1
|
Ma B, Lee YH, Ruszczycky MW, Ren D, Engstrom A, Liu HW, Tao L. EPR Characterization of the BlsE Substrate Radical Offers Insight into the Determinants of Reaction Outcome that Distinguish Radical SAM Dioldehydratases from Dehydrogenases. J Am Chem Soc 2025; 147:4111-4119. [PMID: 39862188 PMCID: PMC11826333 DOI: 10.1021/jacs.4c13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
A small but growing set of radical SAM (S-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway. The substrate radical is found to have a dihedral angle between the electron spin carrier p-orbital and the C-O bond to be cleaved that appears to be sufficient to support elimination despite lying outside the strictly periplanar region. A more significant contributor to the gating of dehydration activity, however, appears to be establishment of a proper hydrogen bonding configuration in order to stabilize the accumulation of negative charge on the eliminated hydroxyl group.
Collapse
Affiliation(s)
- Baixu Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Hsuan Lee
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daan Ren
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Amelia Engstrom
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lizhi Tao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Ruszczycky MW, Liu HW. Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes. Biochemistry 2024; 63:3161-3183. [PMID: 39626071 PMCID: PMC11878213 DOI: 10.1021/acs.biochem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes catalyze radical mediated chemical transformations notable for their diversity. The radical mediated reactions that take place in their catalytic cycles can be characterized with respect to one or more phases of initiation, propagation, and termination. Mechanistic models abound regarding these three phases of catalysis being regularly informed and updated by new discoveries that offer insights into their detailed workings. However, questions continue to be raised that touch on fundamental aspects of their mechanistic enzymology. Radical SAM enzymes are consequently far from fully understood, and this Perspective aims to outline some of the current models of radical SAM chemistry with an emphasis on lines of investigation that remain to be explored.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Ghosh AP, Toda MJ, Kozlowski PM. Photolytic properties of B 12-dependent enzymes: A theoretical perspective. VITAMINS AND HORMONES 2022; 119:185-220. [PMID: 35337619 DOI: 10.1016/bs.vh.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biologically active vitamin B12 derivates, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are ubiquitous organometallic cofactors. In addition to their key roles in enzymatic catalysis, B12 cofactors have complex photolytic properties which have been the target of experimental and theoretical studies. With the recent discovery of B12-dependent photoreceptors, there is an increased need to elucidate the underlying photochemical mechanisms of these systems. This book chapter summarizes the photolytic properties of MeCbl- and AdoCbl-dependent enzymes with particular emphasis on the effect of the environment of the cofactor on the excited state processes. These systems include isolated MeCbl and AdoCbl as well as the enzymes, ethanolamine ammonia-lyase (EAL), glutamate mutase (GLM), methionine synthase (MetH), and photoreceptor CarH. Central to determining the photodissociation mechanism of each system is the analysis of the lowest singlet excited state (S1) potential energy surface (PES). Time-dependent density functional theory (TD-DFT), employing BP86/TZVPP, is widely used to construct such PESs. Regardless of the environment, the topology of the S1 PES of AdoCbl or MeCbl is marked by characteristic features, namely the metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions. Conversely, the relative energetics of these electronic states are affected by the environment. Applications and outlooks for Cbl photochemistry are also discussed.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
4
|
Ghosh AP, Toda MJ, Kozlowski PM. What Triggers the Cleavage of the Co–C 5′ Bond in Coenzyme B 12-Dependent Itaconyl-CoA Methylmalonyl-CoA Mutase? ACS Catal 2021. [DOI: 10.1021/acscatal.1c00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B 12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020; 8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Jeung Yeop Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
6
|
