1
|
Dyett BP, Sarkar S, Yu H, Strachan J, Drummond CJ, Conn CE. Overcoming Therapeutic Challenges of Antibiotic Delivery with Cubosome Lipid Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38690584 DOI: 10.1021/acsami.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Low discovery rates for new antibiotics, commercial disincentives to invest, and inappropriate use of existing drugs have created a perfect storm of antimicrobial resistance (AMR). This "silent pandemic" of AMR looms as an immense, global threat to human health. In tandem, many potential novel drug candidates are not progressed due to elevated hydrophobicity, which may result in poor intracellular internalization and undesirable serum protein binding. With a reducing arsenal of effective antibiotics, enabling technology platforms that improve the outcome of treatments, such as repurposing existing bioactive agents, is a prospective option. Nanocarrier (NC) mediated drug delivery is one avenue for amplifying the therapeutic outcome. Here, the performance of several antibiotic classes encapsulated within the lipid-based cubosomes is examined. The findings demonstrate that encapsulation affords significant improvements in drug concentration:inhibition outcomes and assists in other therapeutic challenges associated with internalization, enzyme degradation, and protein binding. We emphasize that a currently sidelined compound, novobiocin, became active and revealed a significant increase in inhibition against the pathogenic Gram-negative strain, Pseudomonas aeruginosa. Encapsulation affords co-delivery of multiple bioactives as a strategy for mitigating failure of monotherapies and tackling resistance. The rationale in optimized drug selection and nanocarrier choice is examined by transport modeling which agrees with experimental inhibition results. The results demonstrate that lipid nanocarrier encapsulation may alleviate a range of challenges faced by antibiotic therapies and increase the range of antibiotics available to treat bacterial infections.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jamie Strachan
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
2
|
Vejzovic D, Piller P, Cordfunke RA, Drijfhout JW, Eisenberg T, Lohner K, Malanovic N. Where Electrostatics Matter: Bacterial Surface Neutralization and Membrane Disruption by Antimicrobial Peptides SAAP-148 and OP-145. Biomolecules 2022; 12:1252. [PMID: 36139091 PMCID: PMC9496175 DOI: 10.3390/biom12091252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022] Open
Abstract
The need for alternative treatment of multi-drug-resistant bacteria led to the increased design of antimicrobial peptides (AMPs). AMPs exhibit a broad antimicrobial spectrum without a distinct preference for a specific species. Thus, their mechanism, disruption of fundamental barrier function by permeabilization of the bacterial cytoplasmic membrane is considered to be rather general and less likely related to antimicrobial resistance. Of all physico-chemical properties of AMPs, their positive charge seems to be crucial for their interaction with negatively charged bacterial membranes. Therefore, we elucidate the role of electrostatic interaction on bacterial surface neutralization and on membrane disruption potential of two potent antimicrobial peptides, namely, OP-145 and SAAP-148. Experiments were performed on Escherichia coli, a Gram-negative bacterium, and Enterococcus hirae, a Gram-positive bacterium, as well as on their model membranes. Zeta potential measurements demonstrated that both peptides neutralized the surface charge of E. coli immediately after their exposure, but not of E. hirae. Second, peptides neutralized all model membranes, but failed to efficiently disrupt model membranes mimicking Gram-negative bacteria. This was further confirmed by flow cytometry showing reduced membrane permeability for SAAP-148 and the lack of OP-145 to permeabilize the E. coli membrane. As neutralization of E. coli surface charges was achieved before the cells were killed, we conclude that electrostatic forces are more important for actions on the surface of Gram-negative bacteria than on their cytoplasmic membranes.
Collapse
Affiliation(s)
- Djenana Vejzovic
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Paulina Piller
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Robert A. Cordfunke
- Department of Immunology, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands
| | - Jan W. Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Bio TechMed Graz, 8010 Graz, Austria
| | - Karl Lohner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Department of Immunology, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Nermina Malanovic
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Bio TechMed Graz, 8010 Graz, Austria
| |
Collapse
|
3
|
Kumar M, Patil N, Ambade AV, Kumaraswamy G. Large PAMAM Dendron Induces Formation of Unusual P4 332 Mesophase in Monoolein/Water Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6827-6834. [PMID: 29775311 DOI: 10.1021/acs.langmuir.8b00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Compact macromolecular dendrons have previously been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3 m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation of a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome c. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3 d and discontinuous micellar mesophases. We present a detailed investigation of the phase behavior of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the Lα to Ia3 d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. In contrast to this, incorporation of lower generation PAMAM dendrons (G2-G4) in monoolein/water yields a qualitatively different phase diagram with the formation of the reverse micellar Fd3 m phase. PAMAM dendrons of all generations, G2-G5, bear terminal amine groups that interact with the monoolein headgroup. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2-G4, this results in the formation of the Fd3 m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3 d and discontinuous micellar phase, and the P4332 mesophase forms instead.
