spontaneous mutagenesis, which is a defining characteristic of REV3-dependent TLS activity. Taken together, our data suggest that either the monoubiquitylation of PCNA does not promote TLS activity in all cases or PCNA.Ub reveals a currently undiscovered role for monoubiquitylated PCNA in DNA damage tolerance.
Collapse
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
36
|
Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy. Nat Protoc 2010; 5:670-7. [PMID: 20360762 DOI: 10.1038/nprot.2010.19] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Saccharomyces cerevisiae, surface stresses acting on the cell wall or plasma membrane are detected by a group of five membrane sensors: Wsc1, Wsc2, Wsc3, Mid2 and Mtl2. Here we present protocols to measure the mechanical properties of Wsc1 sensors in their native cellular environment, using the combination of genetic manipulations with single-molecule atomic-force microscopy (AFM). We describe procedures (i) for obtaining genetically modified sensors that are fully functional and suitable for AFM analysis, i.e., elongated Wsc1 derivatives terminated with a His-tag, and (ii) for detecting and stretching single Wsc1 sensors on the surface of living S. cerevisiae cells, using AFM tips functionalized with Ni(2+)-NTA groups. These procedures are multidisciplinary to implement and need competent researchers from at least two disciplines: molecular biology and nanotechnology. For experienced researchers in biological AFM, the entire protocol can be completed in approximately 3 weeks.
Collapse
|
37
|
Zhang M, Hanna M, Li J, Butcher S, Dai H, Xiao W. Creation of a Hyperpermeable Yeast Strain to Genotoxic Agents through Combined Inactivation of PDR and CWP Genes. Toxicol Sci 2009; 113:401-11. [DOI: 10.1093/toxsci/kfp267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Distinct subsets of Sit4 holophosphatases are required for inhibition of Saccharomyces cerevisiae growth by rapamycin and zymocin. EUKARYOTIC CELL 2009; 8:1637-47. [PMID: 19749176 DOI: 10.1128/ec.00205-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatase Sit4 is required for growth inhibition of Saccharomyces cerevisiae by the antifungals rapamycin and zymocin. Here, we show that the rapamycin effector Tap42, which interacts with Sit4, is dispensable for zymocin action. Although Tap42 binding-deficient sit4 mutants are resistant to zymocin, these mutations also block interaction between Sit4 and the Sit4-associating proteins Sap185 and Sap190, previously shown to mediate zymocin toxicity. Among the four different SAP genes, we found that SAP190 deletions specifically induce rapamycin resistance but that this phenotype is reversed in the additional absence of SAP155. Similarly, the rapamycin resistance of an rrd1Delta mutant lacking the Sit4 interactor Rrd1 specifically requires the Sit4/Sap190 complex. Thus, Sit4/Sap190 and Sit4/Sap155 holophosphatases apparently play opposing roles following rapamycin treatment, although rapamycin inhibition is operational in the absence of all Sap family members or Sit4. We further identified a Sit4-interacting region on Sap185 in sap190Delta cells that mediates Sit4/Sap185 complex formation and is essential for dephosphorylation of Elp1, a subunit of the Elongator complex. This suggests that Sit4/Sap185 and Sit4/Sap190 holophosphatases promote Elongator functions, a notion supported by data showing that their inactivation eliminates Elongator-dependent processes, including tRNA suppression by SUP4 and tRNA cleavage by zymocin.
