1
|
Niu L, Sun T, Moldakhmetova R, Li R, Zhao Q, Wang X, Li W. Improving gliadin functionality by Maillard glycosylation using hydrolyzed starch molecules of different molecular mass: Structure-function relationship study. Int J Biol Macromol 2025; 304:140982. [PMID: 39954905 DOI: 10.1016/j.ijbiomac.2025.140982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
This work explores enhancing gliadin's functional performance through Maillard reaction-based conjugation with starch hydrolysates and glucose. Four novel conjugates were prepared: gliadin-starch hydrolysates (UGli-Cor1, UGli-Cor2, UGli-Cor3) and gliadin-glucose (UGli-Cor4). The formation of these conjugates was confirmed via grafting efficiency, SDS-PAGE, and FT-IR analysis. Conjugation efficiency varied with the molecular weight of starch hydrolysates, following the order: UGli-Cor4 (24.9 %) > UGli-Cor3 (19.3 %) > UGli-Cor2 (15.51 %) > UGli-Cor1 (9.34 %). Structural analysis showed that the covalent attachment of starch hydrolysates altered gliadin's spatial conformation, enhancing its solubility and emulsifying properties. Notably, the conjugation site influenced the quantity of conjugated starch hydrolysates and the emulsifying performance. Conjugates attached to the N-terminal domain of gliadin exhibited superior emulsifying abilities compared to those attached to the C-terminal domain. Moreover, conjugates with higher grafting degrees showed enhanced emulsifying performance, assuming the conjugation site remained constant. This work provides a theoretical foundation for improving the functionality of gliadin, which would widely expand its applications in the food sector and beyond.
Collapse
Affiliation(s)
- Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Raushan Moldakhmetova
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China; College of Food Technology, Technical Faculty, Saken Seifullin Kazakh Agrotechnical University, Zhenis Avenue 62, Astana 010000, Kazakhstan
| | - Ruijie Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qi Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xinyu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
2
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
3
|
Seed Storage Protein, Functional Diversity and Association with Allergy. ALLERGIES 2023. [DOI: 10.3390/allergies3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plants are essential for humans as they serve as a source of food, fuel, medicine, oils, and more. The major elements that are utilized for our needs exist in storage organs, such as seeds. These seeds are rich in proteins, show a broad spectrum of physiological roles, and are classified based on their sequence, structure, and conserved motifs. With the improvements to our knowledge of the basic sequence and our structural understanding, we have acquired better insights into seed proteins and their role. However, we still lack a systematic analysis towards understanding the functional diversity associated within each family and their associations with allergy. This review puts together the information about seed proteins, their classification, and diverse functional roles along with their associations with allergy.
Collapse
|
4
|
Zha F, Gao K, Rao J, Chen B. Maillard-driven chemistry to tune the functionality of pea protein: Structure characterization, site-specificity, and aromatic profile. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Peng XQ, Xu YT, Liu TX, Tang CH. Molecular Mechanism for Improving Emulsification Efficiency of Soy Glycinin by Glycation with Soy Soluble Polysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12316-12326. [PMID: 30372068 DOI: 10.1021/acs.jafc.8b03398] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycation with carbohydrates has been considered to be an effective strategy to improve the emulsifying properties of plant storage globulins, but the knowledge is inconsistent and even contradictory. This work reported that the glycation with soy soluble polysaccharide (SSPS) progressively improved the emulsification efficiency of soy glycinin (SG) in a degree-of-glycation (DG)-dependent manner. The glycation occurred in both the acidic (A) and basic (B) polypeptides to a similar extent. The physicochemical and structural properties of glycated SG samples with different DG values of 0-35% were characterized. The emulsifying properties of unglycated and glycated SG were performed on the emulsions at an oil fraction of 0.3 and a protein concentration in the aqueous phase, produced using microfluidization as the emusification process. The glycation with increasing the DG led to a progressive decrease in solubility and surface hydrophobicity but remarkably increased the magnitude of ζ-potential. Dynamic latter scattering and spectroscopic results showed that the glycation resulted in a gradual dissociation of the 11S-form SG at the quaternary level (into different [AB] subunits), in a DG-dependent way, while their tertiary ([AB] subunits) and secondary structure were slightly affected. Besides the emulsification efficiency, the glycation progressively accelerated the droplet flocculation and facilitated the adsorption of the proteins at the interface and formation of bridged emulsions. The results demonstrated that the improvement of the emulsification efficiency of SG by the glycation with SSPS was largely attributed to the enhanced conformation flexibility at the [AB] subunit level as well as facilitated formation of bridged emulsions. It was also confirmed that once the glycated SG adsorbed at the interface, it would readily dissociated into subunits; the dissociated [AB] subunits exhibited an outstanding Pickering stabilization. The findings would be of importance for providing new knowledge about the molecular mechanism for the modification of emulsifying properties of oligomeric globulins by the glycation with polysaccharides.
