1
|
Identification of Antigenic Properties of Acinetobacter baumannii Proteins as Novel Putative Vaccine Candidates Using Reverse Vaccinology Approach. Appl Biochem Biotechnol 2022; 194:4892-4914. [PMID: 35670904 DOI: 10.1007/s12010-022-03995-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
Multidrug-resistant Acinetobacter baumannii (A. baumannii) infections are becoming more prevalent all over the world. As a cost-effective and preventative method, vaccination seems to be required against this bacterium. In the present study, subtractive proteomics along with reverse vaccinology approaches was used to predict suitable therapeutics against A. baumannii. Using the Vaxign online tool, we studied over 35 genomes of A. baumannii strains and chose outer membrane and secreted proteins of A. baumannii 1656-2 as possible vaccine candidates. Then, investigations were performed on the immunogenicity, antigenic characteristics, physicochemical properties, B-cell and MHC class I, and MHC class II molecules epitope densities of proteins. After optimizing the codon of the proteins, the pcDNA3.1( +) expression construct was designed and the immunogenicity, allergenicity, and physicochemical properties of the vaccine construct were predicted. Hcp and OmpC proteins were predicted as extracellular and outer membrane proteins, respectively. These proteins interact with 10 other proteins to form a network of protein interactions with virulence properties. Immunoassays of Hcp and OmpC proteins showed antigenicity of 0.88 and 0.79, respectively. These proteins have 5 structural cell epitope points and 5 linear B epitope points. They are also able to bind to different HLA alleles of MCH class I/class II as selected immunogenic proteins and designed non-allergenic structures with solubility of 0.650 and immunogenicity score of 0.91. The results of this "in silico" study indicate high specificity and the development of a significant humoral and cellular immune response. It can be concluded that the Hcp and OmpC dual vaccine construct is one of the promising candidates against A. baumannii. The findings of this "in silico" study show excellent specificity and the emergence of a substantial humoral and cellular immune response. This is a computer-based study that needs to be tested in vitro and in vivo to corroborate the conclusions of the vaccine design procedures.
Collapse
|
2
|
Structural Characterization of a Unique Peptide in Porin: An Approach Towards Specific Detection of Salmonella enterica Serovar Typhi. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Park JY, Kim YH, Min J. CO2 reduction and organic compounds production by photosynthetic bacteria with surface displayed carbonic anhydrase and inducible expression of phosphoenolpyruvate carboxylase. Enzyme Microb Technol 2017; 96:103-110. [DOI: 10.1016/j.enzmictec.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
|
4
|
Mutreja R, Jariyal M, Pathania P, Sharma A, Sahoo D, Suri CR. Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosens Bioelectron 2016; 85:707-713. [DOI: 10.1016/j.bios.2016.05.079] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
|
5
|
Ding X, Chen Q, Bao C, Ai A, Zhou Y, Li S, Xie H, Zhu Y, Cai Y, Peng X. Expression of a mitochondrial gene orfH79 from CMS-Honglian rice inhibits Escherichia coli growth via deficient oxygen consumption. SPRINGERPLUS 2016; 5:1125. [PMID: 27478742 PMCID: PMC4951385 DOI: 10.1186/s40064-016-2822-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open frames (ORF), orfH79 is a mitochondrial chimeric gene responsible for the CMS trait in Honglian (HL) rice. In this study, the weakly produced ORFH79 protein significantly inhibited the growth of E. coli in an oxygen culture, however, the growth of the transformants producing ORFH79 was indistinguishable from the control under anaerobic incubation conditions. In addition, a lower respiration rate, wrinkled bacterial surfaces, and decreased pyruvate kinase and α-ketoglutarate dehydrogenase activities were observed in the ORFH79 produced E. coli. These results indicate that ORFH79 impairs the oxygen respiration of E. coli, which may inhibit E. coli growth.