Collapse
|
4
|
Polyhexamethylene Biguanide and Nadifloxacin Self-Assembled Nanoparticles: Antimicrobial Effects against Intracellular Methicillin-Resistant Staphylococcus aureus. Polymers (Basel) 2018; 10:polym10050521. [PMID: 30966555 PMCID: PMC6415416 DOI: 10.3390/polym10050521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/29/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
The treatment of skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge, partly due to localization of the bacteria inside the host’s cells, where antimicrobial penetration and efficacy is limited. We formulated the cationic polymer polyhexamethylene biguanide (PHMB) with the topical antibiotic nadifloxacin and tested the activities against intracellular MRSA in infected keratinocytes. The PHMB/nadifloxacin nanoparticles displayed a size of 291.3 ± 89.6 nm, polydispersity index of 0.35 ± 0.04, zeta potential of +20.2 ± 4.8 mV, and drug encapsulation efficiency of 58.25 ± 3.4%. The nanoparticles killed intracellular MRSA, and relative to free polymer or drugs used separately or together, the nanoparticles displayed reduced toxicity and improved host cell recovery. Together, these findings show that PHMB/nadifloxacin nanoparticles are effective against intracellular bacteria and could be further developed for the treatment of skin and soft tissue infections.
Collapse
|
5
|
Speziale C, Zabara AF, Drummond CJ, Mezzenga R. Active Gating, Molecular Pumping, and Turnover Determination in Biomimetic Lipidic Cubic Mesophases with Reconstituted Membrane Proteins. ACS NANO 2017; 11:11687-11693. [PMID: 29111676 DOI: 10.1021/acsnano.7b06838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the mechanisms controlling molecular transport in bioinspired materials is a central topic in many branches of nanotechnology. In this work, we show that biomolecules of fundamental importance in biological processes, such as glucose, can be transported in an active, controlled, and selective manner across macroscopic lipidic cubic mesophases, by correctly reconstituting within them their corresponding membrane protein transporters, such as Staphylococcus epidermidis (GlcPSe). Importantly, by duly exploiting the symporter properties of GlcPSe of coupled glucose/H+ transport, the diffusion of glucose can further be tuned by independent physiological stimuli, such as parallel or antiparallel pH gradients, offering an important model to study molecular exchange processes in cellular machinery. We finally show that by measuring the transport properties of the lipidic mesophases with and without the GlcPSe membrane protein reconstituted within, it becomes possible to determine its intrinsic conductance. We generalize these findings to other membrane proteins from the antiporters family, such as the bacterial ClC exchanger from Escherichia coli (EcClC), providing a robust method for evaluating the turnover rate of the membrane proteins in general.
Collapse
Affiliation(s)
- Chiara Speziale
- Department of Health Sciences & Technology, ETH Zürich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Alexandru Florian Zabara
- Department of Health Sciences & Technology, ETH Zürich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
- School of Science, College of Science, Engineering and Health, RMIT University , 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Calum John Drummond
- School of Science, College of Science, Engineering and Health, RMIT University , 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zürich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
- Department of Materials, ETH Zürich , Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| |
Collapse
|
6
|
Salnikov ES, Raya J, De Zotti M, Zaitseva E, Peggion C, Ballano G, Toniolo C, Raap J, Bechinger B. Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophys J 2017; 111:2450-2459. [PMID: 27926846 DOI: 10.1016/j.bpj.2016.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Jesus Raya
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Ekaterina Zaitseva
- Department of Membrane Physiology and Technology, Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Gema Ballano
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France.