Toda MJ, Lodowski P, Mamun AA, Jaworska M, Kozlowski PM. Photolytic properties of the biologically active forms of vitamin B12. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Jones L, Kumar J, Mistry A, Sankar Chittoor Mana T, Perry G, Reddy VP, Obrenovich M. The Transformative Possibilities of the Microbiota and Mycobiota for Health, Disease, Aging, and Technological Innovation. Biomedicines 2019; 7:E24. [PMID: 30925795 PMCID: PMC6631383 DOI: 10.3390/biomedicines7020024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota is extremely important for the health of the host across its lifespan.Recent studies have elucidated connections between the gut microbiota and neurological diseaseand disorders such as depression, anxiety, Alzheimer's disease (AD), autism, and a host of otherbrain illnesses. Dysbiosis of the normal gut flora can have negative consequences for humans,especially throughout key periods during our lifespan as the gut microbes change with age in bothphenotype and number of bacterial species. Neurologic diseases, mental disorders, and euthymicstates are influenced by alterations in the metabolites produced by gut microbial milieu. Weintroduce a new concept, namely, the mycobiota and microbiota-gut-brain neuroendocrine axis anddiscuss co-metabolism with emphasis on means to influence or correct disruptions to normal gutflora throughout the lifespan from early development to old age. These changes involveinflammation and involve the permeability of barriers, such as the intestine blood barrier, the blood⁻brain barrier, and others. The mycobiota and microbiota⁻gut⁻brain axis offer new research horizonsand represents a great potential target for new therapeutics, including approaches based aroundinflammatory disruptive process, genetically engineered drug delivery systems, diseased cellculling "kill switches", phage-like therapies, medicinal chemistry, or microbial parabiosis to namea few.
Collapse
Affiliation(s)
- Lucas Jones
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
- Department of Molecular and Microbiology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA.
| | - Jessica Kumar
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | - Adil Mistry
- Departments of Engineering and Chemistry, Cleveland State University, Cleveland, OH 44115, USA.
| | | | - George Perry
- Distinguished University Chair in Neurobiology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - V Prakash Reddy
- Missouri University of Science and Technology, Rolla, MI, 65409, USA.
| | - Mark Obrenovich
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
- Departments of Engineering and Chemistry, Cleveland State University, Cleveland, OH 44115, USA.
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
- MD and CSO, the Gilgamesh Foundation.org, Cleveland, OH 44106, USA.
- Department of Physics, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
8
|
Liu JZ, Xu W, Chistoserdov A, Bajpai RK. Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains. Appl Biochem Biotechnol 2016; 179:1073-100. [DOI: 10.1007/s12010-016-2051-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
9
|
Zhu D, Seo MJ, Ikeda H, Cane DE. Genome mining in streptomyces. Discovery of an unprecedented P450-catalyzed oxidative rearrangement that is the final step in the biosynthesis of pentalenolactone. J Am Chem Soc 2011; 133:2128-31. [PMID: 21284395 PMCID: PMC3041837 DOI: 10.1021/ja111279h] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The penM and pntM genes from the pentalenolactone biosynthetic gene clusters of Streptomyces exfoliatus UC5319 and Streptomyces arenae TÜ469 were predicted to encode orthologous cytochrome P450s, CYP161C3 and CYP161C2, responsible for the final step in the biosynthesis of the sesquiterpenoid antibiotic pentalenolactone (1). Synthetic genes optimized for expression in Escherichia coli were used to obtain recombinant PenM and PntM, each carrying an N-terminal His(6)-tag. Both proteins showed typical reduced-CO UV maxima at 450 nm, and each bound the predicted substrate, pentalenolactone F (4), with K(D) values of 153 ± 14 and 126 ± 11 μM for PenM and PntM, respectively, as determined by UV shift titrations. PenM and PntM both catalyzed the oxidative rearrangement of 4 to 1 when incubated in the presence of NADPH, spinach ferredoxin, ferredoxin reductase, and O(2). The steady-state kinetic parameters were k(cat) = 10.5 ± 1.7 min(-1) and K(m) = 340 ± 100 μM 4 for PenM and k(cat) = 8.8 ± 0.9 min(-1) and K(m) = 430 ± 100 μM 4 for PntM. The in vivo function of both gene products was confirmed by the finding that the corresponding deletion mutants S. exfoliatus/ΔpenM ZD22 and S. arenae/ΔpntM ZD23 no longer produced pentalenolactone but accumulated the precursor pentalenolactone F. Complementation of each deletion mutant with either penM or pntM restored production of antibiotic 1. Pentalenolactone was also produced by an engineered strain of Streptomyces avermitilis that had been complemented with pntE, pntD, and either pntM or penM, as well as the S. avermitilis electron-transport genes for ferredoxin and ferrodoxin reductase, fdxD and fprD.
