1
|
Jung-Klawitter S, Kuseyri Hübschmann O. Analysis of Catecholamines and Pterins in Inborn Errors of Monoamine Neurotransmitter Metabolism-From Past to Future. Cells 2019; 8:cells8080867. [PMID: 31405045 PMCID: PMC6721669 DOI: 10.3390/cells8080867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022] Open
Abstract
Inborn errors of monoamine neurotransmitter biosynthesis and degradation belong to the rare inborn errors of metabolism. They are caused by monogenic variants in the genes encoding the proteins involved in (1) neurotransmitter biosynthesis (like tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC)), (2) in tetrahydrobiopterin (BH4) cofactor biosynthesis (GTP cyclohydrolase 1 (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), sepiapterin reductase (SPR)) and recycling (pterin-4a-carbinolamine dehydratase (PCD), dihydropteridine reductase (DHPR)), or (3) in co-chaperones (DNAJC12). Clinically, they present early during childhood with a lack of monoamine neurotransmitters, especially dopamine and its products norepinephrine and epinephrine. Classical symptoms include autonomous dysregulations, hypotonia, movement disorders, and developmental delay. Therapy is predominantly based on supplementation of missing cofactors or neurotransmitter precursors. However, diagnosis is difficult and is predominantly based on quantitative detection of neurotransmitters, cofactors, and precursors in cerebrospinal fluid (CSF), urine, and blood. This review aims at summarizing the diverse analytical tools routinely used for diagnosis to determine quantitatively the amounts of neurotransmitters and cofactors in the different types of samples used to identify patients suffering from these rare diseases.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Oya Kuseyri Hübschmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
He M, Wang C, Wei Y. Selective enrichment and determination of monoamine neurotransmitters by CU(II) immobilized magnetic solid phase extraction coupled with high-performance liquid chromatography-fluorescence detection. Talanta 2016; 147:437-44. [PMID: 26592630 DOI: 10.1016/j.talanta.2015.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023]
|
3
|
The Derivatization of Proquinoidal Analytes with 1,2-Diphenylethane-1,2-diamine (DPE) and Benzylamine (BA): An Investigation of Products, Yields, Kinetics and Reagent Selectivity. Chromatographia 2014. [DOI: 10.1007/s10337-014-2828-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—A review. Anal Chim Acta 2013; 768:12-34. [DOI: 10.1016/j.aca.2012.12.030] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022]
|
5
|
Chirita RI, Finaru AL, Elfakir C. Evaluation of fused-core and monolithic versus porous silica-based C18 columns and porous graphitic carbon for ion-pairing liquid chromatography analysis of catecholamines and related compounds. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:633-40. [DOI: 10.1016/j.jchromb.2011.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 01/24/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
|
6
|
Chatterjee D, Gerlai R. High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav Brain Res 2009; 200:208-13. [DOI: 10.1016/j.bbr.2009.01.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Weikop P, Yoshitake T, Kehr J. Differential effects of adjunctive methylphenidate and citalopram on extracellular levels of serotonin, noradrenaline and dopamine in the rat brain. Eur Neuropsychopharmacol 2007; 17:658-71. [PMID: 17383162 DOI: 10.1016/j.euroneuro.2007.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/15/2007] [Accepted: 02/13/2007] [Indexed: 11/18/2022]
Abstract
Several clinical studies have suggested that the combined treatment with methylphenidate and citalopram may accelerate the onset of antidepressant action and induce an improvement even in treatment-refractory patients. In the present study, in vivo microdialysis was used to monitor the extracellular levels of serotonin, noradrenaline and dopamine in the prefrontal cortex, hippocampus, nucleus accumbens and striatum of the rat. Administration of methylphenidate (2.5 mg/kg s.c.) with citalopram (5 mg/kg i.p.) compared to methylphenidate alone caused a marked enhancement of dopamine levels in the prefrontal cortex, n. accumbens and hippocampus, but not in the striatum. Citalopram-induced increase in serotonin levels was strongly enhanced by adjunctive methylphenidate in the hippocampus, but attenuated in the cortex. These findings suggest that the proposed augmentation effects of adjuvant methylphenidate to citalopram are most likely associated with enhanced dopamine transmission in the corticolimbic areas, whereas serotonin and noradrenaline levels show differential and region specific responses.