Collapse
Affiliation(s)
- Xia Ding
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Qiusheng Chen
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Canming Bao
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Aihua Ai
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Ying Zhou
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Hongwei Xie
- Jiangxi Super-Rice Research and Development Center, Nanchang, 330200 People's Republic of China
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Nanchang, 330200 People's Republic of China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 People's Republic of China
| |
Collapse
|
6
|
Manoj J, Agarwal RK, Sailo B, Wani MA, Singh MK. Evaluation of recombinant outer membrane protein C based indirect enzyme-linked immunoassay for the detection of Salmonella antibodies in poultry. Vet World 2015; 8:1006-10. [PMID: 27047189 PMCID: PMC4774754 DOI: 10.14202/vetworld.2015.1006-1010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/12/2015] [Accepted: 07/19/2015] [Indexed: 12/03/2022] Open
Abstract
Aim: To evaluate the efficacy of recombinant outer membrane proteinC (rOmpC) based enzyme-linked immunoassay (ELISA) for the diagnosis of salmonellosis in poultry. Materials and Methods: Three antigens were prepared, and the indirect ELISA was standardized using the antigens and the antiserum raised in chicken against Omp and rOmpC. Sera were collected from a total of 255 apparently healthy field chickens and screened for the presence of Salmonella antibodies by this ELISA. Results: The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of Omp revealed major polypeptides at 36, 42 and 52 kDa, and the rOmpC was evident by a single protein band of 43 kDa. The Omp and rOmpC antigen revealed an optimum concentration of 78 and 156 ng, respectively, in the assay, while the whole cell antigen gave an optimum reaction at a concentration of 106 organisms/ml. The test was found to be specific as it did not react with any of the antisera of seven other organisms. The developed ELISA detected Salmonella antibodies from 22 (8.62%) samples with rOmpC antigen, while 24 (9.41%) samples gave a positive reaction with both Omp and whole cell antigens. Conclusion: We suggest rOmpC based indirect ELISA as a suitable screening tool for serological monitoring of poultry flocks.
Collapse
Affiliation(s)
- Jinu Manoj
- Department of Veterinary Public Health and Epidemiology, College of Veterinary & Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Rajesh K Agarwal
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Blessa Sailo
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mudasir Ahmed Wani
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manoj Kumar Singh
- Department of Livestock Production and Management, College of Veterinary & Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| |
Collapse
|
7
|
Ji Z, Shang J, Li Y, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vaccine vector displaying regulated delayed attenuation and regulated delayed antigen synthesis to confer protection against Streptococcus suis in mice. Vaccine 2015; 33:4858-67. [PMID: 26238722 DOI: 10.1016/j.vaccine.2015.07.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
Salmonella enterica serotype Choleraesuis (S. Choleraesuis) and Streptococcus suis (S. suis) are important swine pathogens. Development of a safe and effective attenuated S. Choleraesuis vaccine vector would open a new window to prevent and control pig diseases. To achieve this goal, the mannose and arabinose regulated delayed attenuated systems (RDAS), Δpmi and ΔPcrp::TT araC PBADcrp, were introduced into the wild type S. Choleraesuis strain C78-3. We also introduced ΔrelA::araC PBADlacI TT to achieve regulated delayed antigen synthesis and ΔasdA to constitute a balanced-lethal plasmid system. The safety and immunogenicity of the resulted RDAS S. Choleraesuis strain rSC0011 carrying 6-phosphogluconate dehydrogenase (6-PGD) of S. suis serotype 2 (SS2) were evaluated in vitro and in vivo. Compared with the wild type parent strain C78-3 and vaccine strain C500, a live attenuated S. Choleraesuis vaccine licensed for piglet in China, the results showed that the survival curves of the vaccine strain rSC0011 were similar to those of strains C78-3 and C500 at the early stage of infection, but lower than those of C78-3 and higher than those of C500 at the later stage in both porcine alveolar macrophages and peripheral porcine monocytes. The LD50 of the RDAS strains rSC0011 by oral route in mice was close to that of C500 and 10,000-fold higher than that of C78-3. Similar results were achieved by intraperitoneal (i.p.) route, suggesting that the RDAS strains rSC0011 achieved similar attenuation as C500. However, the RDAS strain rSC0011 was superior to C500 in colonization of Peyer's patches. Adult mice orally immunized with strain rSC0011 carrying a plasmid expression 6-phosphogluconate dehydrogenase (6-PGD) gene from SS2 developed strong immune responses against 6-PGD and Salmonella antigens, and conferred high protection against i.p. challenge with SS2.