Collapse
Affiliation(s)
- Dongqing Zhu
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA
| | - Myung-Ji Seo
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - David E. Cane
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA
| |
Collapse
|
10
|
Kampmeier JA. Regioselectivity in the homolytic cleavage of S-adenosylmethionine. Biochemistry 2010; 49:10770-2. [PMID: 21117660 DOI: 10.1021/bi101509u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The observed regioselectivity of the homolytic cleavage of S-adenosylmethionine (SAM) by the radical SAM enzymes is modeled by free radical displacement reactions at sulfoxide centers. These displacements are also regioselective, in direct consequence of the reaction mechanism. The selectivity in the radical SAM reactions is explained by the geometry of the free radical displacement mechanism, required by the chemical reaction and arranged in the active site by the radical SAM proteins.
Collapse
Affiliation(s)
- Jack A Kampmeier
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States.
| |
Collapse
|
11
|
Structure and chemistry of 4-methylideneimidazole-5-one containing enzymes. Curr Opin Chem Biol 2009; 13:460-8. [PMID: 19620019 DOI: 10.1016/j.cbpa.2009.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/12/2009] [Indexed: 11/21/2022]
Abstract
The prosthetic group 4-methylideneimidazole-5-one (MIO) is the catalytic component of the ammonia lyase class of enzymes. This family is responsible for the processing of amino acids in a variety of metabolic pathways through the elimination of ammonia to form unsaturated products. Recently, new chemistry has been attributed to this family with the discovery of MIO-based aminomutases. The mechanism of electrophilic chemistry catalyzed by MIO-based enzymes has been investigated for several decades. Recent X-ray crystal structures of members of the family have provided novel insight into the molecular basis for catalysis and substrate recognition. In addition, the inclusion of aminomutases in natural product biosynthetic pathways has spurned recent advances toward rational engineering and chemoenzymatic applications.
Collapse
|
12
|
Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 2007; 107:4273-303. [PMID: 17850165 DOI: 10.1021/cr050195z] [Citation(s) in RCA: 1019] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juan C Fontecilla-Camps
- Laboratoire de Cristallographie et Cristallogenèse des Proteines, Institut de Biologie Structurale J. P. Ebel, CEA, CNRS, Universitè Joseph Fourier, 41 rue J. Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | | | |
Collapse
|
13
|
Abstract
Enzymes possessing the capacity to oxidize molecular hydrogen have developed convergently three class of enzymes leading to: [FeFe]-, [NiFe]-, and [FeS]-cluster-free hydrogenases. They differ in the composition and the structure of the active site metal centre and the sequence of the constituent structural polypeptides but they show one unifying feature, namely the existence of CN and/or CO ligands at the active site Fe. Recent developments in the analysis of the maturation of [FeFe]- and [NiFe]- hydrogenases have revealed a remarkably complex pattern of mostly novel biochemical reactions. Maturation of [FeFe]-hydrogenases requires a minimum of three auxiliary proteins, two of which belong to the class of Radical-SAM enzymes and other to the family of GTPases. They are sufficient to generate active enzyme when their genes are co-expressed with the structural genes in a heterologous host, otherwise deficient in [FeFe]-hydrogenase expression. Maturation of the large subunit of [NiFe]-hydrogenases depends on the activity of at least seven core proteins that catalyse the synthesis of the CN ligand, have a function in the coordination of the active site iron, the insertion of nickel and the proteolytic maturation of the large subunit. Whereas this core maturation machinery is sufficient to generate active hydrogenase in the cytoplasm, like that of hydrogenase 3 from Escherichia coli, additional proteins are involved in the export of the ready-assembled heterodimeric enzyme to the periplasm via the twin-arginine translocation system in the case of membrane-bound hydrogenases. A series of other gene products with intriguing putative functions indicate that the minimal pathway established for E. coli [NiFe]-hydrogenase maturation may possess even higher complexity in other organisms.