| |
Collapse
|
7
|
Zhu D, Cai G, Li X, Lu J, Zhang L. Enhancing the antimicrobial activity of Sus scrofa lysozyme by N-terminal fusion of a sextuple unique homologous peptide. J Biotechnol 2017; 243:61-68. [PMID: 28034616 DOI: 10.1016/j.jbiotec.2016.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
Abstract
Sus scrofa lysozyme (SSL), an important component of the pig immune system, is a potential candidate to replace antibiotics in feed. However, there is little antimicrobial activity of natural SSL against gram-negative bacteria, which limits its application. In this study, a unique peptide (A-W-V-A-W-K) with antimicrobial activity against gram-negative bacteria was discovered and purified from trypsin hydrolysate of natural SSL. This unique peptide was fused to natural SSL and the recombinant fused SSL exhibited improved activity against gram-negative bacteria. The N-terminal fusion likely increased the membrane penetrability and induced programmed bacterial cell death. The recombinant fused SSL also showed higher activity against some gram-positive bacteria with O-acetylation. By N-terminal fusion of the sextuple peptide, the anti-microbial activity, either to gram-positive or negative bacteria, of the recombinant SSL was higher than the fusion of only one copy of the peptide. This study provides a general, feasible, and highly useful strategy to enhance the antimicrobial activity of lysozyme.
Collapse
Affiliation(s)
- Dewei Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China; Industrial Technology Research Institute of Jiangnan University in Suqian, 888 Renmin Road, 223800, Jiangsu, China.
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Liu Q, Dong YD, Boyd BJ. Selective Sequence for the Peptide-Triggered Phase Transition of Lyotropic Liquid-Crystalline Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5155-5161. [PMID: 27148806 DOI: 10.1021/acs.langmuir.6b00547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel concept of using mixed lipids to construct selective peptide-sequence-sensing lyotropic liquid-crystalline (LLC) dispersion systems was investigated. The LLC systems were constructed using a mixture of phytantriol, a lipid that forms lyotropic liquid-crystalline phases, and a novel synthesized peptide-lipid (peplipid) for sensing a target peptide with the RARAR sequence. The internal structure of the dispersed LLC particles was converted from the lamellar structure (liposomes) to the inverse bicontinuous cubic phase (cubosomes) in the presence of the target peptide. The addition of common human proteins did not induce any structural change, indicating a high selectivity of interaction with the target peptide. The concept has potential for the design of targeted controlled release drug delivery agents.
Collapse
Affiliation(s)
- Qingtao Liu
- Drug Delivery, Disposition and Dynamics and ‡ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yao-Da Dong
- Drug Delivery, Disposition and Dynamics and ‡ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics and ‡ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
Boge L, Bysell H, Ringstad L, Wennman D, Umerska A, Cassisa V, Eriksson J, Joly-Guillou ML, Edwards K, Andersson M. Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4217-4228. [PMID: 27033359 DOI: 10.1021/acs.langmuir.6b00338] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded with peptide LL-37 displayed a loss in its broad-spectrum bactericidal properties. AMP-loaded hexosomes showed a reduction in antimicrobial activity.
Collapse
Affiliation(s)
- Lukas Boge
- SP Technical Research Institute of Sweden, Drottning Kristinas väg 45, Box 5607, Stockholm SE 11486, Sweden
- Department of Chemical and Chemical Engineering, Applied Chemistry, Chalmers University of Technology , Kemigården 4, Göteborg SE-41296, Sweden
| | - Helena Bysell
- SP Technical Research Institute of Sweden, Drottning Kristinas väg 45, Box 5607, Stockholm SE 11486, Sweden
| | - Lovisa Ringstad
- SP Technical Research Institute of Sweden, Drottning Kristinas väg 45, Box 5607, Stockholm SE 11486, Sweden
| | - David Wennman
- SP Process Development, Forskargatan 18, Box 36, Södertälje SE 15121, Sweden
| | - Anita Umerska
- Inserm U1066, University of Angers , 4 rue Larrey, Cedex 9 Angers FR 49933, France
| | - Viviane Cassisa
- Laboratoire de Bactériologie-Hygiène, CHU Angers , 4 rue Larrey, Angers FR 49000, France
| | - Jonny Eriksson
- Department of Chemistry - BMC, Uppsala University , Husargatan 3, Box 579, Uppsala SE-75123, Sweden
| | | | - Katarina Edwards
- Department of Chemistry - BMC, Uppsala University , Husargatan 3, Box 579, Uppsala SE-75123, Sweden
| | - Martin Andersson
- Department of Chemical and Chemical Engineering, Applied Chemistry, Chalmers University of Technology , Kemigården 4, Göteborg SE-41296, Sweden
| |
Collapse
|
10
|