Collapse
Affiliation(s)
- Zhenying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jing Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yuan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Wang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
8
|
Konar M, Sachin O, Priya A, Ghosh S. Identification of key proteins of cultured human intestinal cells involved in interaction with enteroaggregativeEscherichia coli. ACTA ACUST UNITED AC 2012; 66:177-90. [DOI: 10.1111/j.1574-695x.2012.00998.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 05/15/2012] [Accepted: 05/24/2012] [Indexed: 11/28/2022]
|
9
|
Jha R, Kumar A, Saxena A, Tamuly S, Saxena MK. Cloning, sequencing and in silico analysis of omp C of salmonella typhimurium. ISRN VETERINARY SCIENCE 2012; 2012:512848. [PMID: 23762587 PMCID: PMC3658560 DOI: 10.5402/2012/512848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/26/2011] [Indexed: 11/23/2022]
Abstract
Salmonella Typhimurium is an important pathogen having a broad host range. In human population it causes mostly gastroenteritis but there are reports in which it was found to be responsible to cause several lethal diseases like endocarditis and meningitis. Poultry products are the major sources of this organism in India as these are consumed at various stages of cooking. The available vaccines have their own limitations such as short-term immunity. Outer membrane proteins have shown some promising potential, so in the present study Omp C of Salmonella Typhimurium was cloned and sequenced to explore the possibility of development of r-DNA vaccine against Salmonella Typhimurium for poultry. The sequence of Omp C was studied for antigenic indexing, epitope mapping, and MHC mapping using various bioinformatic tools. The ORF analysis revealed a complete coding region of approximately 1000 bp. Five major and 13 minor B-cell epitopes were identified having an antigenic index of 1.7. The sequences also showed major histocompatibility complex (MHC) class I and class II binding region indicating a potential of eliciting cell-mediated immune response. The findings indicate that Omp C may be proven as promising candidate for development of r-DNA vaccine against Salmonella Typhimurium.
Collapse
Affiliation(s)
- Richa Jha
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - Anjani Saxena
- Animal Biotechnology Center, Department of Veterinary Physiology & Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - Shantanu Tamuly
- Animal Biotechnology Center, Department of Veterinary Physiology & Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - M. K. Saxena
- Animal Biotechnology Center, Department of Veterinary Physiology & Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| |
Collapse
|
10
|
Zenteno-Cuevas R, Huerta-Yepez S, Reyes-Leyva J, Hernández-Jáuregui P, González-Bonilla C, Ramírez-Mendoza H, Agundis C, Zenteno E. Identification of potential B cell epitope determinants by computer techniques, in hemagglutinin-neuraminidase from the porcine rubulavirus La Piedad Michoacan. Viral Immunol 2007; 20:250-60. [PMID: 17603842 DOI: 10.1089/vim.2006.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Hemagglutinin-neuraminidase (HN) from porcine rubulavirus La Piedad Michoacan (RvpLPM) is one of the most antigenic proteins known, and is responsible for virus-host cell interaction. We analyzed the amino acid sequence of HN, using computer-assisted techniques to identify B cell epitopes. From a pool of 18 possible antigenic peptides, we evaluated the antigenicity of the 2 peptides with the highest scores and the 1 with lowest score. Antibodies from RvpLPM-infected pigs recognized the synthesized HN-A, HN-B, and HN-R peptides (optical density [OD]: 0.33 +/- 0.02 for HN-A, 0.20 +/- 0.02 for HN-B, and 0.07 +/- 0.01 for HN-R); bovine serum albumin-coupled HN-A and HN-B induced rabbit anti-RvpLPM antibodies (OD: 0.39 +/- 0.01 for HN-A and 0.35 +/- 0.02 for HN-B). Loop 5 from the outer membrane protein, OmpC, from Salmonella typhi was replaced with HN-B; this protein was then expressed in Escherichia coli UH302. BALB/c mice were challenged intraperitoneally or orogastrically with the fusion protein expressed in E. coli and murine antibodies obtained from both types of administration inhibited virus-hemagglutinating activity, as did the antibodies from RvpLPM-infected swine. These results suggest that HN-A and HN-B are peptides involved in RvpLPM cell carbohydrate recognition, and could therefore be considered potential targets for vaccine and diagnostic procedures development.