Collapse
Affiliation(s)
- Xiu-Qing Peng
- Department of Food Science and Technology , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Yan-Teng Xu
- Department of Food Science and Technology , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Tong-Xun Liu
- Department of Food Science and Technology , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chuan-He Tang
- Department of Food Science and Technology , South China University of Technology , Guangzhou 510640 , P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , P. R. China
| |
Collapse
|
6
|
Conjugation of Agrobacterium radiobacter epoxide hydrolase with ficoll: Catalytic, kinetic and thermodynamic analysis. Int J Biol Macromol 2018; 119:1098-1105. [DOI: 10.1016/j.ijbiomac.2018.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 01/11/2023]
|
7
|
Functional change of Bacillus acidocaldarius α-amylase chemically modified with periodate oxidized polysaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Pekar J, Ret D, Untersmayr E. Stability of allergens. Mol Immunol 2018; 100:14-20. [PMID: 29606336 PMCID: PMC6020993 DOI: 10.1016/j.molimm.2018.03.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
For proteins to cause IgE-mediated allergic reactions, several common characteristics have to be defined, including small molecular size, solubility and stability to changing pH levels and enzymatic degradation. Nevertheless, these features are not unique for potent allergens, but are also observed in non-allergenic proteins. Due to the increasing awareness by regulatory authorities regarding the allergy pandemic, definition of characteristics unique to potent allergens would facilitate allergenicity assessment in the future. Despite major research efforts even to date the features unique for major allergens have not been elucidated so far. The route of allergen entry into the organism determines to a great extent these required characteristics. Especially orally ingested allergens are exposed to the harsh milieu of the gastrointestinal tract but might additionally be influenced by food processing. Depending on molecular properties such as disulphide bonds contributing to protein fold and formation of conformational IgE epitopes, posttranslational protein modification or protein food matrix interactions, enzymatic and thermal stability might differ between allergens. Moreover, also ligand binding influences structural stability. In the current review article, we aim at highlighting specific characteristics and molecular pattern contributing to a stabilized protein structure and overall allergenicity.
Collapse
Affiliation(s)
- Judith Pekar
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
9
|
Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties. Food Res Int 2017; 99:41-57. [PMID: 28784499 DOI: 10.1016/j.foodres.2017.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/18/2022]
Abstract
The legendary therapeutics properties of donkey milk have recently been supported by many clinical trials who have clearly demonstrated that, even if with adequate lipid integration, it may represent a valid natural substitute of cow milk for feeding allergic children. During the last decade many investigations by MS-based methods have been performed in order to obtain a better knowledge of donkey milk proteins. The knowledge about the primary structure of donkey milk proteins now may provide the basis for a more accurate comprehension of its potential benefits for human nutrition. In this aspect, experimental data today available clearly demonstrate that donkey milk proteins (especially casein components) are more closely related with the human homologues rather than cow counterparts. Moreover, the low allergenic properties of donkey milk with respect to cow one seem to be related to the low total protein content, the low ratio of caseins to whey fraction, and finally to the presence in almost all bovine IgE-binding linear epitopes of multiple amino acid differences with respect to the corresponding regions of donkey milk counterparts.