Collapse
|
39
|
Ball LG, Zhang K, Cobb JA, Boone C, Xiao W. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 2009; 73:89-102. [PMID: 19496932 DOI: 10.1111/j.1365-2958.2009.06748.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA. While translesion synthesis has been well characterized, little is known about the molecular events involved in error-free bypass, although it has been assumed that homologous recombination (HR) is required for such a mode of lesion bypass. We undertook a genome-wide synthetic genetic array screen for novel genes involved in error-free PRR and observed evidence of genetic interactions between error-free PRR and HR. Furthermore, this screen identified and assigned four genes, CSM2, PSY3, SHU1 and SHU2, whose products form a stable Shu complex, to the error-free PRR pathway. Previous studies have indicated that the Shu complex is required for efficient HR and that inactivation of any of these genes is able to suppress the severe phenotypes of top3 and sgs1. We confirmed and further extended some of the reported observations and demonstrated that error-free PRR mutations are also epistatic to sgs1. Based on the above analyses, we propose a model in which error-free PRR utilizes the Shu complex to recruit HR to facilitate template switching, followed by double-Holliday junction resolution by Sgs1-Top3. This mechanism appears to be conserved throughout eukaryotes.
Collapse
Affiliation(s)
- Lindsay G Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
40
|
Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection. Curr Genet 2008; 53:347-60. [DOI: 10.1007/s00294-008-0191-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 11/26/2022]
|
41
|
Vogl C, Klein CM, Batke AF, Schweingruber ME, Stolz J. Characterization of Thi9, a Novel Thiamine (Vitamin B1) Transporter from Schizosaccharomyces pombe. J Biol Chem 2008; 283:7379-89. [DOI: 10.1074/jbc.m708275200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
42
|
Zhang M, Liang Y, Zhang X, Xu Y, Dai H, Xiao W. Deletion of yeast CWP genes enhances cell permeability to genotoxic agents. Toxicol Sci 2008; 103:68-76. [PMID: 18281714 DOI: 10.1093/toxsci/kfn034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported the development of a novel genotoxic testing system based on the transcriptional response of the yeast RNR3-lacZ reporter gene to DNA damage. This system appears to be more sensitive than other similar tests in microorganisms, and is comparable with the Ames test. In an effort to further enhance detection sensitivity, we examined the effects of altering major cell wall components on cell permeability and subsequent RNR3-lacZ sensitivity to genotoxic agents. Although inactivation of single CWP genes encoding cell wall mannoproteins had little effect, the simultaneous inactivation of both CWP1 and CWP2 had profound effects on the cell wall structure and permeability. Consequently, the RNR3-lacZ detection sensitivity is markedly enhanced, especially to high molecular weight compounds such as 4-nitroquinoline-N-oxide (> sevenfold) and phleomycin (> 13-fold). In contrast, deletion of genes encoding representative membrane components or membrane transporters had minor effects on cell permeability. We conclude that the yeast cell wall mannoproteins constitute the major barrier to environmental genotoxic agents and that their removal will significantly enhance the sensitivity of RNR-lacZ as well as other yeast-based genotoxic tests.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072 China
| | | | | | | | | | | |
Collapse
|
43
|
Busti S, Sacco E, Martegani E, Vanoni M. Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. Curr Genet 2008; 53:153-62. [PMID: 18183397 DOI: 10.1007/s00294-007-0173-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 01/15/2023]
Abstract
Autophosphorylation of tyrosine residues on the cytoplasmic tail of the epidermal growth factor receptor (EGFR) upon ligand binding leads to recruitment of the Grb2/Sos complex to the activated receptor and to activation of the Ras pathway. The major aim of this study was to ascertain to which extent the EGFR module (receptor, Grb2, hSos1) could work in a lower eukaryote, completely devoid of tyrosine kinase receptors but possessing hortologues to mammalian Ras proteins. We show that the EGFR module can be functionally linked to the Ras/cAMP pathway in a Saccharomyces cerevisiae cdc25 ( ts ) strain, as monitored by several independent biological readouts, including drop of budding index, decrease of cAMP level and acquisition of thermotolerance. Autophosphorylation of the receptor is a necessary step for RTK-dependent activation of the yeast Ras pathway, since genetic and pharmacological downregulation of the EGFR catalytic activity abolish coupling with the Ras/cAMP pathway. Thus, our results newly indicate that a RTK-based signal transduction module can be functionally coupled to the yeast Ras/cAMP pathway and that our system can be a valuable tool for the screen of drugs inhibiting the kinase activity of the receptor.