Bonifácio BV, Ramos MADS, da Silva PB, Negri KMS, de Oliveira Lopes É, de Souza LP, Vilegas W, Pavan FR, Chorilli M, Bauab TM. Nanostructured lipid system as a strategy to improve the anti-Candida albicans activity of Astronium sp. Int J Nanomedicine 2015; 10:5081-92. [PMID: 26300640 PMCID: PMC4536841 DOI: 10.2147/ijn.s79684] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The genus Astronium (Anacardiaceae) includes species, such as Astronium fraxinifolium, Astronium graveolens, and Astronium urundeuva, which possess anti-inflammatory, anti-ulcerogenic, healing, and antimicrobial properties. Nanostructured lipid systems are able to potentiate the action of plant extracts, reducing the required dose and side effects and improving antimicrobial activity. This work aims to evaluate a nanostructured lipid system that was developed as a strategy to improve the anti-Candida albicans activity of hydroethanolic extracts of stems and leaves from Astronium sp. The antifungal activity against C. albicans (ATCC 18804) was evaluated in vitro by a microdilution technique. In addition to the in vitro assays, the Astronium sp. that showed the best antifungal activity and selectivity index was submitted to an in vivo assay using a model of vulvovaginal candidiasis infection. In these assays, the extracts were either used alone or were incorporated into the nanostructured lipid system (comprising 10% oil phase, 10% surfactant, and 80% aqueous phase). The results indicated a minimal inhibitory concentration of 125.00 µg/mL before incorporation into the nanostructured system; this activity was even more enhanced when this extract presented a minimal inhibitory concentration of 15.62 µg/mL after its incorporation. In vivo assay dates showed that the nanostructure-incorporated extract of A. urundeuva leaves was more effective than both the unincorporated extract and the antifungal positive control (amphotericin B). These results suggest that this nanostructured lipid system can be used in a strategy to improve the in vitro and in vivo anti-C. albicans activity of hydroethanolic extracts of Astronium sp.
Collapse
Affiliation(s)
- Bruna Vidal Bonifácio
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | | | - Patrícia Bento da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Kamila Maria Silveira Negri
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Érica de Oliveira Lopes
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Leonardo Perez de Souza
- Department of Organic Chemistry, Chemistry Institute, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Wagner Vilegas
- Coastal Campus of São Vicente, UNESP – Univ Estadual Paulista, São Vicente, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| |
Collapse
|
11
|
Yaghmur A, Rappolt M. The Micellar Cubic Fd3m Phase. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2013. [DOI: 10.1016/b978-0-12-411515-6.00005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Chavarha M, Loney RW, Kumar K, Rananavare SB, Hall SB. Differential effects of the hydrophobic surfactant proteins on the formation of inverse bicontinuous cubic phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16596-604. [PMID: 23140329 PMCID: PMC3514604 DOI: 10.1021/la3025364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Prior studies have shown that the biological mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, produces faster adsorption of the surfactant lipids to an air/water interface, and that they induce 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) to form inverse bicontinuous cubic phases. Previous studies have shown that SP-B has a much greater effect than SP-C on adsorption. If the two proteins induce faster adsorption and formation of the bicontinuous structures by similar mechanisms, then they should also have different abilities to form the cubic phases. To test this hypothesis, we measured small-angle X-ray scattering on the individual proteins combined with POPE. SP-B replicated the dose-related ability of the combined proteins to induce the cubic phases at temperatures more than 25 °C below the point at which POPE alone forms the curved inverse-hexagonal phase. With SP-C, diffraction from cubic structures was either absent or present at very low intensities only with larger amounts of protein. The correlation between the structural effects of inducing curved structures and the functional effects on the rate of adsorption fits with the model in which SP-B promotes adsorption by facilitating formation of an inversely curved, rate-limiting structure.
Collapse
Affiliation(s)
- Mariya Chavarha
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | - Ryan W. Loney
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | - Kamlesh Kumar
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | | | - Stephen B. Hall
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
- To whom correspondence should be addressed: Stephen B. Hall, Pulmonary & Critical Care Medicine, Mail Code UHN-67, Oregon Health & Science University, Portland, Oregon 97239-3098, Telephone: (503) 494-6667,
| |
Collapse
|
13
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 545] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
14
|
Angelova A, Angelov B, Mutafchieva R, Lesieur S, Couvreur P. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc Chem Res 2011; 44:147-56. [PMID: 21189042 DOI: 10.1021/ar100120v] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network. With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.