Collapse
|
10
|
Karbasi M, Madadlou A. Interface-related attributes of the Maillard reaction-born glycoproteins. Crit Rev Food Sci Nutr 2017; 58:1595-1603. [DOI: 10.1080/10408398.2016.1270894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mehri Karbasi
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Ashkan Madadlou
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
11
|
Abdel-Naby MA, A. Ibrahim M, El-Refai H. Catalytic, kinetic and thermodynamic properties of Bacillus pumilus FH9 keratinase conjugated with activated pectin. Int J Biol Macromol 2016; 85:238-45. [DOI: 10.1016/j.ijbiomac.2015.12.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/08/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
12
|
Abdel–Naby MA, Fouad AA, El-Refai H. Catalytic and thermodynamic properties of glycosylated Bacillus cereus cyclodextrin glycosyltransferase. Int J Biol Macromol 2015; 76:132-7. [DOI: 10.1016/j.ijbiomac.2015.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
13
|
Bittencourt LLDA, Pedrosa C, Sousa VPD, Pierucci APT, Citelli M. Pea protein provides a promising matrix for microencapsulating iron. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2013; 68:333-9. [PMID: 23990387 DOI: 10.1007/s11130-013-0383-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Worldwide, the most prevalent nutritional deficiency is iron. The strategies for iron supplementation often fail due to poor adherence to supplementation methods contributed to unpleasant sensory characteristics. An alternative is the use of microencapsulated nutrients for home fortification in order to mask undesirable tastes and to allow its release in strategic sites of the gastrointestinal tract. Toward this end, pea protein concentrate was tested as a natural, edible and alternative material and the spray-drying technique was utilized for the preparation of microparticles containing ferrous sulfate. Their physical and chemical characteristics were evaluated. The microparticles had a spherical shape and grooves with an average size ranging between 2 and 3 μm. Analysis by in vitro assays tested the release of iron in simulated salivary and gastric fluids and its intestinal absorption in Caco-2 cells. No dissolution of iron occurred in the salivary medium whereas the sensory analysis showed good acceptance of a product which incorporated 5.5 mg of iron per 100 g portion of food. Thus, the effectiveness of microencapsulation was demonstrated by utilizing a plant protein as an encapsulating matrix for the controlled release of iron and capable of preserving the bioaccessibility of ferrous sulfate.
Collapse
Affiliation(s)
- Luciana Linhares de Azevedo Bittencourt
- Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco J/2º andar-Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | | | |
Collapse
|
14
|
Liang HN, Tang CH. Emulsifying and interfacial properties of vicilins: role of conformational flexibility at quaternary and/or tertiary levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11140-11150. [PMID: 24151988 DOI: 10.1021/jf403847k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although the functionality of plant proteins (and soy proteins in particular) has been widely investigated in the last decades, the importance of conformational characteristics to their functionalities is still far away from being understood. The aim of the present work was to unravel the role of conformational flexibility at the quaternary and/or tertiary levels in the emulsifying and interfacial properties of phaseolin, an ideal vicilin (or 7S globulin) from red kidney bean. The conformational flexibility at quaternary and tertiary levels of phaseolin was modulated by urea with increasing concentrations from 0 to 8 M, as characterized by using dynamic light scattering (DLS), intrinsic fluorescence and derivative UV spectroscopy, and differential scanning calorimetry (DSC). The emulsifying and interfacial properties, including emulsifying ability, flocculated state of oil droplets (in fresh emulsions), emulsion stability against creaming, and adsorption dynamics at the oil-water interface, were characterized at a specific protein concentration of 0.5% (w/v). The results indicated that increasing the urea concentration resulted in a progressive dissociation of trimeric phaseolin molecules into monomeric subunits, and even a structural unfolding of dissociated subunits; the urea-induced conformational changes at quaternary and/or tertiary levels were reversible, and the molecules at high urea concentrations shared similar structural features to the "molten globule state". On the other hand, increasing the urea concentration progressively improved the emulsifying ability of the protein, and flocculated extent of oil droplets in the fresh emulsions, but led to a progressive decrease in interfacial protein concentration. The improvement of the emulsifying ability was not related to diffusion (during initial adsorption) and penetration at the interface, but highly dependent on ease of structural rearrangement of the adsorbed proteins. These observations clearly confirmed that the flexibility of phaseolin at quaternary and/or tertiary levels plays a vital role in its emulsifying ability, mainly through the way of affecting the ease of structural rearrangement of adsorbed proteins at the interface. The findings could provide an in-depth understanding of the importance of conformational flexibility for the emulsifying properties of oligomeric storage globulins, and thus are of great help to guide the modifications of the proteins for better emulsifying properties.