Collapse
Affiliation(s)
- Pia Weikop
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark.
| | | | | |
Collapse
|
8
|
Chiti Z, Teschemacher AG. Exocytosis of norepinephrine at axon varicosities and neuronal cell bodies in the rat brain. FASEB J 2007; 21:2540-50. [PMID: 17405853 DOI: 10.1096/fj.06-7342com] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Norepinephrine secretion from central neurons was widely assumed to occur by exocytosis, but the essential characteristics of this process remained unknown. We developed an approach to study it directly by amperometry using carbon fiber microelectrodes in organotypic rat brainstem slice cultures. Noradrenergic neurons from areas A1 and A2 were fluorescently labeled by an adenoviral vector with noradrenergic-specific promoter. Quantal events, consistent with exocytotic release of norepinephrine, were registered at noradrenergic axonal varicosities as well as at cell bodies. According to their charge integrals, events were grouped into two populations. The majority (approximately 40 fC) were compatible with full exocytotic fusion of small clear and dense core vesicles shown in previous morphometric studies. The quantal size distribution was modulated by treatment with reserpine and amitriptyline. In addition, much larger quantal events (>1 pC) occurred at predominantly axonal release sites. The time course of signals was severalfold faster than in adrenal chromaffin cells, suggesting profound differences in the release machinery between these cell types. Tetrodotoxin eliminated the majority of events, indicating that release was partially, but not entirely, action potential driven. In conclusion, central norepinephrine release has unique characteristics, distinguishing it from those of other monoaminergic cells in periphery and brain.
Collapse
Affiliation(s)
- Zohreh Chiti
- Department of Pharmacology, School of Medical Sciences, Bristol Heart Institute, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
9
|
Bao S, Fei J, Shen J, Gong SJ, Fang H, Husband AJ. Reserpine-induced model of stress suppresses mucosal immunity. Immunol Cell Biol 2006; 84:537-42. [PMID: 16956388 DOI: 10.1111/j.1440-1711.2006.01468.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress contributes significantly to the development of many diseases. In clinical studies, a strong correlation between depression and immune dysfunction has been shown. Our previous studies indicated that sympathetic innervation can regulate intestinal mucosal immunity through sympathetic synapses, but the mechanism in stress/depression-induced intestinal immune deficiency was unclear. Using a mouse model in which behavioural stress/depression is chemically induced by reserpine, it is found that there is a substantial deficiency of intestinal local humoral and particularly specific antibody response to the antigen stimulation in reserpine-treated group. No significant difference of CD4+, CD8+ or Mac1+ cells between reserpine-treated and control groups was detected in the intestine. This deficiency is closely correlated with stress/depression. A possible correlation between stress, cytokine secretion and humoral immunity in vivo is postulated.
Collapse
Affiliation(s)
- Shisan Bao
- The Third People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
10
|
Martínez-Olivares R, Villanueva I, Racotta R, Piñón M. Depletion and recovery of catecholamines in several organs of rats treated with reserpine. Auton Neurosci 2006; 128:64-9. [PMID: 16723281 DOI: 10.1016/j.autneu.2006.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 11/23/2022]
Abstract
Chemical sympathectomy with reserpine depletes catecholamines in every neuronal or nonneuronal cell producing a nonspecific temporal sympathectomy. After reserpine administration, most of the drug is distributed to tissues based on their blood flow and would then either be metabolized or be reversibly bound in lipid depots from where it might be released. Consequently, reserpine concentration and the catecholamine-depleting effect in the various tissues are expected to differ according to the route of administration. This study was designed to compare the effects of intraperitoneal (i.p.) and subcutaneous (s.c.) administration of reserpine on catecholamine depletion and recovery in the liver, portal vein, and adrenal gland on days 1, 4, and 10 after reserpine dosage. Catecholamine determinations were extended to 25 days after the treatment only in s.c. reserpine-treated rats and adding samples of heart and brown adipose tissue to the testing. I.p. and s.c. reserpine administration had the same norepinephrine-depleting effect in the portal vein and liver but full recovery was present in both tissues only in i.p. reserpine-treated rats. In the adrenal gland, both routes of administration produced the same depleting and recovery effect of norepinephrine and epinephrine concentrations. A significant temporary overshoot in epinephrine levels was observed several days after s.c. reserpine treatment. Except for the liver, reserpine injected s.c. depleted norepinephrine concentrations significantly in all other tissues up to the end of the experiment. Our results suggest that chemical sympathectomy caused by reserpine administered s.c. produces a generalized and prolonged decrease in peripheral sympathetic activity that could be compensated by an increase in activity of the adrenal gland.