Collapse
Affiliation(s)
- Angelina Angelova
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud, Châtenay-Malabry, F-92296 France
| | - Borislav Angelov
- Department of Chemistry and iNANO, Aarhus University, Denmark
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Czech Republic
- Institute of Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria
| | - Rada Mutafchieva
- Institute of Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria
| | - Sylviane Lesieur
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud, Châtenay-Malabry, F-92296 France
| | - Patrick Couvreur
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud, Châtenay-Malabry, F-92296 France
| |
Collapse
|
15
|
|
16
|
Gofman Y, Linser S, Rzeszutek A, Shental-Bechor D, Funari SS, Ben-Tal N, Willumeit R. Interaction of an antimicrobial peptide with membranes: experiments and simulations with NKCS. J Phys Chem B 2010; 114:4230-7. [PMID: 20201501 DOI: 10.1021/jp909154y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used Monte Carlo simulations and biophysical measurements to study the interaction of NKCS, a derivative of the antimicrobial peptide NK-2, with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membrane. The simulations showed that NKCS adsorbed on the membrane surface and the dominant conformation featured two amphipathic helices connected by a hinge region. We designed two mutants in the hinge to investigate the interplay between helicity and membrane affinity. Simulations with a Leu-to-Pro substitution showed that the helicity and membrane affinity of the mutant (NKCS-[LP]) decreased. Two Ala residues were added to NKCS to produce a sequence that is compatible with a continuous amphipathic helix structure (NKCS-[AA]), and the simulations showed that the mutant adsorbed on the membrane surface with a particularly high affinity. The circular dichroism spectra of the three peptides also showed that NKCS-[LP] is the least helical and NKCS-[AA] is the most. However, the activity of the peptides, determined in terms of their antimicrobial potency and influence on the temperature of the transition of the lipid to hexagonal phase, displayed a complex behavior: NKCS-[LP] was the least potent and had the smallest influence on the transition temperature, and NKCS was the most potent and had the largest effect on the temperature.
Collapse
Affiliation(s)
- Yana Gofman
- GKSS Research Center, 21502 Geesthacht, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Hydrophobic surfactant proteins induce a phosphatidylethanolamine to form cubic phases. Biophys J 2010; 98:1549-57. [PMID: 20409474 DOI: 10.1016/j.bpj.2009.12.4302] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/02/2009] [Accepted: 12/15/2009] [Indexed: 11/21/2022] Open
Abstract
The hydrophobic surfactant proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface. Previous evidence suggests that they achieve this effect by facilitating the formation of a rate-limiting negatively curved stalk between the vesicular bilayer and the interface. To determine whether the proteins can alter the curvature of lipid leaflets, we used x-ray diffraction to investigate how the physiological mixture of these proteins affects structures formed by 1-palmitoyl-2-oleoyl phosphatidylethanolamine, which by itself undergoes the lamellar-to-inverse hexagonal phase transition at 71 degrees C. In amounts as low as 0.03% (w:w) and at temperatures as low as 57 degrees C, the proteins induce formation of bicontinuous inverse cubic phases. The proteins produce a dose-related shift of diffracted intensity to the cubic phases, with minimal evidence of other structures above 0.1% and 62 degrees C, but no change in the lattice-constants of the lamellar or cubic phases. The induction of the bicontinuous cubic phases, in which the individual lipid leaflets have the same saddle-shaped curvature as the hypothetical stalk-intermediate, supports the proposed model of how the surfactant proteins promote adsorption.
Collapse
|
18
|
Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem Phys Lipids 2010; 163:82-93. [PMID: 19799887 DOI: 10.1016/j.chemphyslip.2009.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/04/2009] [Accepted: 09/23/2009] [Indexed: 12/24/2022]
Abstract
Antimicrobial peptides are naturally produced by numerous organisms including insects, plants and mammals. Their non-specific mode of action is thought to involve the transient perturbation of bacterial membranes but the molecular mechanism underlying the rearrangement of the lipid molecules to explain the formation of pores and micelles is still poorly understood. Biological membranes mostly adopt planar lipid bilayers; however, antimicrobial peptides have been shown to induce non-lamellar lipid phases which may be intimately linked to their proposed mechanisms of action. This paper reviews antimicrobial peptides that alter lipid phase behavior in three ways: peptides that induce positive membrane curvature, peptides that induce negative membrane curvature and peptides that induce cubic lipid phases. Such structures can coexist with the bilayer structure, thus giving rise to lipid polymorphism induced upon addition of antimicrobial peptides. The discussion addresses the implications of induced lipid phases for the mode of action of various antimicrobial peptides.