Collapse
Affiliation(s)
- Han-Ni Liang
- Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
| | | |
Collapse
|
15
|
Teodorowicz M, Świątecka D, Savelkoul H, Wichers H, Kostyra E. Hydrolysates of glycated and heat-treated peanut 7S globulin (Ara h 1) modulate human gut microbial proliferation, survival and adhesion. J Appl Microbiol 2013; 116:424-34. [PMID: 24118877 DOI: 10.1111/jam.12358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 01/01/2023]
Abstract
AIMS Evaluation of an effect of glycation of Ara h 1 on proliferation and survival rate and adhesion of intestinal Enterococcus faecalis, Escherichia coli and Lactobacillus acidophilus. METHODS AND RESULTS Pure Ara h 1 heated at three different temperature conditions (G37, G60 and C145°C) in the presence or absence of glucose was subjected to enzymatic hydrolysis. Impacts of Ara h 1 hydrolysates on the bacterial proliferation, survival rate and adhesion to Caco-2 cells in mono and heterogeneous cultures were studied with fluorescent techniques: DAPI, LIVE/DEAD staining and FISH. Examined hydrolysates hindered proliferation of E. coli and Ent. faecalis with simultaneous decrease in their survival. Maillard reaction (MR, glycation) of Ara h 1 did not alter the effect of hydrolysates on bacterial proliferation rate. Hydrolysates modified at 60 and 145°C with glucose altered the profile of immobilized bacteria, mostly by lowering the number of adhering E. coli and promoting the adhesion of bacteria from genera Lactobacillus and Enterococcus. CONCLUSIONS Ara h1 hydrolysates processed in various ways demonstrated their strong modulatory effect on bacterial proliferation, survival rate and adhesion. SIGNIFICANCE AND IMPACT OF THE STUDY Reducing the adhesion of opportunistic bacteria by hydrolysates of Ara h 1 glycated at 60 and 145°C, together with modulation of immobilization of beneficial lactobacilli and enterococci, may be of relevance in terms of the physiological status of the intestinal barrier.
Collapse
Affiliation(s)
- M Teodorowicz
- Faculty of Biology, University of Warmia and Mazury, Olsztyn, Poland.,Cell Biology and Immunology Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - D Świątecka
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - H Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - H Wichers
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - E Kostyra
- Faculty of Biology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
16
|
Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Effect of Maillard reaction on biochemical properties of peanut 7S globulin (Ara h 1) and its interaction with a human colon cancer cell line (Caco-2). Eur J Nutr 2013; 52:1927-38. [PMID: 23334787 PMCID: PMC3832773 DOI: 10.1007/s00394-013-0494-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/08/2013] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to determine the influence of Maillard reaction (MR, glycation) on biochemical and biological properties of the major peanut allergen Ara h 1. METHODS Three different time/temperature conditions of treatment were applied (37, 60, and 145 °C). The extent of MR was assessed by SDS-PAGE, loss of free amino groups, fluorescence intensity, content of bound sugar and fructosamine. The Caco-2 model system was applied to study effects of hydrolysed and non-hydrolysed Ara h 1 on proliferation and interleukin-8 (IL-8) secretion from Caco-2 cells. RESULTS We demonstrated significant differences in the biochemical properties of Ara h 1 glycated at different time/temperature conditions. Glycation of Ara h 1 at 37 °C was shown to cause least biochemical changes, not limiting pepsin hydrolysis. Loss of free amino groups, increase of fluorescence and brown colour of Ara h 1 glycated at 60 and 145 °C indicated advanced and final stages of MR. Non-treated Ara h 1 inhibited Caco-2 cell proliferation and stimulated IL-8 secretion. This effect was less pronounced for glycated Ara h 1. Incubation of Caco-2 cells with non-hydrolysed Ara h 1, glycated at the temperature of 37 and 60 °C, did not stimulate IL-8 secretion. CONCLUSION Each applied time/temperature-treatment combination caused different biochemical changes of Ara h 1, underlining diversity of formed MRPs. MR, independently of temperature/time conditions, reduced the pro-inflammatory properties of native Ara h 1, reflected in stimulation of IL-8 secretion from intestinal epithelial cells.
Collapse
|
18
|
Liu J, Ru Q, Ding Y. Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.07.034] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Liu G, Zhong Q. Glycation of whey protein to provide steric hindrance against thermal aggregation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9754-9762. [PMID: 22946498 DOI: 10.1021/jf302883b] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Thermal processing is required for a variety of products and remains a problem for whey proteins that undergo denaturation and aggregation above the denaturation temperature. This causes challenges to maintain clarity and dispersibility of protein dispersions, particularly at acidity near the isoelectric point of the protein and increased ionic strength. This work reports for the first time that glycation of whey protein with a sufficient number of maltodextrins prevented protein aggregation before and after heating at 88 °C for 2 min at pH 3.0-7.0 and 0-150 mM NaCl or CaCl(2). The mechanism of maintaining protein dispersion clarity during heating was illustrated by several complementary analytical techniques that elucidated primary, secondary, and tertiary structures, as well as thermal denaturation and surface charge properties of glycated whey proteins. Steric hindrance was concluded to be the major mechanism responsible for transparent dispersions with protein structures smaller than 12 nm after heating.