Collapse
|
11
|
Kim SR, Rhee MS, Kim BC, Lee H, Kim KH. Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline. J Microbiol Methods 2007; 70:132-41. [PMID: 17509706 DOI: 10.1016/j.mimet.2007.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/04/2007] [Accepted: 04/09/2007] [Indexed: 11/15/2022]
Abstract
In this study, we used supercritical carbon dioxide (SC-CO(2)) to inactivate Salmonella typhimurium suspended in physiological saline (PS) or phosphate-buffered saline (PBS). The colony forming activity of S. typhimurium was completely lost (i.e., 8-log reduction) under the following condition ranges: pressures of 80-150 bar, temperatures of 35-45 degrees C and 10-50 min treatment times. The microbial inactivation process had three distinct phases and was modeled by the modified Gompertz model. Generally, an increase in pressure at constant temperature, and an increase in temperature at a constant pressure, both enhanced S. typhimurium inactivation. When the cells were suspended in PBS rather than PS, the length of time for the complete inactivation significantly increased. We observed the surface and internal morphological changes of the cells by SEM and TEM, respectively. The extraction of proteinous substances, nucleic acids and outer membrane proteins into the suspension during SC-CO(2) treatment was also observed. Through SDS-PAGE analysis of the total proteins and major outer membrane proteins (OMPs) of SC-CO(2)-treated cells, we found that a substantial amount of the total soluble proteins had converted into insoluble protein.
Collapse
Affiliation(s)
- Soo Rin Kim
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Padhi A, Verghese B, Otta SK. Detecting the form of selection in the outer membrane protein C of Enterobacter aerogenes strains and Salmonella species. Microbiol Res 2007; 164:282-9. [PMID: 17418551 DOI: 10.1016/j.micres.2006.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/13/2006] [Indexed: 11/22/2022]
Abstract
The types of selective pressure operating on the outer membrane protein C (ompC) of Enterobacter aerogenes strains, the causative agent for nosocomial infections, and Salmonella sp., the hazardous pathogen are investigated using the maximum likelihood-based codon substitution models. Although the rate of amino acid replacement to the silent substitution (omega) across the entire codon sites of ompC of E. aerogenes (omega=0.3194) and Salmonella sp. (omega=0.2047) indicate that the gene is subjected to purifying selection (i.e. omega<1), approximately 3.7% of ompC codon sites in E. aerogenes (omega=21.52) are under the influence of positive Darwinian selection (i.e. omega>1). Such contrast in the intensity of selective pressures in both pathogens could be associated with the differential response to the adverse environmental changes. In E. aerogenes, majority of the positively selected sites are located in the hypervariable cell-surface-exposed domains whereas the trans-membrane domains are functionally highly constrained.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Biological Science, University of Tulsa, Tulsa, OK-74104, USA.
| | | | | |
Collapse
|
13
|
Kustos I, Kocsis B, Kilár F. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics 2007; 4:91-106. [PMID: 17288518 DOI: 10.1586/14789450.4.1.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.
Collapse
Affiliation(s)
- Ildikó Kustos
- University of Pécs, Department of Medical Microbiology & Immunology, Faculty of Medicine, Pécs, Hungary.
| | | | | |
Collapse
|
14
|
Sundara Baalaji N, Mathew MK, Krishnaswamy S. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins. Biochimie 2006; 88:1419-24. [PMID: 16765505 DOI: 10.1016/j.biochi.2006.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.