Collapse
Affiliation(s)
- Rubén Martínez-Olivares
- Depto. de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n. Col. Santo Tomás, DF. CP. 11340, México
| | | | | | | |
Collapse
|
11
|
Yoshitake T, Kehr J, Todoroki K, Nohta H, Yamaguchi M. Derivatization chemistries for determination of serotonin, norepinephrine and dopamine in brain microdialysis samples by liquid chromatography with fluorescence detection. Biomed Chromatogr 2006; 20:267-81. [PMID: 16110472 DOI: 10.1002/bmc.560] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present paper provides an overview on currently developed derivatization chemistries and techniques for determination of monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE) and dopamine (DA) in microdialysis samples by microbore liquid chromatography with fluorescence detection. In mild alkaline conditions, 5-hydroxyindoles and catecholamines react with benzylamine (BA), forming highly fluorescent 2-phenyl-4,5-pyrrolobenzoxazoles and 2-phenyl(4,5-dihydropyrrolo) [2,3-f]benzoxazoles, respectively. However, for derivatization of DA a higher fluorescence intensity was achieved for reaction with 1,2-diphenylethylenediamine (DPE) rather than with BA, therefore for simultaneous determination of 5-HT, NE and DA in brain microdialysates, a two-step derivatization with BA followed by DPE was developed. The detection limits for 5-HT, NE and DA were 0.2, 0.08 and 0.13 fmol, respectively, in an injection volume of 20 microL, which corresponds to concentrations of 30, 12 and 19.5 pm, respectively in standard solution prior to derivatization. The experimental data presented demonstrate the ability of the technique to simultaneously monitor neuronally releasable pools of monoamine neurotransmitters in the rat and mouse brains at basal conditions and following pharmacological treatments or physiological stimuli. These techniques play an important role in drug discovery and clinical investigation of psychiatric and neurological diseases such as depression, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- T Yoshitake
- Department of Physiology and Pharmacology, Nanna Svartz väg 2, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
12
|
Yoshitake T, Yoshitake S, Fujino K, Nohta H, Yamaguchi M, Kehr J. High-sensitive liquid chromatographic method for determination of neuronal release of serotonin, noradrenaline and dopamine monitored by microdialysis in the rat prefrontal cortex. J Neurosci Methods 2005; 140:163-8. [PMID: 15589346 DOI: 10.1016/j.jneumeth.2004.04.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
A high-sensitive liquid chromatographic method based on precolumn derivatization and fluorescence detection allowing simultaneous determination of serotonin (5-HT), noradrenaline (NA) and dopamine (DA) in brain microdialysis samples is described. 5-HT, NA and DA were derivatized with benzylamine and 1,2-diphenylethylenediamine in the presence of potassium hexacyanoferrate(III) and glycine, which yielded to highly fluorescent and stable benzoxazoles. The derivatized samples were separated on a microbore column (150 mm x 1.0mm i.d., packed with C18 silica, 5 microm) within 60 min. The mobile phase consisted of acetonitrile-Briton-Robinson buffer (pH 7.2) (32:68, v/v) containing 5 mM Na2EDTA and 5 mM octanesulfonic acid sodium salt. The detection limits (signal-to-noise ratio of 3) for 5-HT, NA and DA were 76, 42 and 95 amol/10 microl injected on-column, respectively. Microdialysis samples were collected at 10-min intervals from the probes implanted in the prefrontal cortex of awake rats. The basal levels of 5-HT, NA and DA were 7.3 +/- 0.7, 5.3 +/- 0.31 and 8.1 +/- 0.47 fmol/5 microl (mean +/- S.E.M., n = 5). Following 90-min perfusion with tetrodotoxin (1 microM) or calcium-free Ringer solution, the DA and NA levels were reduced to about 15 and 20%, respectively and the 5-HT levels to 45 and 60% of the basal levels, respectively. Reserpine, 12h after a dose of 5mg/kg i.p., reduced the extracellular 5-HT, NA and DA concentrations to about 34, 39 and 32% of the basal levels, respectively. In conclusion, the preset microdialysis/analytical method enables simultaneous monitoring of basal and pharmacologically reduced neuronal release of 5-HT, NA and DA in the rat brain.