Collapse
Affiliation(s)
- Gang Liu
- Department of Food Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
20
|
Ruiter B, Shreffler WG. Innate immunostimulatory properties of allergens and their relevance to food allergy. Semin Immunopathol 2012; 34:617-32. [PMID: 22886110 DOI: 10.1007/s00281-012-0334-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/12/2022]
Abstract
Food allergy is an increasingly prevalent disease of immune dysregulation directed to a small subset of proteins. Shared structural and functional features of allergens, such as glycosylation, lipid-binding and protease activity may provide insight into the mechanisms involved in the induction of primary Th2 immune responses. We review the literature of innate Th2-type immune activation as a context for better understanding the properties of allergens that contribute to the induction of Th2-biased immune responses in at least a subset of individuals. Th2-priming signals have been largely identified in the context of parasite immunity and wound healing. Some of the features of parasite antigens and the innate immune responses to them are now understood to play a role in allergic inflammation as well. These include both exogenous and endogenous activators of innate immunity and subsequent release of key cytokine mediators such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33. Moreover, numerous innate immune cells including epithelium, dendritic cells, basophils, innate lymphoid cells and others all interact to shape the adaptive Th2 immune response. Progress toward understanding Th2-inducing innate immune signals more completely may lead to novel strategies for primary prevention and therapy of respiratory and food allergies.
Collapse
Affiliation(s)
- Bert Ruiter
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | |
Collapse
|
21
|
Abstract
Food allergy is an emerging epidemic in the United States and the Western world. The determination of factors that make certain foods allergenic is still not clearly understood. Only a tiny fraction of thousands of proteins and other molecules is responsible for inducing food allergy. In this review, the authors present 3 examples of food allergies with disparate clinical presentations: peanut, soy, and mammalian meat. The potential relationships between allergen structure and function, emphasizing the importance of cross-reactive determinants, immunoglobulin E antibodies to the oligosaccharides, and the immune responses induced in humans are discussed.
Collapse
Affiliation(s)
- Madhan Masilamani
- Division of Allergy and Immunology, Department of Pediatrics, The Jaffe Food Allergy Institute, Mount Sinai School of Medicine, Anbg 17-40, One Gustave L Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
22
|
Tang CH, Sun X, Foegeding EA. Modulation of physicochemical and conformational properties of kidney bean vicilin (phaseolin) by glycation with glucose: implications for structure-function relationships of legume vicilins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10114-10123. [PMID: 21866970 DOI: 10.1021/jf202517f] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The structure-function relationships of plant oligomeric globulins are still not fully recognized. The present work investigated the influence of glycation with glucose (at 1:50 and 1:100 protein/sugar molar ratios; incubation periods of 2.5, 5.0, and 10.0 h) on the physicochemical and conformational properties of kidney bean vicilin (phaseolin), with the aim of understanding the structure-function relationships of legume vicilins. Protein solubility (PS), surface charge (isoelectric point) and hydrophobicity (H0), and secondary, tertiary, and/or quaternary conformations, as well as the emulsifying activities (emulsifying activity and emulsion stability indices, EAI and ESI) were evaluated. The 2.5 h incubation period of glycation led to least PS and highest H0, and after that, the PS and H0, on the contrary, gradually changed with increasing incubation period. The glycation increased the α-helix content and highly ordered secondary structures (α-helix+β-strand), as evidenced by far-UV circular dichroism (CD) spectroscopy. Combined analyses of differential scanning calorimetry, intrinsic emission fluorescence, and near-UV CD spectroscopy indicated that phaseolin underwent a tertiary conformation unfolding and subsequent rearrangement process (to form a new tertiary conformation), whereas the quaternary conformational flexibility progressively increased upon increasing degree of glycation. The conformation rearrangement was more distinct at the 1:100 molar ratio than at the 1:50 counterpart. The glycation at 5.0 and 10.0 h periods considerably increased the EAI, but only at the 1:50 molar ratio was the ESI progressively increased with the incubation period. These results confirmed that besides surface properties (e.g., PS and H0), the flexibility in tertiary and/or quaternary conformations played a major role in the emulsifying properties of glycated vicilins. The findings would have important implications for understanding the structure-function relationships of legume oligomeric globulins, thus providing a direction to further improve the surface-related functional properties of these proteins.