Collapse
Affiliation(s)
- Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
44
|
Hanna M, Ball LG, Tong AH, Boone C, Xiao W. Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork. Mutat Res 2007; 625:164-76. [PMID: 17681555 DOI: 10.1016/j.mrfmmm.2007.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 06/16/2007] [Accepted: 06/20/2007] [Indexed: 05/16/2023]
Abstract
POL32 encodes a non-essential subunit of Poldelta and plays a role in Poldelta processivity and DNA repair. In order to understand how Pol32 is involved in these processes, we performed extensive genetic analysis and demonstrated that POL32 is required for Polzeta-mediated translesion synthesis, but not for Poleta-mediated activity. Unlike Polzeta, inactivation of Pol32 does not result in decreased spontaneous mutagenesis, nor does it limit genome instability in the absence of the error-free postreplication repair pathway. In contrast, inactivation of Pol32 results in an increased rate of replication slippage and recombination. A genome-wide synthetic lethal screen revealed that in the absence of Pol32, homologous recombination repair and cell cycle checkpoints play crucial roles in maintaining cell survival and growth. These results are consistent with a model in which Pol32 functions as a coupling factor to facilitate a switch from replication to translesion synthesis when Poldelta encounters replication-blocking lesions. When Pol32 is absent, the S-phase checkpoint complex Mrc1-Tof1 becomes crucial to stabilize the stalled replication fork and recruit Top3 and Sgs1. Lack of any of the above activities will cause double strand breaks at or near the replication fork that require recombination as well as Rad9 for cell survival.
Collapse
Affiliation(s)
- Michelle Hanna
- Department of Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Sask., Canada
| | | | | | | | | |
Collapse
|
45
|
Sarnowska E, Grzybowska EA, Sobczak K, Konopiński R, Wilczyńska A, Szwarc M, Sarnowski TJ, Krzyżosiak WJ, Siedlecki JA. Hairpin structure within the 3'UTR of DNA polymerase beta mRNA acts as a post-transcriptional regulatory element and interacts with Hax-1. Nucleic Acids Res 2007; 35:5499-510. [PMID: 17704138 PMCID: PMC2018635 DOI: 10.1093/nar/gkm502] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aberrant expression of DNA polymerase beta, a key enzyme involved in base excision repair, leads to genetic instability and carcinogenesis. Pol beta expression has been previously shown to be regulated at the level of transcription, but there is also evidence of post-transcriptional regulation, since rat transcripts undergo alternative polyadenylation, and the resulting 3'UTR contain at least one regulatory element. Data presented here indicate that RNA of the short 3'UTR folds to form a strong secondary structure (hairpin). Its regulatory role was established utilizing a luciferase-based reporter system. Further studies led to the identification of a protein factor, which binds to this element-the anti-apoptotic, cytoskeleton-related protein Hax-1. The results of in vitro binding analysis indicate that the formation of the RNA-protein complex is significantly impaired by disruption of the hairpin motif. We demonstrate that Hax-1 binds to Pol beta mRNA exclusively in the form of a dimer. Biochemical analysis revealed the presence of Hax-1 in mitochondria, but also in the nuclear matrix, which, along with its transcript-binding properties, suggests that Hax-1 plays a role in post-transcriptional regulation of expression of Pol beta.
