1
|
Alvarenga FBM, Barros KO, Batista TM, Souza GFL, Santos ARO, Abegg MA, Sato TK, Hittinger CT, Lachance MA, Rosa CA. Vanderwaltozyma urihicola sp. nov., a yeast species isolated from rotting wood and beetles in a Brazilian Amazonian rainforest biome. Int J Syst Evol Microbiol 2025; 75. [PMID: 40095801 DOI: 10.1099/ijsem.0.006718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Five yeast isolates belonging to a candidate for novel species were obtained from rotting wood and the gut of a passalid beetle larva in a site of Amazonian rainforest biome in Brazil. Sequence analysis of the Internal Transcribed Spacer (ITS)-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of the genus Vanderwaltozyma. The closest relative of the novel species is Vanderwaltozyma huisunica. These species differs due to 44 nt substitutions and 21 indels in the sequences of the ITS region, as well as by 15 substitutions and four indels in the sequences of the D1/D2 domains. A phylogenomic analysis of the Vanderwaltozyma species with genomes sequenced showed that this novel species is an outgroup to the other species of this genus. We propose the name Vanderwaltozyma urihicola sp. nov. (CBS 18107T, MycoBank MB 856975) to accommodate these isolates. The species is homothallic, producing one to two ascospores per ascus. The habitat of V. urihicola is rotting wood in the Brazilian Amazonian rainforest biome.
Collapse
Affiliation(s)
- Flávia B M Alvarenga
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thiago M Batista
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
| | - Gisele F L Souza
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maxwell A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Amazonas, Brazil
| | - Trey K Sato
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
2
|
Persson K, Onyema VO, Nwafor IP, Peri KVR, Otti C, Nnaemeka P, Onyishi C, Okoye S, Moneke A, Amadi O, Warringer J, Geijer C. Lactose-assimilating yeasts with high fatty acid accumulation uncovered by untargeted bioprospecting. Appl Environ Microbiol 2025; 91:e0161524. [PMID: 39745379 PMCID: PMC11784187 DOI: 10.1128/aem.01615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/27/2024] [Indexed: 02/01/2025] Open
Abstract
Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries. Through internal transcribed spacer sequencing of the lactose-assimilating strains, we identified 30 different yeast species from both the Ascomycota and Basidiomycota phyla, of which several have not previously been shown to grow on lactose, and some are candidates for new species. Observed differences in growth and ratios of intra- and extracellular lactase activities suggest that the yeasts use a range of different strategies to metabolize lactose. Notably, several basidiomycetous yeasts, including Apiotrichum mycotoxinivorans, Papiliotrema laurentii, and Moesziomyces antarcticus, accumulated lipids up to 40% of their cell dry weight, proving that they can convert lactose into a bioproduct of significant biotechnology interest. IMPORTANCE This study paves the way to a better understanding of the natural yeast biodiversity in the largely under-sampled biodiversity hotspot area of tropical West Africa. Our discovery of several yeasts capable of efficiently converting lactose into lipids underscores the value of bioprospecting to identify yeast strains with significant biotechnological potential, which can aid the transition to a circular bioeconomy. Furthermore, the extensive strain collection gathered will facilitate future screening and the development of new cell factories.