Collapse
Affiliation(s)
- Takashi Yoshitake
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Weikop P, Kehr J, Scheel-Krüger J. The role of alpha1- and alpha2-adrenoreceptors on venlafaxine-induced elevation of extracellular serotonin, noradrenaline and dopamine levels in the rat prefrontal cortex and hippocampus. J Psychopharmacol 2004; 18:395-403. [PMID: 15358984 DOI: 10.1177/026988110401800311] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of adrenergic alpha1- and alpha2-adrenoreceptors in augmentation of venlafaxine-induced elevation of extracellular serotonin (5-HT),noradrenaline (NA) and dopamine (DA) levels in the rat prefrontal cortex (PFC) and hippocampus (HIPP) was studied by in vivo microdialysis in anaesthetized rats. The alpha1-adrenoreceptor antagonist prazosin given alone (0.3 mg/kg, s.c.) induced only a moderate reduction of hippocampal 5-HT and NA levels. The alpha2-adrenoreceptor antagonist idazoxan (1.5 mg/kg, s.c.) causes moderate increases in the levels of 5-HT and DA in the PFC. The mixed 5-HT and NA reuptake inhibitor venlafaxine (10 mg/kg, i.p.) increased the efflux of 5-HT, NA and DA almost equally, to approximately 200% of the control levels in the PFC. The levels of 5-HT increased to 310%, an effect approximately twice the effect on NA in the HIPP. Venlafaxine also produced a moderate increase in DA levels in the PFC but had no effect in the HIPP. Pre-treatment with prazosin caused a significant attenuation of the venlafaxine induced 5-HT effect in the PFC, and a moderate increase in DA levels in the HIPP. Prazosin had no significant effect on the venlafaxine-induced increase of the NA levels in PFC or HIPP. A combined treatment of venlafaxine with idazoxan increased the venlafaxine NA and DA effects in PFC by a factor of two and resulted in a very robust five-fold augmentation of NA and DA concentrations in the HIPP. In summary, idazoxan was found to produce a potent enhancement of the venlafaxine effect to increase extracellular NA and DA levels in the PFC and, in particular, in the HIPP. Idazoxan had no effect on venlafaxine-induced elevation of extracellular 5-HT levels in either PFC or HIPP and prazosin induced a decrease of 5-HT in the PFC. The present data suggest that blockade of alpha2-adrenoreceptors may play an important role in augmentation of the effects of mixed monoamine reuptake inhibitors.
Collapse
Affiliation(s)
- P Weikop
- Department of Microdialysis, NeuroSearch A/S, Ballerup, Denmark.
| | | | | |
Collapse
|
14
|
Yoshitake T, Kehr J, Yoshitake S, Fujino K, Nohta H, Yamaguchi M. Determination of serotonin, noradrenaline, dopamine and their metabolites in rat brain extracts and microdialysis samples by column liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 807:177-83. [PMID: 15203027 DOI: 10.1016/j.jchromb.2004.03.069] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/24/2022]
Abstract
A highly selective and sensitive column liquid chromatographic method for fluorescence determination of serotonin (5-HT), dopamine (DA), noradrenaline (NA) and their related metabolites 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) following derivatization with benzylamine and 1,2-diphenylethylenediamine (DPE) is described. The monoamines and the metabolites (20 microl samples) were derivatized in a two-step reaction, initiated with 20 microl of 0.3M benzylamine in 0.3M 3-cyclohexylaminopropanesulfonic acid (CAPS) buffer (pH 10.0), (for 5-HT, 5-HIAA, 2 min, 24 degrees C) and followed by 20 microl of 0.1M DPE in 0.3M glycine buffer (pH 10.0), (for DA, NA, DOPAC, 20 min, 50 degrees C). Both reagents contained 0.02 M potassium hexacyanoferrate(III) and 50% (v/v) methanol. The resulting highly fluorescent and stable benzoxazole derivatives were isocratically separated on a reversed-phase column (150 mm x 1.5 mm i.d., packed with C18 silica, 5 microm) within 45 min. Using fluorescence detection at ex. and em. wavelengths of 345 and 480 nm, respectively, the detection limit (signal-to-noise ratio of 3) for 5-HT, DA, NA, 5-HIAA, L-DOPA and DOPAC ranged between 0.08 and 5.65 fmol per 20-microl injection (12-847.5 pM in standard solution). The concentrations of monoamines (expressed in microg/g wet weight, mean +/- S.E.M., n=5) in tissue extracts from the rat striatum were: 0.45+/-0.05 (5-HT), 4.27+/-0.08 (DA), 0.27+/-0.04 (NA), 0.55+/-0.06 (5-HIAA), 1.26+/-0.16 (L-DOPA) and 1.62+/-0.11 (DOPAC). Microdialysis samples were collected in 20 min intervals from the probes implanted in the striatum of awake rats. The basal monoamine levels (in fmol/20 microl, mean +/- S.E.M., n=5) in the dialysates were: 4.0+/-0.7 (5-HT), 78.4+/-9.1 (DA), 6.4+/-0.8 (NA), 785.5+/-64.5 (5-HIAA) and 5504.5+/-136.5 (DOPAC). It is concluded that the new fluorescence derivatization protocol provides an excellent means for simultaneous determination of all three monoamines both in the complex samples (e.g. brain homogenates) and also at trace levels, such as those found in the microdialysis samples.