Collapse
|
19
|
Epand RF, Schmitt MA, Gellman SH, Sen A, Auger M, Hughes DW, Epand RM. Bacterial species selective toxicity of two isomeric α/β-peptides: Role of membrane lipids. Mol Membr Biol 2009; 22:457-69. [PMID: 16373318 DOI: 10.1080/09687860500370562] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have studied how membrane interactions of two synthetic cationic antimicrobial peptides with alternating alpha- and beta-amino acid residues ("alpha/beta-peptides") impact toxicity to different prokaryotes. Electron microscopic examination of thin sections of Escherichia coli and of Bacillus subtilis exposed to these two alpha/beta-peptides reveals different structural changes in the membranes of these bacteria. These two peptides also have very different effects on the morphology of liposomes composed of phosphatidylethanolamine and phosphatidylglycerol in a 2:1 molar ratio. Freeze fracture electron microscopy indicates that with this lipid mixture, alpha/beta-peptide I induces the formation of a sponge phase. 31P NMR and X-ray diffraction are consistent with this conclusion. In contrast, with alpha/beta-peptide II and this same lipid mixture, a lamellar phase is maintained, but with a drastically reduced d-spacing. alpha/beta-Peptide II is more lytic to liposomes composed of these lipids than is I. These findings are consistent with the greater toxicity of alpha/beta-peptide II, relative to alpha/beta-peptide I, to E. coli, a bacterium having a high content of phosphatidylethanolamine. In contrast, both alpha/beta-peptides display similar toxicity toward B. subtilis, in accord with the greater anionic lipid composition in its membrane. This work shows that variations in the selectivity of these peptidic antimicrobial peptides toward different strains of bacteria can be partly determined by the lipid composition of the bacterial cell membrane.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Milov AD, Samoilova RI, Tsvetkov YD, De Zotti M, Formaggio F, Toniolo C, Handgraaf JW, Raap J. Structure of self-aggregated alamethicin in ePC membranes detected by pulsed electron-electron double resonance and electron spin echo envelope modulation spectroscopies. Biophys J 2009; 96:3197-209. [PMID: 19383464 DOI: 10.1016/j.bpj.2009.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/17/2022] Open
Abstract
PELDOR spectroscopy was exploited to study the self-assembled super-structure of the [Glu(OMe)(7,18,19)]alamethicin molecules in vesicular membranes at peptide to lipid molar ratios in the range of 1:70-1:200. The peptide molecules were site-specifically labeled with TOAC electron spins. From the magnetic dipole-dipole interaction between the nitroxides of the monolabeled constituents and the PELDOR decay patterns measured at 77 K, intermolecular-distance distribution functions were obtained and the number of aggregated molecules (n approximately 4) was estimated. The distance distribution functions exhibit a similar maximum at 2.3 nm. In contrast to Alm16, for Alm1 and Alm8 additional maxima were recorded at 3.2 and approximately 5.2 nm. From ESEEM experiments and based on the membrane polarity profiles, the penetration depths of the different spin-labeled positions into the membrane were qualitatively estimated. It was found that the water accessibility of the spin-labels follows the order TOAC-1 > TOAC-8 approximately TOAC-16. The geometric data obtained are discussed in terms of a penknife molecular model. At least two peptide chains are aligned parallel and eight ester groups of the polar Glu(OMe)(18,19) residues are suggested to stabilize the self-aggregate superstructure.