Collapse
Affiliation(s)
- Elżbieta Sarnowska
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Ewa A. Grzybowska
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
- *To whom correspondence should be addressed. +48 22 546 23 68+48 22 644 02 09
| | - Krzysztof Sobczak
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Ryszard Konopiński
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Wilczyńska
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Maria Szwarc
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Tomasz J. Sarnowski
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Włodzimierz J. Krzyżosiak
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Janusz A. Siedlecki
- Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704, Poznań and Institute of Biochemistry and Biophysics, PAS, Pawińskiego 5A, 02-106, Warsaw, Poland
| |
Collapse
|
46
|
Meesapyodsuk D, Reed DW, Covello PS, Qiu X. Primary Structure, Regioselectivity, and Evolution of the Membrane-bound Fatty Acid Desaturases of Claviceps purpurea. J Biol Chem 2007; 282:20191-9. [PMID: 17510052 DOI: 10.1074/jbc.m702196200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cDNAs with sequence similarity to fatty acid desaturase genes were isolated from the phytopathogenic fungus, Claviceps purpurea. The predicted amino acid sequences of the corresponding genes, named CpDes12 and CpDesX, share 87% identity. Phylogenetic analysis indicates that CpDes12 and CpDesX arose by gene duplication of an ancestral Delta(12)-desaturase gene after the divergence of Nectriaceae and Clavicipitaceae. Functional expression of CpDes12 and CpDesX in yeast (Saccharomyces cerevisiae) indicated that CpDes12 is primarily a "Delta(12)"-desaturase, whereas CpDesX is a novel desaturase catalyzing "Delta(12)," "Delta(15)," and "omega(3)" types of desaturation with omega(3) activity predominating. CpDesX sequentially desaturates both 16:1-9c and 18:1-9c to give 16:3-9c,12c,15c and 18:3-9c,12c,15c, respectively. In addition, it could also act as an omega(3)-desaturase converting omega(6)-polyunsaturates 18:3-6c,9c,12c, 20:3-8c,11c,14c, and 20:4-5c,8c,11c,14c to their omega(3) counterparts 18:4-6c,9c,12c,15c, 20:4-8c,11c,14c,17c, and 20:5-5c,8c,11c,14c,17c, respectively. By using reciprocal site-directed mutagenesis, we demonstrated that two residues (isoleucine at 152 and alanine at 206) are critical in defining the catalytic specificity of these enzymes and the C-terminal amino acid sequence (residues 302-477) was also found to be important. These data provide insights into the nature of regioselectivity in membrane-bound fatty acid desaturases and the relevant structural determinants. The authors suggest that the regios-electivity of such enzymes may be best understood by considering the relative importance of more than one regioselective preference. In this view, CpDesX is designated as anu + 3(omega(3)) desaturase, which primarily references an existing double bond (nu + 3 regioselectivity) and secondarily shows preference for omega(3) desaturation.
Collapse
Affiliation(s)
- Dauenpen Meesapyodsuk
- Department of Applied Microbiology and Food Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
47
|
Straede A, Corran A, Bundy J, Heinisch JJ. The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling. Yeast 2007; 24:321-34. [PMID: 17397109 DOI: 10.1002/yea.1478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cell integrity in Saccharomyces cerevisiae is ensured by a rigid cell wall whose synthesis is controlled by a highly conserved MAP kinase signal transduction cascade. Stress at the cell surface is detected by a set of sensors and ultimately transmitted through this cascade to the transcription factor Rlm1, which governs expression of many genes encoding enzymes of cell wall biosynthesis. We here report on a number of versatile reporter constructs which link activation of a hybrid, Rlm1-lexA, by the MAP kinase Mpk1/Slt2 to the expression of the bacterial lacZ gene. This system was adapted to automated microwell screening and shown to be activated by a number of compounds inhibiting cell wall biosynthesis or interfering with plasma membrane function. In addition, we tested tea tree oil and two of its purified constituents (alpha-terpineol, terpinen-4-ol) for their effects on growth and on cell integrity signalling using such reporter strains. Tea tree oil was found to inhibit growth of wild-type and slg1/wsc1 mutant cells at a threshold of approximately 0.1% v/v, with the purified compounds acting already at half these concentrations. A mid2 deletion displayed hyper-resistance. Tea tree oil also induces the signalling pathway in a dose-dependent manner.