Collapse
Affiliation(s)
- Chuan-He Tang
- Department of Food Science and Technology and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | | | | |
Collapse
|
23
|
Iwan M, Vissers YM, Fiedorowicz E, Kostyra H, Kostyra E, Savelkoul HFJ, Wichers HJ. Impact of Maillard reaction on immunoreactivity and allergenicity of the hazelnut allergen Cor a 11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7163-7171. [PMID: 21563837 DOI: 10.1021/jf2007375] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Few studies exist on the influence of processing methods on structural changes and allergenic potential of hazelnut proteins. This study focused on the effect of glycation (Maillard reaction) on the immunoreactivity and degranulation capacity of the purified hazelnut 7S globulin, Cor a 11. After heating, the extent of the Maillard reaction, sensitivity to proteolysis, binding of human IgE or rabbit IgG, and degranulation capacity were analyzed. Changes in electrophoretic mobility, amount of free amino groups, and contents of bound sugar and fructosamine indicated that glycation of Cor a 11 occurred at all conditions. Glycation at 37 °C did not influence the specific IgG or IgE binding and was decreased after heating at 60 and 145 °C. Heating, with or without glucose, at 145 °C increased basophil degranulation capacity. The results suggest that glycation of Cor a 11 at 60 and 145 °C may decrease the IgE/IgG binding properties but not the degranulation capacity of basophils. This is possibly related to aggregation of the proteins as a result of the Maillard reaction.
Collapse
|
24
|
Zhang ML, Gao JL, Yang HX. Functional Properties of 7s Globulin Extracted from Cowpea Vicilins. Cereal Chem 2009. [DOI: 10.1094/cchem-86-3-0261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mei-Li Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018 PRChina
- Corresponding author. Phone: 86-0471-4309231. Fax: 86-0471-4309230. E-mail:
| | - Ju-Lin Gao
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010018 PRChina
| | - Hai-Xia Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018 PRChina
| |
Collapse
|
25
|
Abstract
In recent decades, protein-based therapeutics have substantially expanded the field of molecular pharmacology due to their outstanding potential for the treatment of disease. Unfortunately, protein pharmaceuticals display a series of intrinsic physical and chemical instability problems during their production, purification, storage, and delivery that can adversely impact their final therapeutic efficacies. This has prompted an intense search for generalized strategies to engineer the long-term stability of proteins during their pharmaceutical employment. Due to the well known effect that glycans have in increasing the overall stability of glycoproteins, rational manipulation of the glycosylation parameters through glycoengineering could become a promising approach to improve both the in vitro and in vivo stability of protein pharmaceuticals. The intent of this review is therefore to further the field of protein glycoengineering by increasing the general understanding of the mechanisms by which glycosylation improves the molecular stability of protein pharmaceuticals. This is achieved by presenting a survey of the different instabilities displayed by protein pharmaceuticals, by addressing which of these instabilities can be improved by glycosylation, and by discussing the possible mechanisms by which glycans induce these stabilization effects.
Collapse
Affiliation(s)
- Ricardo J Solá
- Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Facundo Bueso Bldg., Lab-215, PO Box 23346, San Juan, Puerto Rico 00931-3346
| | | |
Collapse
|
26
|
Enzymic synthesis of levan and fructo-oligosaccharides by Bacillus circulans and improvement of levansucrase stability by carbohydrate coupling. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9957-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Mine Y, Yang M. Recent advances in the understanding of egg allergens: basic, industrial, and clinical perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4874-4900. [PMID: 18543935 DOI: 10.1021/jf8001153] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The emergence of egg allergy has had both industrial and clinical implications. In industrialized countries, egg allergy accounts for one of the most prevalent food hypersensitivities, especially in children. Atopic dermatitis represents the most common clinical manifestation in infancy; however, the range of clinical signs is broad and encompasses life-threatening anaphylaxis. The dominant egg allergens are proteins and are mainly present in the egg white, for example, ovalbumin, ovomucoid, ovotransferrin, and lysozyme. However, egg yolk also displays low-level allergenicity, for example, alpha-livetin. Strict avoidance of the offending food remains the most common recommendation for egg-allergic individuals. Nevertheless, the omnipresence of egg-derived components in prepackaged or prepared foods makes it difficult. Therefore, more efficient preventive approaches are investigated to protect consumers from inadvertent exposure and ensuing adverse reactions. On the one hand, commercial kits have become readily available that allow for the detection of egg contaminants at trace levels. On the other hand, attempts to produce hypoallergenic egg-containing products through food-processing techniques have met with promising results, but the approach is limited due to its potentially undesirable effects on the unique functional and sensory attributes of egg proteins. Therefore, the development of preventive or curative strategies for egg allergy remains strongly warranted. Pilot studies have suggested that oral immunotherapy (IT) with raw or cooked preparations of egg may represent a safe alternative, immediately available to allergic subjects, but remains applicable to only nonanaphylactic patients. Due to the limitations of conventional IT, novel forms of immunotherapy are sought based on information obtained from the molecular characterization of major egg allergens. In the past decade, promising approaches to the treatment and prevention of egg allergy have been explored and include, among others, the production of hypoallergenic recombinant egg proteins, the development of customized peptides, and bacterial-mediated immunotherapy. Nonspecific approaches have also been evaluated, and preliminary trials with the use of probiotic bacteria have yielded encouraging results. The current understanding of egg allergens offers novel approaches toward the making of food products safe for human consumption and the development of efficient immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| | | |