Collapse
Affiliation(s)
- Alexander D Milov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090 Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Cheng X, Wang J, Zhou F. Bi- and tetra-layered dipalmitoyl phosphatidylserine (DPPS) patterns produced by hydration of Langmuir–Blodgett monolayers and the subsequent enzymatic digestion. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2008.11.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Hickel A, Danner-Pongratz S, Amenitsch H, Degovics G, Rappolt M, Lohner K, Pabst G. Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2325-33. [PMID: 18582435 DOI: 10.1016/j.bbamem.2008.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
We have studied the influence of four antimicrobial peptides of different secondary and ternary structure--melittin (Mel), protegrin-1 (PG-1), peptidyl-glycylleucine-carboxyamide (PGLa), and gramicidin S (GS)--on the lamellar-to-nonlamellar transition of palmitoyloleoyl phosphatidylethanolamine (POPE) applying differential scanning calorimetry and small-angle X-ray diffraction. None of the peptides studied led to the formation of an inverted hexagonal phase observed for pure POPE at high temperatures. Instead either cubic or lamellar phases were stabilized to different degrees. GS was most effective in inducing a cubic phase, whereas Mel fully stabilized the lamellar phase. The behavior of POPE in the presence of PG-1 and PGLa was intermediate to GS and Mel. In addition to the known role of membrane elasticity we propose two mechanisms, which cause stabilization of the lamellar phase: electrostatic repulsion and lipid/peptide pore formation. Both mechanisms prevent transmembrane contact required to form either an inverted hexagonal phase or fusion pores, as precursors of the cubic phase.
Collapse
Affiliation(s)
- Andrea Hickel
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, A 8042 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Lohner K, Sevcsik E, Pabst G. Chapter Five Liposome-Based Biomembrane Mimetic Systems: Implications for Lipid–Peptide Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2008. [DOI: 10.1016/s1554-4516(07)06005-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Angelov B, Angelova A, Garamus VM, Lebas G, Lesieur S, Ollivon M, Funari SS, Willumeit R, Couvreur P. Small-Angle Neutron and X-ray Scattering from Amphiphilic Stimuli-Responsive Diamond-Type Bicontinuous Cubic Phase. J Am Chem Soc 2007; 129:13474-9. [DOI: 10.1021/ja072725+] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C. Proteocubosomes: nanoporous vehicles with tertiary organized fluid interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4138-43. [PMID: 15835985 DOI: 10.1021/la047745t] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Proteocubosomes are nanostructured open-nanochannel hierarchical fluid vehicles characterized by a cubic lattice periodicity of the lipid/protein supramolecular assembly (protein-loaded cubosomes). They are obtained here at very high hydration levels by a three-dimensional (3D) self-assembly process, which exploits a protein-directed 3D patterning and fragmentation to create a new, tertiary-level structural order of fluid lipid/water interfaces. Our freeze-fracture electron microscopy study reveals that the proteocubosome structures are built up by patterned assemblies of nanocubosomes, which comprise 3D nanoporous fracture surfaces throughout. Complex cubosomic architectures, involving arrays of nanodroplets (larger than 20 nm) inside the proteocubosome particles, are established at high resolution. The soft-matter hierarchical nanocompartment formations display internal aqueous pores belonging to the D-type lipid cubic lattice nanochannel system that is proven by synchrotron X-ray diffraction. The reported nanostructured fluid may give rise to novel applications in nanofluidic biomimetic devices, porous protein drug delivery vehicles, nanoscale enzymatic bioreactors, and protein-encapsulating fluid nanomaterials.
Collapse
Affiliation(s)
- Angelina Angelova
- CEP, UMR 8612, University of Paris XI, 5 Rue J.B. Clément, F-92296 Châtenay-Malabry, France.
| | | | | | | | | |
Collapse
|
26
|
Willumeit R, Kumpugdee M, Funari SS, Lohner K, Navas BP, Brandenburg K, Linser S, Andrä J. Structural rearrangement of model membranes by the peptide antibiotic NK-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:125-34. [PMID: 15893515 DOI: 10.1016/j.bbamem.2005.01.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 01/17/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
We have developed a novel alpha-helical peptide antibiotic termed NK-2. It efficiently kills bacteria, but not human cells, by membrane destruction. This selectivity could be attributed to the different membrane lipid compositions of the target cells. To understand the mechanisms of selectivity and membrane destruction, we investigated the influence of NK-2 on the supramolecular aggregate structure, the phase transition behavior, the acyl chain fluidity, and the surface charges of phospholipids representative for the bacterial and the human cell cytoplasmic membranes. The cationic NK-2 binds to anionic phosphatidylglycerol liposomes, causing a thinning of the membrane and an increase in the phase transition temperature. However, this interaction is not solely of electrostatic but also of hydrophobic nature, indicated by an overcompensation of the Zeta potential. Whereas NK-2 has no effect on phosphatidylcholine liposomes, it enhances the fluidity of phosphatidylethanolamine acyl chains and lowers the phase transition enthalpy of the gel to liquid cristalline transition. The most dramatic effect, however, was observed for the lamellar/inverted hexagonal transition of phosphatidylethanolamine which was reduced by more than 10 degrees C. Thus, NK-2 promotes a negative membrane curvature which can lead to the collapse of the phosphatidylethanolamine-rich bacterial cytoplasmic membrane.