Collapse
Affiliation(s)
- August Böck
- Department Biology I, University of Munich, 80638 Munich, Germany
| | | | | | | |
Collapse
|
14
|
Szu PH, He X, Zhao L, Liu HW. Biosynthesis of TDP-D-desosamine: identification of a strategy for C4 deoxygenation. Angew Chem Int Ed Engl 2006; 44:6742-6. [PMID: 16187386 DOI: 10.1002/anie.200501998] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ping-hui Szu
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
15
|
Layer G, Kervio E, Morlock G, Heinz DW, Jahn D, Retey J, Schubert WD. Structural and functional comparison of HemN to other radical SAM enzymes. Biol Chem 2005; 386:971-80. [PMID: 16218869 DOI: 10.1515/bc.2005.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Radical SAM enzymes have only recently been recognized as an ancient family sharing an unusual radical-based reaction mechanism. This late appreciation is due to the extreme oxygen sensitivity of most radical SAM enzymes, making their characterization particularly arduous. Nevertheless, realization that the novel apposition of the established cofactors S-adenosylmethionine and [4Fe-4S] cluster creates an explosive source of catalytic radicals, the appreciation of the sheer size of this previously neglected family, and the rapid succession of three successfully solved crystal structures within a year have ensured that this family has belatedly been noted. In this review, we report the characterization of two enzymes: the established radical SAM enzyme, HemN or oxygen-independent coproporphyrinogen III oxidase from Escherichia coli, and littorine mutase, a presumed radical SAM enzyme, responsible for the conversion of littorine to hyoscyamine in plants. The enzymes are compared to other radical SAM enzymes and in particular the three reported crystal structures from this family, HemN, biotin synthase and MoaA, are discussed.
Collapse
Affiliation(s)
- Gunhild Layer
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Szu PH, He X, Zhao L, Liu HW. Biosynthesis of TDP-D-Desosamine: Identification of a Strategy for C4 Deoxygenation. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Marsh ENG, Patwardhan A, Huhta MS. S-adenosylmethionine radical enzymes. Bioorg Chem 2005; 32:326-40. [PMID: 15381399 DOI: 10.1016/j.bioorg.2004.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Indexed: 11/25/2022]
Abstract
The role of S-adenosylmethionine (SAM) as a precursor to organic radicals, generated by one-electron reduction of SAM and subsequent fission to form 5'-deoxyadenosyl radical and methionine, has been known for some time. Only recently, however, has it become apparent how widespread such enzymes are, and what a wide range of chemical reactions they catalyze. In the last few years several new SAM radical enzymes have been identified. Spectroscopic and kinetic investigations have begun to uncover the mechanism by which an iron sulfur cluster unique to these enzymes reduces SAM to generate adenosyl radical. Most recently, the first X-ray structures of SAM radical enzymes, coproporphyrinogen-III oxidase, and biotin synthase have been solved, providing a structural framework within which to interpret mechanistic studies.