Collapse
Affiliation(s)
- Karl Persson
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
| | - Vanessa O. Onyema
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ijeoma Princess Nwafor
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Kameshwara V. R. Peri
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Chika Otti
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Priscilla Nnaemeka
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Chioma Onyishi
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Sylvia Okoye
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Anene Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Onyetugo Amadi
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| |
Collapse
|
3
|
Barros KO, Valério AD, Batista TM, Santos ARO, Souza GFL, Alvarenga FBM, Lopes MR, Morais CG, Alves C, Goes-Neto A, Vital MJS, Uetanabaro APT, Souza DL, Bai FY, Franco GR, Lachance MA, Rosa CA, Johann S. Spencermartinsiella nicolii sp. nov., a potential opportunistic pathogenic yeast species isolated from rotting wood in Brazil. Int J Syst Evol Microbiol 2024; 74. [PMID: 39240062 DOI: 10.1099/ijsem.0.006520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Nineteen isolates representing a candidate for a novel yeast species belonging to the genus Spencermartinsiella were recovered from rotting wood samples collected at different sites in Atlantic Rainforest and Amazonian Forest ecosystems in Brazil. Similarity search of the nucleotide sequence of the intergenic spacer (ITS)-5.8S and large subunit D1/D2 regions of the ribosomal gene cluster showed that this novel yeast is closely related to Spencermartinsiella cellulosicola. The isolates differ by four nucleotide substitutions in the D1/D2 domain and six substitutions and 31 indels in the ITS region from the holotype of S. cellulosicola. Phylogenomic analysis based on 1474 single-copy orthologues for a set of Spencermartinsiella species whose whole genome sequences are available confirmed that the novel species is phylogenetically close to S. cellulosicola. The low average nucleotide identity value of 83% observed between S. cellulosicola and the candidate species confirms that they are distinct. The novel species produced asci with hemispherical ascospores. The name Spencermartinsiella nicolii sp. nov. is proposed. The holotype is CBS 14238T. The MycoBank number is MB855027. Interestingly, the D1/D2 sequence of the S. nicolii was identical to that of an uncultured strain of Spencermartinsiella causing systemic infection in a male adult crocodile (Crocodylus niloticus). The characterization of some virulence factors and antifungal susceptibility of S. nicolii isolates suggest that this yeast may be an opportunistic pathogen for animals, including humans; the isolates grow at 37 °C.
Collapse
Affiliation(s)
- Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Aline D Valério
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thiago M Batista
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, BA, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gisele F L Souza
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Flávia B M Alvarenga
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camila G Morais
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Cristina Alves
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Aristóteles Goes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcos J S Vital
- Departamento de Biologia, Universidade Federal de Roraima, Campus do Paricarana, Boa Vista, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Agroindústria da UESC, Ilhéus, Brazil
| | - Daniela L Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Susana Johann
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
4
|
Barros KO, Batista TM, Soares RCC, Lopes MR, Alvarenga FBM, Souza GFL, Abegg MA, Santos ARO, Góes-Neto A, Hilário HO, Moreira RG, Franco GR, Lachance MA, Rosa CA. Spathaspora marinasilvae sp. nov., a xylose-fermenting yeast isolated from galleries of passalid beetles and rotting wood in the Amazonian rainforest biome. Yeast 2024; 41:437-447. [PMID: 38850070 DOI: 10.1002/yea.3966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Four yeast isolates were obtained from rotting wood and galleries of passalid beetles collected in different sites of the Brazilian Amazonian Rainforest in Brazil. This yeast produces unconjugated allantoid asci each with a single elongated ascospore with curved ends. Sequence analysis of the internal transcribed spacer-5.8 S region and the D1/D2 domains of the large subunit ribosomal RNA (rRNA) gene showed that the isolates represent a novel species of the genus Spathaspora. The novel species is phylogenetically related to a subclade containing Spathaspora arborariae and Spathaspora suhii. Phylogenomic analysis based on 1884 single-copy orthologs for a set of Spathaspora species whose whole genome sequences are available confirmed that the novel species represented by strain UFMG-CM-Y285 is phylogenetically close to Sp. arborariae. The name Spathaspora marinasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Sp. marinasilvae is CBS 13467 T (MycoBank 852799). The novel species was able to accumulate xylitol and produce ethanol from d-xylose, a trait of biotechnological interest common to several species of the genus Spathaspora.
Collapse
Affiliation(s)
- Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago M Batista
- Centro de Formação em Ciências Ambientais, C.P. 108, Universidade Federal do Sul da Bahia, Porto Seguro, Bahia, Brazil
| | - Rafaela C C Soares
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia B M Alvarenga
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele F L Souza
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maxwel A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heron O Hilário
- Laboratório de Genética da Conservação, PPG Biologia dos Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Contagem, Minas Gerais, Brazil
| | - Rennan G Moreira
- Laboratorio Multiusuário de Genômica, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
da Costa MVA, Sousa ACR, Batista AG, Paula FEGM, Cardozo MV, Vargas SR, Philippini RR, Bragança CRS. Innovative pathways for ethanol production: Harnessing xylose's bioenergy potential using Brazilian wild isolated yeasts. BIORESOURCE TECHNOLOGY 2024; 404:130930. [PMID: 38838833 DOI: 10.1016/j.biortech.2024.130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Marcus Vinicius Astolfo da Costa
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Ana Carolina Rodrigues Sousa
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Arthur Gasseta Batista
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Fernanda Elisa Gomes Miranda Paula
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Marita Vedovelli Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Sarah Regina Vargas
- Laboratory of Applied Biotechnology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | | | - Caio Roberto Soares Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil.