Collapse
Affiliation(s)
- Takashi Yoshitake
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Yoshitake T, Wang FH, Kuteeva E, Holmberg K, Yamaguchi M, Crawley JN, Steiner R, Bartfai T, Ogren SO, Hökfelt T, Kehr J. Enhanced hippocampal noradrenaline and serotonin release in galanin-overexpressing mice after repeated forced swimming test. Proc Natl Acad Sci U S A 2003; 101:354-9. [PMID: 14701907 PMCID: PMC314189 DOI: 10.1073/pnas.0307042101] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Basal and forced swimming (FS) stress-induced release of noradrenaline (NA) and serotonin (5-HT) were determined by in vivo microdialysis in the ventral hippocampus of mice overexpressing galanin under the platelet-derived growth factor B promoter (GalOE/P) or under the dopamine beta-hydroxylase promoter (GalOE/D) (only NA). WT mice served as controls. Intraventricular infusion of galanin significantly reduced basal extracellular NA in WT mice and in GalOE/P mice (albeit less so). Microdialysis sampling during a 10-min FS showed that NA and 5-HT release were elevated to 213% and 156%, respectively, in the GalOE/P group, whereas in the WT group the increases were only 127% and 119%, respectively. The second (repeated) 10-min FS (RFS) caused a marked enhancement of NA and 5-HT release in the GalOE/P mice to 344% and 275%, respectively. However, the RFS caused only a 192% increase of extracellular NA levels in the GalOE/D mice. Pretreatment with the putative peptidergic galanin receptor antagonist M35 almost completely blocked the elevation of NA and 5-HT levels in the GalOE/P after RFS. These results suggest that the NA and 5-HT hippocampal afferents in GalOE/P mice are hypersensitive to both conditioned and unconditioned stressful stimuli, such as FS, and that this effect is mediated by galanin receptors. The present findings support a role of galanin in the regulation of release of NA and 5-HT, two neurotransmitters involved in mood control.
Collapse
Affiliation(s)
- Takashi Yoshitake
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yoshitake T, Reenilä I, Ogren SO, Hökfelt T, Kehr J. Galanin attenuates basal and antidepressant drug-induced increase of extracellular serotonin and noradrenaline levels in the rat hippocampus. Neurosci Lett 2003; 339:239-42. [PMID: 12633897 DOI: 10.1016/s0304-3940(03)00020-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Galanin is co-localized with classical neurotransmitters, such as acetylcholine, serotonin (5-HT) and noradrenaline (NA) in neurons or in brain regions implicated in cognitive and affective behaviour. In the present study, the effects of galanin on extracellular 5-HT and NA levels in the rat hippocampus were measured by in vivo microdialysis under basal conditions and following systemic administration of antidepressant drugs. Galanin (1.5 nmol i.c.v.) reduced basal 5-HT and NA levels to 65% and 86% of controls, respectively. Galanin (0.5 and 1.5 nmol i.c.v.) dose-dependently attenuated the elevation of 5-HT concentrations induced by imipramine and citalopram (10 mg/kg i.p., each) from 350% to 312% and from 230% to 160%, respectively. Galanin at 1.5 nmol transiently attenuated the effect of desipramine-induced (10 mg/kg i.p.) increase in extracellular NA levels from a maximal increase of 389-296% of the predrug levels. It is concluded that intraventricularly administered galanin attenuated both basal 5-HT and NA release and antidepressant drug-induced accumulation of extracellular 5-HT and NA levels most likely via a predominant inhibitory action on serotonergic and noradrenergic neurons in the raphe and locus coeruleus, respectively. These results further emphasize a possible role of galanin in regulation of 5-HT and NA neurotransmission in depressive states and during the course of antidepressant therapy.