Collapse
Affiliation(s)
- E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
18
|
Walker KD, Klettke K, Akiyama T, Croteau R. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in Taxol biosynthesis. J Biol Chem 2004; 279:53947-54. [PMID: 15494399 DOI: 10.1074/jbc.m411215200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis of the N-benzoyl phenylisoserinoyl side chain of the anticancer drug Taxol starts with the conversion of 2S-alpha-phenylalanine to 3R-beta-phenylalanine by phenylalanine aminomutase (PAM). A gene cloning approach was based on the assumption that PAM would resemble the well known plant enzyme phenylalanine ammonia lyase. A phenylalanine ammonia lyase-like sequence acquired from a Taxus cuspidata cDNA library was expressed functionally in Escherichia coli and confirmed as the target aminomutase that is virtually identical to the recombinant enzyme and clone from Taxus chinensis, acquired recently by a reverse genetics approach (Bristol-Myers Squibb (August 14, 2003) U. S. Patent WO 03/066871 A2). The full-length cDNA has an open reading frame of 2094 base pairs and encodes a protein of 698 residues with a calculated molecular mass of 76,530 Da. The recombinant mutase has a pH optimum of 8.5, a k(cat) value of 0.015 s(-1), and a K(m) of 45 +/- 8 microm for 2S-alpha-phenylalanine. The stereochemical mechanism of PAM involves the removal and interchange of the pro-3S hydrogen and the amino group, which rebonds at C-3 with retention of configuration. The recombinant enzyme appears to catalyze both the forward and reverse reactions with specificity for both 2S-alpha-phenylalanine and 3S- or 3R-beta-phenylalanine substrates, respectively, whereas the related phenylpropanoids 2S-aminocyclohexanepropanoic acid, 2R-alpha-phenylalanine, and 2S-alpha-tyrosine are not converted to their beta-isomers by the mutase.
Collapse
Affiliation(s)
- Kevin D Walker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
19
|
Reed GH, Mansoorabadi SO. The positions of radical intermediates in the active sites of adenosylcobalamin-dependent enzymes. Curr Opin Struct Biol 2004; 13:716-21. [PMID: 14675550 PMCID: PMC3130341 DOI: 10.1016/j.sbi.2003.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The radical intermediates generated during the catalytic cycles of adenosylcobalamin-dependent enzymes occur in pairs. The positions of radicals residing on the cofactor, substrate or protein, relative to the position of the low-spin Co(2+) from the cob(II)alamin intermediate, can be extracted from electron paramagnetic resonance (EPR) spectra of the spin-coupled pairs. Examples of radical-Co(2+) pairs that span a range of interspin distances from 3 to 13A have been presented. Interspin distances greater than 5A require motion of one or more of the participating species. EPR spectroscopy provides a convenient means to determine the structures of these transient intermediates.
Collapse
Affiliation(s)
- George H Reed
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53726, USA.
| | | |
Collapse
|
20
|
Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 2004; 303:76-9. [PMID: 14704425 PMCID: PMC1456065 DOI: 10.1126/science.1088493] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The crystal structure of biotin synthase from Escherichia coli in complex with S-adenosyl-L-methionine and dethiobiotin has been determined to 3.4 angstrom resolution. This structure addresses how "AdoMet radical" or "radical SAM" enzymes use Fe4S4 clusters and S-adenosyl-L-methionine to generate organic radicals. Biotin synthase catalyzes the radical-mediated insertion of sulfur into dethiobiotin to form biotin. The structure places the substrates between the Fe4S4 cluster, essential for radical generation, and the Fe2S2 cluster, postulated to be the source of sulfur, with both clusters in unprecedented coordination environments.
Collapse
Affiliation(s)
- Frederick Berkovitch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
21
|
Christenson SD, Liu W, Toney MD, Shen B. A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis. J Am Chem Soc 2003; 125:6062-3. [PMID: 12785829 DOI: 10.1021/ja034609m] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The C-1027 enediyne antibiotic contains an unusual 3-chloro-4,5-dihydroxy-beta-phenylalanine moiety that is thought to be derived from tyrosine by an aminomutase reaction. However, none of the genes identified within the C-1027 gene cluster encode proteins with strong homology to known aminomutases. The sgcC4 gene encodes a protein with strong homology to dehydroalanine-dependent histidine/phenylalanine ammonia lyases. The sgcC4 gene was expressed in E. coli, and overproduced SgcC4 was purified as a His6-tagged fusion protein. Biochemical characterization of the purified SgcC4 establishes that SgcC4 is an aminomutase that catalyzes the conversion of l-tyrosine to (S)-beta-tyrosine and employs 4-methylideneimidazole-5-one (MIO) at its active site. The latter was supported by borohydride and cyanide inhibition studies and confirmed by site-directed mutagenesis. The S153A mutant exhibited a 340-fold decrease in kcat/KM. SgcC4 represents a novel type of aminomutase, extending the known MIO chemistry from ammonia lyases into aminomutases.