| |
Collapse
|
6
|
Barros KO, Mader M, Krause DJ, Pangilinan J, Andreopoulos B, Lipzen A, Mondo SJ, Grigoriev IV, Rosa CA, Sato TK, Hittinger CT. Oxygenation influences xylose fermentation and gene expression in the yeast genera Spathaspora and Scheffersomyces. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:20. [PMID: 38321504 PMCID: PMC10848558 DOI: 10.1186/s13068-024-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Cost-effective production of biofuels from lignocellulose requires the fermentation of D-xylose. Many yeast species within and closely related to the genera Spathaspora and Scheffersomyces (both of the order Serinales) natively assimilate and ferment xylose. Other species consume xylose inefficiently, leading to extracellular accumulation of xylitol. Xylitol excretion is thought to be due to the different cofactor requirements of the first two steps of xylose metabolism. Xylose reductase (XR) generally uses NADPH to reduce xylose to xylitol, while xylitol dehydrogenase (XDH) generally uses NAD+ to oxidize xylitol to xylulose, creating an imbalanced redox pathway. This imbalance is thought to be particularly consequential in hypoxic or anoxic environments. RESULTS We screened the growth of xylose-fermenting yeast species in high and moderate aeration and identified both ethanol producers and xylitol producers. Selected species were further characterized for their XR and XDH cofactor preferences by enzyme assays and gene expression patterns by RNA-Seq. Our data revealed that xylose metabolism is more redox balanced in some species, but it is strongly affected by oxygen levels. Under high aeration, most species switched from ethanol production to xylitol accumulation, despite the availability of ample oxygen to accept electrons from NADH. This switch was followed by decreases in enzyme activity and the expression of genes related to xylose metabolism, suggesting that bottlenecks in xylose fermentation are not always due to cofactor preferences. Finally, we expressed XYL genes from multiple Scheffersomyces species in a strain of Saccharomyces cerevisiae. Recombinant S. cerevisiae expressing XYL1 from Scheffersomyces xylosifermentans, which encodes an XR without a cofactor preference, showed improved anaerobic growth on xylose as the primary carbon source compared to S. cerevisiae strain expressing XYL genes from Scheffersomyces stipitis. CONCLUSION Collectively, our data do not support the hypothesis that xylitol accumulation occurs primarily due to differences in cofactor preferences between xylose reductase and xylitol dehydrogenase; instead, gene expression plays a major role in response to oxygen levels. We have also identified the yeast Sc. xylosifermentans as a potential source for genes that can be engineered into S. cerevisiae to improve xylose fermentation and biofuel production.
Collapse
Affiliation(s)
- Katharina O Barros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Megan Mader
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Krause
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Computer Science, San Jose State University, One Washington Square, San Jose, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Plant and Microbial Department, University of California Berkeley, Berkeley, CA, USA
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. Yeast 2023; 40:511-539. [PMID: 37921426 DOI: 10.1002/yea.3903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.
Collapse
Affiliation(s)
- Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University, Kasetsart University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Melissa F Landell
- Setor de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Andreas K Gombert
- Department of Engineering and Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Campus de Palmas, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil
| | - José P Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Yu HT, Shang YJ, Zhu HY, Han PJ, Wang QM, Santos ARO, Barros KO, Souza GFL, Alvarenga FBM, Abegg MA, Rosa CA, Bai FY. Yueomyces silvicola sp. nov., a novel ascomycetous yeast species unable to utilize ammonium, glutamate, and glutamine as sole nitrogen sources. Yeast 2023; 40:540-549. [PMID: 37818980 DOI: 10.1002/yea.3901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Five yeast strains isolated from tree bark and rotten wood collected in central and southwestern China, together with four Brazilian strains (three from soil and rotting wood collected in an Amazonian rainforest biome and one from Bromeliad collected in Alagoas state) and one Costa Rican strain isolated from a flower beetle, represent a new species closely related with Yueomyces sinensis in Saccharomycetaceae, as revealed by the 26S ribosomal RNA gene D1/D2 domain and the internal transcribed spacer region sequence analysis. The name Yueomyces silvicola sp. nov. is proposed for this new species with the holotype China General Microbiological Culture Collection Center 2.6469 (= Japan Collection of Microorganisms 34885). The new species exhibits a whole-genome average nucleotide identity value of 77.8% with Y. sinensis. The two Yueomyces species shared unique physiological characteristics of being unable to utilize ammonium and the majority of the amino acids, including glutamate and glutamine, as sole nitrogen sources. Among the 20 amino acids tested, only leucine and tyrosine can be utilized by the Yueomyces species. Genome sequence comparison showed that GAT1, which encodes a GATA family protein participating in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae, is absent in the Yueomyces species. However, the failure of the Yueomyces species to utilize ammonium, glutamate, and glutamine, which are generally preferred nitrogen sources for microorganisms, implies that more complicated alterations in the central nitrogen metabolism pathway might occur in the genus Yueomyces.