Collapse
Affiliation(s)
- Takashi Yoshitake
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Yoshitake T, Fujino K, Kehr J, Ishida J, Nohta H, Yamaguchi M. Simultaneous determination of norepinephrine, serotonin, and 5-hydroxyindole-3-acetic acid in microdialysis samples from rat brain by microbore column liquid chromatography with fluorescence detection following derivatization with benzylamine. Anal Biochem 2003; 312:125-33. [PMID: 12531196 DOI: 10.1016/s0003-2697(02)00435-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microbore column liquid chromatographic method for the simultaneous determination of norepinephrine (NE), serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5HIAA) in microdialysis samples from rat brain is described. The method is based on precolumn derivatization of NE, 5HT, and 5HIAA with benzylamine in the presence of potassium hexacyanoferrate(III) resulting in the corresponding highly fluorescent and stable benzoxazole derivatives. A 15-microl sample was mixed with 15 microl derivatization reagent solution containing 0.3M 3-cyclohexylaminopropanesulfonic acid buffer (pH 12.0), 0.5M benzylamine, 10mM potassium hexacyanoferrate(III), and methanol (1/1/1/12, v/v/v/v). The derivatization was carried out at 50 degrees C for 20 min. The benzylamine derivatives of NE, 5HT, and 5HIAA were separated on a reversed-phase column (100 x 1.0mm i.d., packed with C18 silica, 5 microm) within 30 min. The mobile phase consisted of 15 mM acetate buffer (pH 5.0) and acetonitrile (31%, v/v); the flow rate was 50 microl/min. The detection limits (signal-to-noise ratio of 3) for NE, 5HT, and 5HIAA in the injection volume of 20 microl were 90, 210, and 260 amol, respectively. Microdialysis samples were collected in 7.5-min intervals from the probes implanted in the hippocampus and prefrontal cortex of awake rats. The basal levels of NE, 5HT, and 5HIAA in the dialysates from the hippocampus were 4.2+/-0.5, 4.9+/-0.6, and 934.1 +/- 63.4 fmol/20 microl, and those from the prefrontal cortex were 6.0+/-1.2,5.51.3, and 669.1 +/- 96.0 fmol/20 microl (mean +/- SE, n=25), respectively. The NE and 5HT levels were altered by perfusion of high-potassium or low-calcium solution and following antidepressant drugs imipramine and desipramine. It is concluded that the new fluorescence derivatization method in combination with microbore column liquid chromatography allows the simultaneous determination of NE, 5HT, and 5HIAA in the microdialysis samples at higher sensitivity, providing easier maintenance in routine use than that achieved by high-performance liquid chromatographic methods with electrochemical detection.
Collapse
Affiliation(s)
- Takashi Yoshitake
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Fujino K, Yoshitake T, Inoue O, Ibii N, Kehr J, Ishida J, Nohta H, Yamaguchi M. Increased serotonin release in mice frontal cortex and hippocampus induced by acute physiological stressors. Neurosci Lett 2002; 320:91-5. [PMID: 11849771 DOI: 10.1016/s0304-3940(02)00029-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of acute physiological stressors (5 s tail pinch, handling and forced swimming at +25 and +5 degrees C for 3 min each) on serotonin (5-HT) release in the mouse brain were investigated using in vivo microdialysis. The extracellular 5-HT levels were determined by a newly developed highly-sensitive and selective high-performance liquid chromatography method based on derivatization with benzylamine and fluorescence detection. The basal levels of 5-HT in 3 min microdialysates from the ventral hippocampus and frontal cortex were 0.68+/-0.21 and 0.75+/-0.28 fmol/6 microl (n=24), respectively. All three stressors caused an immediate, significant and reversible increase (handling: 150%; swimming: 240%) of extracellular 5-HT levels in both brain structures, suggesting a more dynamic role played by the serotonergic system in response to acute stress.