Collapse
Affiliation(s)
- N Sundara Baalaji
- Center of Excellence in Bioinformatics, School of Biotechnology, Madurai-Kamaraj University, Palkalainagar, Madurai 625021, India
| | | | | |
Collapse
|
15
|
Kumar PD, Krishnaswamy S. Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. Protein Expr Purif 2005; 40:126-33. [PMID: 15721780 DOI: 10.1016/j.pep.2004.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Revised: 12/11/2004] [Indexed: 10/25/2022]
Abstract
The major immunodominant integral outer membrane protein C (OmpC) from Salmonella typhi Ty21a was overexpressed, without the signal peptide, in Escherichia coli. The protein aggregates as inclusion bodies (IBs) in the cytoplasm. OmpC from IBs was solubilized with 4 M urea and refolded. This involved rapid dilution of unfolded OmpC into a refolding buffer containing polyoxyethylene-9-lauryl ether (C(12)E(9)) and glycerol. The refolded OmpC (rfOmpC) was shown to be structurally similar to the native OmpC by SDS-PAGE, Western blotting, tryptic digestion, ultrafiltration, circular dichroism, and fluorescence spectroscopic techniques. Crystals of rfOmpC were obtained in preliminary crystallization trials. The rfOmpC also sets a stage for rational design by recombinant DNA technology for vaccine design and high resolution structure determination.
Collapse
Affiliation(s)
- P D Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
16
|
Sundara Baalaji N, Acharya KR, Singh TP, Krishnaswamy S. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:773-5. [PMID: 16511154 PMCID: PMC1952365 DOI: 10.1107/s1744309105022086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/08/2005] [Indexed: 11/10/2022]
Abstract
Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 A, alpha = beta = 90, gamma = 120 degrees. This indicated a Matthews coefficient (VM) of 3.3 A3 Da(-1), corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 A resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin.
Collapse
Affiliation(s)
- N. Sundara Baalaji
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, England
| | - T. P. Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S. Krishnaswamy
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
- Correspondence e-mail: ,
| |
Collapse
|
17
|
Behra-Miellet J, Calvet L, Dubreuil L. A Bacteroides thetaiotamicron porin that could take part in resistance to beta-lactams. Int J Antimicrob Agents 2004; 24:135-43. [PMID: 15288312 DOI: 10.1016/j.ijantimicag.2004.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate porin absence or deficiency in two Bacteroides thetaiotaomicron strains resistant to amoxicillin combined with clavulanic acid. Their outer membrane protein (OMP) extracts and those of two susceptible strains were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and compared to detect differences between the strains. A protein band of interest at around 70 kDa electro-eluted for each strain, was tested in a liposome swelling assay. A decrease in initial absorbency was noted for the two susceptible strains but not for the two resistant strains. The liposome swelling of the two susceptible strains was directly visualized by photon microscopy and then photographed. This suggested a B. thetaiotaomicron porin of around 70 kDa could take part in resistance to beta-lactams.
Collapse
Affiliation(s)
- J Behra-Miellet
- Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP83, 59006 Lille cedex, France
| | | | | |
Collapse
|
18
|
Arockiasamy A, Murthy GS, Rukmini MR, Sundara Baalaji N, Katpally UC, Krishnaswamy S. Conformational epitope mapping of OmpC, a major cell surface antigen from Salmonella typhi. J Struct Biol 2004; 148:22-33. [PMID: 15363785 DOI: 10.1016/j.jsb.2004.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 03/14/2004] [Indexed: 10/26/2022]
Abstract
The outer membrane protein OmpC, a trimer made of 16 stranded beta-barrel monomers, is a major cell surface antigen from the human pathogen Salmonella typhi. The relative stability of the epitopes recognising a Salmonella specific MAb (referred as MPN5) and an Enterobacteria specific MAb (referred as P7D8) and the role of the trimeric organisation has been probed using gel electrophoresis and monoclonal antibodies. The assembly of the trimer and the stability of the beta-barrel are found to be important for epitope presentation. The Salmonella specific conformational epitope is found to be more stable than the Enterobacteria specific one. The important residues of the Salmonella specific (Asp 25 of loop 1, Asp 340 of loop 8, Lys 334 of loop 8, and Tyr 210 of loop 5) and the Enterobacteria specific (Asp 25 of loop 1, Tyr 210 of loop 5, and Lys 152 of loop 4) conformational epitope have been identified using monoclonal antibodies, chemical modification, and solid phase binding methods.