Collapse
|
27
|
Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Bourgaux C, Couvreur P. Protein Driven Patterning of Self-Assembled Cubosomic Nanostructures: Long Oriented Nanoridges. J Phys Chem B 2005; 109:3089-93. [PMID: 16851326 DOI: 10.1021/jp044216p] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembly lipid/protein cubosomic nanostructures are generated at high hydration level (dispersion of 5% lipid only) and examined by freeze-fracture electron microscopy (FF-EM) and synchrotron X-ray diffraction (XRD). The fracture surface of the three-dimensional (3D) soft-matter membranous assembly reveals starlike nanopatterns of oriented 100-nm-long cubosomic nanoridges with lateral periodicity defined by their 21-nm diameters. The average water channel radius in these liquid crystalline cubosomic nanoarchitectures, determined by high-resolution FF-EM and XRD, is 18.0 Angstrom. The protein-directed fragmentation of a diamond-type lipid cubic phase at high hydration can induce 3D patterns of oriented nanoporous building blocks, which are a unique example of tertiary organization of functionalized fluid lipid/water interfaces.
Collapse
|
28
|
Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C. Structural organization of proteocubosome carriers involving medium- and large-size proteins. J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50013-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ionov R, El-Abed A, Goldmann M, Peretti P. Structural Organization of α-Helical Peptide Antibiotic Alamethicin at the Air/Water Interface. J Phys Chem B 2004. [DOI: 10.1021/jp049271c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Ionov
- LNPC, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France, Laboratoire pour l'Utilization du Rayonnement Electromagnetique, Université Paris Sud, 91405 Orsay, France, and College of Sciences “Leonardo da Vinci”, Post Office Box 946, BG-1000 Sofia, Bulgaria
| | - A. El-Abed
- LNPC, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France, Laboratoire pour l'Utilization du Rayonnement Electromagnetique, Université Paris Sud, 91405 Orsay, France, and College of Sciences “Leonardo da Vinci”, Post Office Box 946, BG-1000 Sofia, Bulgaria
| | - M. Goldmann
- LNPC, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France, Laboratoire pour l'Utilization du Rayonnement Electromagnetique, Université Paris Sud, 91405 Orsay, France, and College of Sciences “Leonardo da Vinci”, Post Office Box 946, BG-1000 Sofia, Bulgaria
| | - P. Peretti
- LNPC, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France, Laboratoire pour l'Utilization du Rayonnement Electromagnetique, Université Paris Sud, 91405 Orsay, France, and College of Sciences “Leonardo da Vinci”, Post Office Box 946, BG-1000 Sofia, Bulgaria
| |
Collapse
|
30
|
Garstecki P, Hołyst R. Scattering patterns of self-assembled gyroid cubic phases in amphiphilic systems. J Chem Phys 2001. [DOI: 10.1063/1.1379326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Angelov B, Angelova A, Ionov R. An Amino-Substituted Phenylethynyl-anthracene Probe Shows a Sensitivity to Changes in the Lipid Monolayer Curvature of Nonlamellar Lipid/Water Phases. J Phys Chem B 2000. [DOI: 10.1021/jp993779b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Borislav Angelov
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, BG-1113 Sofia, and College of Sciences “Leonardo da Vinci”, P.O. Box 946, BG-1000 Sofia, Bulgaria, and Institute of Applied Physics, Technical University, BG-1156 Sofia, Bulgaria
| | - Angelina Angelova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, BG-1113 Sofia, and College of Sciences “Leonardo da Vinci”, P.O. Box 946, BG-1000 Sofia, Bulgaria, and Institute of Applied Physics, Technical University, BG-1156 Sofia, Bulgaria
| | - Radoslav Ionov
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, BG-1113 Sofia, and College of Sciences “Leonardo da Vinci”, P.O. Box 946, BG-1000 Sofia, Bulgaria, and Institute of Applied Physics, Technical University, BG-1156 Sofia, Bulgaria
| |
Collapse
|