Collapse
Affiliation(s)
- Kaoru Fujino
- Chemicals Evaluation and Research Institute, 3-822 Ishii Machi, Hita, Oita 877-0061, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang F, Yang L, Bi S, Liu J, Liu F, Wang X, Yang X, Gan N, Yu T, Hu J, Li H, Yang T. Neurotransmitter dopamine applied in electrochemical determination of aluminum in drinking waters and biological samples. J Inorg Biochem 2001; 87:105-13. [PMID: 11709219 DOI: 10.1016/s0162-0134(01)00320-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It was demonstrated that the decrease of the differential pulse voltammetric (DPV) anodic peak current of dopamine (3,4-dihydroxyphenylethylamine, DA) was linear with the increase of aluminum (Al) concentration. Under optimum experimental conditions (pH 4.6, 1.2 x 10(-3) M DA, and 0.04 M NaAc-HAc buffer solution), the linear range is 4.0 x 10(-7)-8.0 x 10(-5) M, the detection limit is 1.4 x 10(-7) M, and the relative standard deviation for 4 x 10(-5) M Al(III) is 3.5% (n=8). Many foreign species, especially some low-molecule-weight biological molecules, were chosen for interference testing. The proposed method was applied to the determination of Al in biological samples such as synthetic renal dialysate, Ringer's solution, human blood, cerebrospinal fluid of a patient, and urine of a diabetic patient. The corresponding recoveries were generally between 95 and 105%. The basic principle of the method was determined by examining Al complexed with DA. This results in the blockage of the electroactive sites on DA, followed eventually by the reduction of the electrochemical response of DA. This result was verified by examining the behavior of DA, both in the presence and absence of Al, using electrochemical, UV-Vis, Raman, and (13)C NMR spectroscopic methods.
Collapse
Affiliation(s)
- F Zhang
- State Key Laboratory of Coordination Chemistry of China, Department of Chemistry, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yoshitake T, Iizuka R, Kehr J, Nohta H, Ishida J, Yamaguchi M. Determination of serotonin in microdialysis samples from rat brain by microbore column liquid chromatography with post-column derivatization and fluorescence detection. J Neurosci Methods 2001; 109:91-6. [PMID: 11513943 DOI: 10.1016/s0165-0270(01)00386-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present paper describes a new method for on-line determination of 5-HT in brain microdialysates from awake rats by microbore column liquid chromatography with post-column derivatization and fluorescence detection. The derivatization reagent contained 1 mM benzylamine and 0.5 mM potassium hexacyanoferrate (III), both dissolved in a mixture of acetonitrile and 25 mM borate buffer (pH 11.0) (1:1, v/v). The limit of detection (S/N=3) for 5-HT was 0.5 fmol/20 microl. The samples were injected every 20 min onto a microbore column packed with C18 silica gel. The method exhibits an excellent stability over the periods of at least 12-24 h. The basal levels of 5-HT from 25 awake rats were 7.10+/-1.06 fmol/20 microl in the dorsal hippocampus and 4.64+/-0.91 fmol/20 microl (mean+/-SD) in the striatum. The 5-HT release increased to about 1500% during the perfusion with 100 mM K(+) containing Ringer solution or it was reduced to 60 or 40% during the perfusion with 1 microM tetrodotoxin or calcium free Ringer, respectively. The new method can be used to monitor extracellular 5-HT following acute systemic drug administration.