Collapse
|
28
|
Pierucci APTR, Andrade LR, Farina M, Pedrosa C, Rocha-Leão MHM. Comparison of alpha-tocopherol microparticles produced with different wall materials: pea protein a new interesting alternative. J Microencapsul 2007; 24:201-13. [PMID: 17454432 DOI: 10.1080/02652040701281167] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alpha-tocopherol is a radical chain breaking antioxidant that can protect the integrity of tissues and play an important role in life process. Microparticles containing alpha-tocopherol were produced by spray drying technique using pea protein (PP), carboxymethylcellulose(CMC) and mixtures of these materials with maltodextrin (PP-M and CMC-M) as wall materials. The microparticles produced were characterised as regards the core retention (high performance liquid chromatography), the morphology (scanning electron microscopy) and size distribution (laser diffraction). The retention of alpha-tocopherol within all microparticles was above 77%. They showed a spherical shape and roughness at varied degrees. Their mean particles size remained below 7 microm, and the smallest sizes were found in PP and CMC-M microparticles. The results obtained in this work show that the pea protein use for alpha-tocopherol microencapsulation is a promising system for further application in food.
Collapse
Affiliation(s)
- Anna Paola T R Pierucci
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Pierucci APTR, Andrade LR, Baptista EB, Volpato NM, Rocha-Leão MHM. New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. J Microencapsul 2006; 23:654-62. [PMID: 17118881 DOI: 10.1080/02652040600776523] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microencapsulation is essential to preserve biological activity of ascorbic acid (AA) and pea protein has not been used as a carrier in such processes. This work aimed to produce microparticles by a spray-drying process using pea protein (PPC) as wall material of AA and evaluate the retention of the core by HPLC, overall morphology SEM, size distribution by light scattering and release kinetics. Carboxymethylcellulose (CMC) and blends with maltodextrin (M) were produced for comparative analyses. The yields were compatible with the applied technology and the retention was above 84% for all materials. The PPC microparticles presented irregular and rough surfaces, CMC produced a regular and smooth surface and agglomeration was more intense in microparticles with M. Mean particle diameters were all below 8 microm. The microparticle release rates were lower than those with free AA, being best correlated to the Higuchi kinetic model. These results support the utilization of PPC for microencapsulation of AA.
Collapse
Affiliation(s)
- Anna Paola T R Pierucci
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade Federal do Rio de Janeiro/Programa de Pós-Graduação em Ciências de Alimentos, Instituto de Química, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
30
|
Srimathi S, Jayaraman G, Narayanan P. Improved thermodynamic stability of subtilisin Carlsberg by covalent modification. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Mills ENC, Jenkins JA, Alcocer MJC, Shewry PR. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 2005; 44:379-407. [PMID: 15540651 DOI: 10.1080/10408690490489224] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The recently completed genome sequence of the model plant species Arabidopsis has been estimated to encode over 25,000 proteins, which, on the basis of their function, can be classified into structural and metabolic (the vast majority of plant proteins), protective proteins, which defend a plant against invasion by pathogens or feeding by pests, and storage proteins, which proved a nutrient store to support germination in seeds. It is now clear that almost all plant food allergens are either protective or storage proteins. It is also becoming evident that those proteins that trigger the development of an allergic response through the gastrointestinal tract belong primarily to two large protein superfamilies: (1) The cereal prolamin superfamily, comprising three major groups of plant food allergens, the 2S albumins, lipid transfer proteins, and cereal alpha-amylase/trypsin inhibitors, which have related structures, and are stable to thermal processing and proteolysis. They include major allergens from Brazil nut, peanuts, fruits, such as peaches, and cereals, such as rice and wheat; (2) The cupin superfamily, comprising the major globulin storage proteins from a number of plant species. The globulins have been found to be allergens in plant foods, such as peanuts, soya bean, and walnut; (3) The cyteine protease C1 family, comprising the papain-like proteases from microbes, plants, and animals. This family contains two notable allergens that sensitize via the GI tract, namely actinidin from kiwi fruit and the soybean allergen, Gly m Bd 30k/P34. This study describes the properties, structures, and evolutionary relationships of these protein families, the allergens that belong to them, and discusses them in relation to the role protein structure may play in determining protein allergenicity.