Collapse
|
22
|
Abstract
Carbohydrates are highly abundant biomolecules found extensively in nature. Besides playing important roles in energy storage and supply, they often serve as essential biosynthetic precursors or structural elements needed to sustain all forms of life. A number of unusual sugars that have certain hydroxyl groups replaced by a hydrogen, an amino group, or an alkyl side chain play crucial roles in determining the biological activity of the parent natural products in bacterial lipopolysaccharides or secondary metabolite antibiotics. Recent investigation of the biosynthesis of these monosaccharides has led to the identification of the gene clusters whose protein products facilitate the unusual sugar formation from the ubiquitous NDP-glucose precursors. This review summarizes the mechanistic studies of a few enzymes crucial to the biosynthesis of C-2, C-3, C-4, and C-6 deoxysugars, the characterization and mutagenesis of nucleotidyl transferases that can recognize and couple structural analogs of their natural substrates and the identification of glycosyltransferases with promiscuous substrate specificity. Information gleaned from these studies has allowed pathway engineering, resulting in the creation of new macrolides with unnatural deoxysugar moieties for biological activity screening. This represents a significant progress toward our goal of searching for more potent agents against infectious diseases and malignant tumors.
Collapse
Affiliation(s)
- Xuemei M He
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
23
|
Abstract
In the past few years, significant progress has been made in our understanding of the biosynthesis of deoxyhexoses. Mechanistic studies have revealed how enzymes can cleave CbondO bonds of a hexose substrate to make unusual sugars. The increasing amount of knowledge about the biosynthesis of deoxysugars may allow the assembly of a repertoire of novel sugar structures through recruitment and collaborative action of genes from a variety of biosynthetic pathways to create diverse secondary metabolites in our search for novel antibiotic/antitumour agents.
Collapse
Affiliation(s)
- Xuemei He
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry and Biochemistry, University of Texas, Austin 78712, USA
| | | |
Collapse
|
24
|
Layer G, Verfürth K, Mahlitz E, Jahn D. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem 2002; 277:34136-42. [PMID: 12114526 DOI: 10.1074/jbc.m205247200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria the oxygen-independent coproporphyrinogen-III oxidase catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX. The Escherichia coli hemN gene encoding a putative part of this enzyme was overexpressed in E. coli. Anaerobically purified HemN is a monomeric protein with a native M(r) = 52,000 +/- 5,000. A newly established anaerobic enzyme assay was used to demonstrate for the first time in vitro coproporphyrinogen-III oxidase activity for recombinant purified HemN. The enzyme requires S-adenosyl-l-methionine (SAM), NAD(P)H, and additional cytoplasmatic components for catalysis. An oxygen-sensitive iron-sulfur cluster was identified by absorption spectroscopy and iron analysis. Cysteine residues Cys(62), Cys(66), and Cys(69), which are part of the conserved CXXXCXXC motif found in all HemN proteins, are essential for iron-sulfur cluster formation and enzyme function. Completely conserved residues Tyr(56) and His(58), localized closely to the cysteine-rich motif, were found to be important for iron-sulfur cluster integrity. Mutation of Gly(111) and Gly(113), which are part of the potential GGGTP S-adenosyl-l-methionine binding motif, completely abolished enzymatic function. Observed functional properties in combination with a recently published computer-based enzyme classification (Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., and Miller, N. E. (2001) Nucleic Acids Res. 29, 1097-1106) identifies HemN as "Radical SAM enzyme." An appropriate enzymatic mechanism is suggested.