Collapse
Affiliation(s)
- T Yoshitake
- Chemicals Evaluation and Research Institute, 3-822 Ishii Machi, Hita City, 877-0061, Oita, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Kehr J, Yoshitake T, Wang FH, Wynick D, Holmberg K, Lendahl U, Bartfai T, Yamaguchi M, Hökfelt T, Ogren SO. Microdialysis in freely moving mice: determination of acetylcholine, serotonin and noradrenaline release in galanin transgenic mice. J Neurosci Methods 2001; 109:71-80. [PMID: 11489302 DOI: 10.1016/s0165-0270(01)00403-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study, we describe micro-surgical methods for simultaneous implantation of a microdialysis probe and an intraventricular injection cannula via their respective guide cannulas into the mouse brain. Basal and stimulated release of acetylcholine (ACh), serotonin (5-HT) and noradrenaline (NA) was determined in the ventral hippocampus of freely moving mice. NA and 5-HT were determined in one run by a newly developed HPLC method based on precolumn derivatization with benzylamine and fluorescence detection. The mice with a loss-of-function mutation of the galanin gene (KO) and the mice that over-expressed galanin (OE) were studied. No significant differences in basal, potassium-stimulated or scopolamine-induced extracellular ACh levels were observed in 4-month-old wild-type (WT) and KO mice. In the aged, 10-month-old animals, the basal extracellular ACh levels were significantly reduced in both WT and KO groups. Galanin (1 nmol i.c.v.) caused a significant reduction of basal extracellular NA by about 40% in both WT and galanin OE mice, however, in the latter group the effect was delayed by almost 2 h. A 10-min forced swimming stress caused a higher increase in release of NA and 5-HT in the OE group than in the corresponding WT mice. Finally, venlafaxin (10 mg/kg i.p.) increased extracellular NA to 400% of the control values in the CBA mice, but only to 250% in the C57BL mice. It is concluded that galanin may play an important role in the cholinergic mechanisms underlying cognitive disorders. Furthermore, modulation by galanin and by behavioral activation, of NA and 5-HT neurotransmission in galanin over-expressing mice indicates its possible role in the aetiology of mood disorders.
Collapse
Affiliation(s)
- J Kehr
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang F, Bi S, Li H, Chen Y, Dai L. Application ofL-Dopa as an Electroactive Ligand for Indirect Determination of Aluminum in Biological Samples by Differential Pulse Voltammetry. ELECTROANAL 2001. [DOI: 10.1002/1521-4109(200108)13:12<1054::aid-elan1054>3.0.co;2-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Westerink BH. Analysis of biogenic amines in microdialysates of the brain. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 747:21-32. [PMID: 11103897 DOI: 10.1016/s0378-4347(00)00338-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microdialysis is a method of sampling a liquid compartment by means of a hollow fibre dialysis membrane. The method was developed in the 1980s as a technique for sampling the extracellular fluid of the brain of conscious animals. When used in combination with sensitive analytical chemical tools, microdialysis can be used to study the regulation of neurotransmission in the living brain. Here we describe the application of microdialysis for sampling and detection of biogenic amines (dopamine, noradrenaline and serotonin) in brain tissue. A short overview of the microdialysis technique and its applications are given. In addition, the analytical chemical methods that are currently used to assay biogenic amines in dialysates are briefly discussed.
Collapse
Affiliation(s)
- B H Westerink
- Department of Biomonitoring and Sensoring, Groningen, The Netherlands.
| |
Collapse
|
24
|
Takezawa K, Tsunoda M, Watanabe N, Imai K. An automatic analyzer for catecholamines and their 3-O-methyl metabolites using a micro coulometric flow cell as a postcolumn reactor for fluorogenic reaction. Anal Chem 2000; 72:4009-14. [PMID: 10994958 DOI: 10.1021/ac0003697] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A coulometric flow cell for a miniaturized LC system was developed. The cell was examined, as 3-O-methyl catecholamines were converted to their relative omicron-quinones for subsequent fluorometric and chemiluminescence detection. Its performance was evaluated in comparison with commercially available amperometric and coulometric detectors in terms of specification of the low dead volume and high conversion efficiency. The fully automated small-bore LC analyzer for simultaneous determination of catecholamines and their 3-O-methyl metabolites included precolumn pretreatment, column switching, column separation, postcolumn oxidative conversion, fluorometric derivatization, and chemiluminescence detection. The detection limits were 0.3-2.0 fmol for catecholamines and their 3-O-methyl metabolites. Because of the high sensitivity, the required volume of rat plasma sample was only 15 microL.
Collapse
Affiliation(s)
- K Takezawa
- Graduate School of Pharmaceutical Sciences and Graduate School of Engineering, The University of Tokyo, Japan
| | | | | | | |
Collapse
|