Collapse
Affiliation(s)
- E N Clare Mills
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Srimathi S, Jayaraman G. Effect of Glycosylation on the Catalytic and Conformational Stability of Homologous α-Amylases. Protein J 2005; 24:79-88. [PMID: 16003949 DOI: 10.1007/s10930-004-1514-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A thermostable alpha-amylase from B. licheniformis (BLA) and a mesophilic amylase from B. amyloliquefaciens (BAA) were covalently coupled to oxidized synthetic sucrose polymers (OSP400 and OSP70) and polyglutaraldehyde (PGA) by reductive alkylation to study the effect of neoglycosylation on the activity, kinetic and thermodynamic stability. The catalytic efficiency of the modified enzymes was comparable to that of the native enzyme. Covalent coupling decreased the rate of inactivation at all the temperatures studied, both in the presence and absence of added Ca2+. The stability of the native enzyme was found to increase upon modification as observed from the increase in tl/2 in the absence of Ca2+ ions by about 1.5 - 13.7 times (at 85 degrees C) in the case of BLA and 5.7 - 8.4 times (at 50 degrees C) for BAA. The highest stability was observed for OSP400 modified enzyme with Delta Cm and Delta Tm values of 0.63 M and 7.92 degrees C for BLA and 0.85 M and 5.3 degrees C for BAA, respectively. The order of stability was OSP400 > OSP70 > PGA > Native for both BLA and BAA. The stability of the modified amylases obtained from the present study were superior compared to most of the single and double mutants obtained by site-directed mutagenesis that were constructed so as to enhance the intrinsic stability of these enzymes.
Collapse
Affiliation(s)
- Soundararajan Srimathi
- Centre for Protein Engineering and Biomedical Research, The Voluntary Health Services, Chennai 600 113, India
| | | |
Collapse
|
33
|
Rangel A, Domont GB, Pedrosa C, Ferreira ST. Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:5792-7. [PMID: 12952435 DOI: 10.1021/jf0340052] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The major storage globulins (vicilins) of cowpea (Vigna unguiculata) and pea (Pisum sativum) seeds were purified by ammonium sulfate precipitation, and a semipurified cowpea protein isolate (CPI) was prepared by isoelectric precipitation. Some of the functional properties of these proteins, including solubility, foaming, and emulsifying capacities, were investigated and compared. The solubility of purified cowpea vicilin was reduced at pH 5.0, increasing markedly below and above this value. Pea vicilin exhibited poor solubility between pH 5.0 and pH 6.0, and CPI was little soluble in the pH range from 4.0 to 6.0. At neutral pH, the emulsifying activity indexes (EAI) of purified pea vicilin and CPI were 194 and 291 m(2)/g, respectively, which compare quite favorably to EAIs of 110 and 133 m(2)/g for casein and albumin, respectively. Remarkably, purified cowpea vicilin exhibited an EAI of 490 m(2)/g, indicating a very high emulsifying activity. Purified cowpea and pea vicilins exhibited lower foaming capacities and foam stablity indexes (FSI) than CPI. FSI values of 80 and 260 min were obtained for purified pea and cowpea vicilin, respectively, whereas a FSI value of 380 min was obtained for CPI. These results are discussed in terms of the possible utilization of purified vicilins or protein isolates from pea and cowpea in the food processing industry.
Collapse
Affiliation(s)
- Alessandra Rangel
- Department of Medical Biochemistry, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | |
Collapse
|
34
|
Some properties of levansucrase of Bacillus natto stabilized with periodate oxidized yeast glucomannan. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00039-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|