Collapse
Affiliation(s)
- Andrea Straede
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
48
|
Hawle P, Horst D, Bebelman JP, Yang XX, Siderius M, van der Vies SM. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). EUKARYOTIC CELL 2007; 6:521-32. [PMID: 17220467 PMCID: PMC1828922 DOI: 10.1128/ec.00343-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Saccharomyces cerevisiae utilizes rapidly responding mitogen-activated protein kinase (MAPK) signaling cascades to adapt efficiently to a changing environment. Here we report that phosphorylation of Cdc37p, an Hsp90 cochaperone, by casein kinase 2 controls the functionality of two MAPK cascades in yeast. These pathways, the high-osmolarity glycerol (HOG) pathway and the cell integrity (protein kinase C) MAPK pathway, mediate adaptive responses to high osmotic and cell wall stresses, respectively. Mutation of the phosphorylation site Ser14 in Cdc37p renders cells sensitive to osmotic stress and cell wall perturbation by calcofluor white. We found that levels of the MAPKs Hog1p and Slt2p (Mpk1p) in cells are reduced in a cdc37-S14A mutant, and consequently downstream responses mediated by Hog1p and Slt2p are compromised. Furthermore, we present evidence that Hog1p and Slt2p both interact in a complex with Cdc37p in vivo, something that has not been reported previously. The interaction of Hsp90, Slt2p, and Hog1p with Cdc37p depends on the phosphorylation status of Cdc37p. In fact, our biochemical data show that the osmosensitive phenotype of the cdc37-S14A mutant is due to the loss of the interaction between Cdc37p, Hog1p, and Hsp90. Likewise, during cell wall stress, the interaction of Slt2p with Cdc37p and Hsp90 is crucial for Slt2p-dependent downstream responses, such as the activation of the transcription factor Rlm1p. Interestingly, phosphorylated Slt2p, but not phosphorylated Hog1p, has an increased affinity for Cdc37p. Together these observations suggest that Cdc37p acts as a regulator of MAPK signaling.
Collapse
Affiliation(s)
- Patricija Hawle
- Department of Biochemistry and Molecular Biology, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Irene C, Maciariello C, Micheli G, Theis JF, Newlon CS, Fabiani L. DNA elements modulating the KARS12 chromosomal replicator in Kluyveromyces lactis. Mol Genet Genomics 2006; 277:287-99. [PMID: 17136349 DOI: 10.1007/s00438-006-0188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/21/2006] [Indexed: 12/24/2022]
Abstract
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.
Collapse
Affiliation(s)
- Carmela Irene
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro, 5, Roma, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Serrano R, Martín H, Casamayor A, Ariño J. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 2006; 281:39785-95. [PMID: 17088254 DOI: 10.1074/jbc.m604497200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alkalinization of the external environment represents a stress situation for Saccharomyces cerevisiae. Adaptation to this circumstance involves the activation of diverse response mechanisms, the components of which are still largely unknown. We show here that mutation of members of the cell integrity Pkc1/Slt2 MAPK module, as well as upstream and downstream elements of the system, confers sensitivity to alkali. Alkalinization resulted in fast and transient activation of the Slt2 MAPK, which depended on the integrity of the kinase module and was largely abolished by sorbitol. Lack of Wsc1, removal of specific extracellular and intracellular domains, or substitution of Tyr(303) in this putative membrane stress sensor rendered cells sensitive to alkali and considerably decreased alkali-induced Slt2 activation. In contrast, constitutive activation of Slt2 by the bck1-20 allele increased pH tolerance in the wsc1 mutant. DNA microarray analysis revealed that several genes encoding cell wall proteins, such as GSC2/FKS2, DFG5, SKT5, and CRH1, were induced, at least in part, by high pH in an Slt2-dependent manner. We observed that dfg5, skt5, and particularly dfg5 skt5 cells were alkali-sensitive. Therefore, our results show that an alkaline environment imposes a stress condition on the yeast cell wall. We propose that the Slt2-mediated MAPK pathway plays an important role in the adaptive response to this insult and that Wsc1 participates as an essential cell-surface pH sensor. Moreover, these results provide a new example of the complexity of the response of budding yeast to the alkalinization of the environment.
Collapse
Affiliation(s)
- Raquel Serrano
- Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|