Collapse
Affiliation(s)
- A Arockiasamy
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, 625 021, India
| | | | | | | | | | | |
Collapse
|
19
|
Hara-Kaonga B, Pistole TG. OmpD but not OmpC is involved in adherence ofSalmonella entericaserovar Typhimurium to human cells. Can J Microbiol 2004; 50:719-27. [PMID: 15644926 DOI: 10.1139/w04-056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Conflicting reports exist regarding the role of porins OmpC and OmpD in infections due to Salmonella enterica serovar Typhimurium. This study investigated the role of these porins in bacterial adherence to human macrophages and intestinal epithelial cells. ompC and ompD mutant strains were created by transposon mutagenesis using P22-mediated transduction of Tn10 and Tn5 insertions, respectively, into wild-type strain 14028. Fluorescein-labeled wild-type and mutant bacteria were incubated with host cells at various bacteria to cell ratios for 1 h at 37 °C and analyzed by flow cytometry. The mean fluorescence intensity of cells with associated wild-type and mutant bacteria was used to estimate the number of bacteria bound per host cell. Adherence was also measured by fluorescence microscopy. Neither assay showed a significant difference in binding of the ompC mutant and wild-type strains to the human cells. In contrast, the ompD mutant exhibited lowered binding to both cell types. Our findings suggest that OmpD but not OmpC is involved in the recognition of Salmonella serovar Typhimurium by human macrophages and intestinal epithelial cells.Key words: Salmonella, adherence, porins, intestinal epithelial cells, macrophage.
Collapse
Affiliation(s)
- Bochiwe Hara-Kaonga
- Department of Microbiology, University of New Hampshire, Durham, NH 03824-2617, USA
| | | |
Collapse
|
20
|
Siritapetawee J, Prinz H, Samosornsuk W, Ashley RH, Suginta W. Functional reconstitution, gene isolation and topology modelling of porins from Burkholderia pseudomallei and Burkholderia thailandensis. Biochem J 2004; 377:579-87. [PMID: 14567756 PMCID: PMC1223904 DOI: 10.1042/bj20031118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 10/14/2003] [Accepted: 10/21/2003] [Indexed: 11/17/2022]
Abstract
The sequences for Omp38 from Burkholderia pseudomallei and Burkholderia thailandensis have been deposited in the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under the accession numbers AY312416 and AY312417 respectively. The intracellular pathogen Burkholderia pseudomallei is the causative agent of tropical melioidosis, and Burkholderia thailandensis is a closely-related Gram-negative bacterium that does not cause serious disease. Like other bacteria, the major outer membrane (OM) porins of Burkholderia strains, Bps Omp38 and Bth Omp38 may have roles in antibiotic resistance and immunity. We purified both proteins and found them to be immunologically related, SDS-resistant, heat-sensitive trimers with M (r) of approx. 110000. In functional liposome-swelling assays, both proteins showed similar permeabilities for small sugar molecules, compatible with a pore diameter of between 1.2 and 1.6 nm. Secondary structure analysis by FTIR (Fourier-transform infrared) spectroscopy revealed almost identical spectra with predominantly beta-sheet structures, typical of bacterial porins. MALDI-TOF (matrix-assisted laser-desorption ionization-time of flight) MS and ESI/MS (electrospray ionization MS) analysis of each protein showed extensive sequence similarities to the OpcP1 porin from Burkholderia cepacia (later found to be 76.5% identical). Based on information from the incomplete B. pseudomallei genome-sequencing project, the genes encoding Omp38 were identified and amplified by PCR from B. pseudomallei and B. thailandensis genomic DNA. The nucleotide sequences are 99.7% identical, and the predicted processed proteins are 100% identical. Topology prediction and molecular modelling suggest that this newly-isolated and cloned porin is a 16-stranded beta-barrel and the external loops of the protein could be important determinants of the immune response to infection.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- School of Biochemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | |
Collapse
|
21
|
Vega MI, Santos-Argumedo L, Huerta-Yepez S, Luría-Perez R, Ortiz-Navarrete V, Isibasi A, González-Bonilla CR. A Salmonella typhi OmpC fusion protein expressing the CD154 Trp140-Ser149 amino acid strand binds CD40 and activates a lymphoma B-cell line. Immunology 2003; 110:206-216. [PMID: 14511234 PMCID: PMC1783042 DOI: 10.1046/j.1365-2567.2003.01717.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 06/19/2003] [Accepted: 06/30/2003] [Indexed: 11/20/2022] Open
Abstract
CD154 is a type II glycoprotein member of the tumour necrosis factor (TNF) ligand family, which is expressed mainly on the surface of activated T lymphocytes. The interaction with its receptor CD40, plays a central role in the control of several functions of the immune system. Structural models based on the homology of CD154 with TNF and lymphotoxin indicate that binding to CD40 involves three regions surrounding amino acids K143, R203 and Q220, and that strands W140-S149 and S198-A210 are critical for such interactions. Also, it has been reported that two recombinant CD154 fragments, including amino acid residues Y45-L261 or E108-L261 are biologically active, whereas other polypeptides, including S149-L261, are not. Therefore, we decided to construct a fusion protein inserting the W140-S149 amino acid strand (WAEKGYYTMS) in an external loop of the outer membrane protein C (OmpC) from Salmonella enterica serovar Typhi and assess its ability to bind CD40 and activate B cells. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis demonstrated that the chimeric OmpC-gp39 protein conserved its ability to form trimers. Binding to CD40 was established by three variants of enzyme-linked immunosorbent assay, a direct binding assay by coating plates with a recombinant CD40-Fc protein and through two competition assays between OmpC-gp39 and recombinant CD154 or soluble CD40-Fc. Flow cytometry analysis demonstrated that OmpC-gp39 increased the expression levels of major histocompatibility complex II, CD23, and CD80, in Raji human B-cell lymphoma similarly to an antibody against CD40. These results further support that the CD154/CD40 interaction is similar to the TNF/TNF receptor. This is the first report of a bacterial fusion protein containing a small amino acid strand form a ligand that is able to activate its cognate receptor.
Collapse
Affiliation(s)
- Mario I Vega
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología 'Dr Daniel Méndez Hernández' Centro Médico 'La Raza', México.
| | | | | | | | | | | | | |
Collapse
|
22
|
Arcidiacono S, Butler MM, Mello CM. A rapid selective extraction procedure for the outer membrane protein (OmpF) from Escherichia coli. Protein Expr Purif 2002; 25:134-7. [PMID: 12071708 DOI: 10.1006/prep.2002.1619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porins are essential pore-forming proteins found in the outer membrane of several gram-negative bacteria. Investigating the relationships between molecular structure and function involves an extremely time-consuming and labor-intensive purification procedure. We report a method for rapid extraction of the outer membrane protein, OmpF, from freeze-dried Escherichia coli cells using valeric acid, alleviating the effort and time in sample preparation. Extraction results in a highly enriched fraction containing OmpF as 76% of the total protein content. The apparent molecular mass determined by SDS-PAGE mobility was 38,900, similar to that of the monomeric form of OmpF. N-terminal sequencing yielded 23 amino acids with 100% identity to the published OmpF sequence. The trimeric form of OmpF was observed in unheated samples run on SDS-PAGE and analysis of these samples by periodic acid/silver staining revealed the presence of unbound lipopolysaccharides. Furthermore, this method should prove useful for isolating other outer membrane proteins.
Collapse
Affiliation(s)
- Steven Arcidiacono
- U.S. Army Soldier Biological Chemical Command, Natick Soldier Center, Kansas Street, Natick, Massachusetts 01760, USA
| | | | | |
Collapse
|