Collapse
Affiliation(s)
- Gunhild Layer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
25
|
Speranza G, Mueller B, Orlandi M, Morelli CF, Manitto P, Schink B. Mechanism of anaerobic ether cleavage: conversion of 2-phenoxyethanol to phenol and acetaldehyde by Acetobacterium sp. J Biol Chem 2002; 277:11684-90. [PMID: 11805106 DOI: 10.1074/jbc.m111059200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Phenoxyethanol is converted into phenol and acetate by a strictly anaerobic Gram-positive bacterium, Acetobacterium strain LuPhet1. Acetate results from oxidation of acetaldehyde that is the early product of the biodegradation process (Frings, J., and Schink, B. (1994) Arch. Microbiol. 162, 199-204). Feeding experiments with resting cell suspensions and 2-phenoxyethanol bearing two deuterium atoms at either carbon of the glycolic moiety as substrate demonstrated that the carbonyl group of the acetate derives from the alcoholic function and the methyl group derives from the adjacent carbon. A concomitant migration of a deuterium atom from C-1 to C-2 was observed. These findings were confirmed by NMR analysis of the acetate obtained by fermentation of 2-phenoxy-[2-(13)C,1-(2)H(2)]ethanol, 2-phenoxy-[1-(13)C,1-(2)H(2)]ethanol, and 2-phenoxy-[1,2-(13)C(2),1-(2)H(2)]ethanol. During the course of the biotransformation process, the molecular integrity of the glycolic unit was completely retained, no loss of the migrating deuterium occurred by exchange with the medium, and the 1,2-deuterium shift was intramolecular. A diol dehydratase-like mechanism could explain the enzymatic cleavage of the ether bond of 2-phenoxyethanol, provided that an intramolecular H/OC(6)H(5) exchange is assumed, giving rise to the hemiacetal precursor of acetaldehyde. However, an alternative mechanism is proposed that is supported by the well recognized propensity of alpha-hydroxyradical and of its conjugate base (ketyl anion) to eliminate a beta-positioned leaving group.
Collapse
Affiliation(s)
- Giovanna Speranza
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, and Centro di Studio per le Sostanze Organiche Naturali, CNR, via Venezian 21, I-20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Fontecave M, Mulliez E, Ollagnier-de-Choudens S. Adenosylmethionine as a source of 5'-deoxyadenosyl radicals. Curr Opin Chem Biol 2001; 5:506-11. [PMID: 11578923 DOI: 10.1016/s1367-5931(00)00237-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The combination of an iron-sulfur cluster and S-adenosylmethionine provides a novel mechanism for the initiation of radical catalysis in an unanticipated variety of metabolic processes. Molecular details of the cluster-mediated reductive cleavage of S-adenosylmethionine to methionine and, presumably, a 5'-deoxyadenosyl radical are the targets of recent studies.
Collapse
Affiliation(s)
- M Fontecave
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DBMS-CB, CEA/CNRS/Université Joseph Fourier, UMR 5047, 17 Avenue des Martyrs, 38054 Grenoble, Cedex 09, France.
| | | | | |
Collapse
|
27
|
Marsh EN, Drennan CL. Adenosylcobalamin-dependent isomerases: new insights into structure and mechanism. Curr Opin Chem Biol 2001; 5:499-505. [PMID: 11578922 DOI: 10.1016/s1367-5931(00)00238-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosylcobalamin-dependent isomerases catalyze a variety of chemically difficult 1,2-rearrangements that proceed through a mechanism involving free radical intermediates. These radicals are initially generated by homolysis of the cobalt-carbon bond of the coenzyme. Recently, the crystal structures of several of these enzymes have been solved, revealing two modes of coenzyme binding and highlighting the role of the protein in controlling the rearrangement of reactive substrate radical intermediates. Complementary data from kinetic, spectroscopic and theoretical studies have produced insights into the mechanism by which substrate radicals are generated at the active site, and the pathways by which they rearrange.
Collapse
Affiliation(s)
- E N Marsh
- Department of Chemistry and Division of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
28
|
Fontecave M, Pierre JL. Mechanisms of formation of free radicals in biological catalysis. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1387-1609(01)01283-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|