Collapse
Affiliation(s)
- Hong-Tao Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Jie Shang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Ming Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele F L Souza
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia B M Alvarenga
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maxwel A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Amazonas, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Santos ARO, Barros KO, Batista TM, Souza GFL, Alvarenga FBM, Abegg MA, Sato TK, Hittinger CT, Lachance MA, Rosa CA. Saccharomycopsis praedatoria sp. nov., a predacious yeast isolated from soil and rotten wood in an Amazonian rainforest biome. Int J Syst Evol Microbiol 2023; 73. [PMID: 37905527 DOI: 10.1099/ijsem.0.006125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Three yeast isolates were obtained from soil and rotting wood samples collected in an Amazonian rainforest biome in Brazil. Comparison of the intergenic spacer 5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of the genus Saccharomycopsis. A tree inferred from the D1/D2 sequences placed the novel species near a subclade containing Saccharomycopsis lassenensis, Saccharomycopsis fermentans, Saccharomycopsis javanensis, Saccharomycopsis babjevae, Saccharomycopsis schoenii and Saccharomycopsis oosterbeekiorum, but with low bootstrap support. In terms of sequence divergence, the novel species had the highest identity in the D1/D2 domains with Saccharomycopsis capsularis, from which it differed by 36 substitutions. In contrast, a phylogenomic analysis based on 1061 single-copy orthologs for a smaller set of Saccharomycopsis species whose whole genome sequences are available indicated that the novel species represented by strain UFMG-CM-Y6991 is phylogenetically closer to Saccharomycopsis fodiens and Saccharomycopsis sp. TF2021a (=Saccharomycopsis phalluae). The novel yeast is homothallic and produces asci with one spheroidal ascospore with an equatorial or subequatorial ledge. The name Saccharomycopsis praedatoria sp. nov. is proposed to accommodate the novel species. The holotype of Saccharomycopsis praedatoria is CBS 16589T. The MycoBank number is MB849369. S. praedatoria was able to kill cells of Saccharomyces cerevisiae by means of penetration with infection pegs, a trait common to most species of Saccharomycopsis.
Collapse
Affiliation(s)
- Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thiago M Batista
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, 45.810-000, Brazil
| | - Gisele F L Souza
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Flávia B M Alvarenga
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maxwel A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Amazonas, Brazil
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
10
|
Parra M, Libkind D, Hittinger CT, Álvarez L, Bellora N. Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation. Yeast 2023; 40:197-213. [PMID: 37114349 DOI: 10.1002/yea.3853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aureobasidium pullulans is a yeast-like fungus with remarkable phenotypic plasticity widely studied for its importance for the pharmaceutical and food industries. So far, genomic studies with strains from all over the world suggest they constitute a genetically unstructured population, with no association by habitat. However, the mechanisms by which this genome supports so many phenotypic permutations are still poorly understood. Recent works have shown the importance of sequencing yeast genomes from extreme environments to increase the repertoire of phenotypic diversity of unconventional yeasts. In this study, we present the genomic draft of A. pullulans strain from a Patagonian yeast diversity hotspot, re-evaluate its taxonomic classification based on taxogenomic approaches, and annotate its genome with high-depth transcriptomic data. Our analysis suggests this isolate could be considered a novel variant at an early stage of the speciation process. The discovery of divergent strains in a genomically homogeneous group, such as A. pullulans, can be valuable in understanding the evolution of the species. The identification and characterization of new variants will not only allow finding unique traits of biotechnological importance, but also optimize the choice of strains whose phenotypes will be characterized, providing new elements to explore questions about plasticity and adaptation.
Collapse
Affiliation(s)
- Micaela Parra
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucía Álvarez
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Nicolás Bellora
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|