1
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
2
|
Ferrarini MG, Dell’Aglio E, Vallier A, Balmand S, Vincent-Monégat C, Hughes S, Gillet B, Parisot N, Zaidman-Rémy A, Vieira C, Heddi A, Rebollo R. Efficient compartmentalization in insect bacteriomes protects symbiotic bacteria from host immune system. MICROBIOME 2022; 10:156. [PMID: 36163269 PMCID: PMC9513942 DOI: 10.1186/s40168-022-01334-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Many insects house symbiotic intracellular bacteria (endosymbionts) that provide them with essential nutrients, thus promoting the usage of nutrient-poor habitats. Endosymbiont seclusion within host specialized cells, called bacteriocytes, often organized in a dedicated organ, the bacteriome, is crucial in protecting them from host immune defenses while avoiding chronic host immune activation. Previous evidence obtained in the cereal weevil Sitophilus oryzae has shown that bacteriome immunity is activated against invading pathogens, suggesting endosymbionts might be targeted and impacted by immune effectors during an immune challenge. To pinpoint any molecular determinants associated with such challenges, we conducted a dual transcriptomic analysis of S. oryzae's bacteriome subjected to immunogenic peptidoglycan fragments. RESULTS We show that upon immune challenge, the bacteriome actively participates in the innate immune response via induction of antimicrobial peptides (AMPs). Surprisingly, endosymbionts do not undergo any transcriptomic changes, indicating that this potential threat goes unnoticed. Immunohistochemistry showed that TCT-induced AMPs are located outside the bacteriome, excluding direct contact with the endosymbionts. CONCLUSIONS This work demonstrates that endosymbiont protection during an immune challenge is mainly achieved by efficient confinement within bacteriomes, which provides physical separation between host systemic response and endosymbionts. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Elisa Dell’Aglio
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Séverine Balmand
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Sandrine Hughes
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Benjamin Gillet
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| |
Collapse
|
3
|
Bustamante-Brito R, Vera-Ponce de León A, Rosenblueth M, Martínez-Romero JC, Martínez-Romero E. Metatranscriptomic Analysis of the Bacterial Symbiont Dactylopiibacterium carminicum from the Carmine Cochineal Dactylopius coccus (Hemiptera: Coccoidea: Dactylopiidae). Life (Basel) 2019; 9:life9010004. [PMID: 30609847 PMCID: PMC6463064 DOI: 10.3390/life9010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation.
Collapse
Affiliation(s)
- Rafael Bustamante-Brito
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Arturo Vera-Ponce de León
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
- Department of Ecology, Evolution and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Julio César Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
4
|
Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, Weiss BL, Aksoy S. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proc Biol Sci 2017; 284:rspb.2017.0360. [PMID: 28659447 PMCID: PMC5489720 DOI: 10.1098/rspb.2017.0360] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
Insects with restricted diets rely on obligate microbes to fulfil nutritional requirements essential for biological function. Tsetse flies, vectors of African trypanosome parasites, feed exclusively on vertebrate blood and harbour the obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia, tsetse are unable to reproduce. These symbionts are sheltered within specialized cells (bacteriocytes) that form the midgut-associated bacteriome organ. To decipher the core functions of this symbiosis essential for tsetse's survival, we performed dual-RNA-seq analysis of the bacteriome, coupled with metabolomic analysis of bacteriome and haemolymph collected from normal and symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory peptidoglycan recognition protein (pgrp-lb) that protects Wigglesworthia, and a multivitamin transporter (smvt) that can aid in nutrient dissemination. Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their translational/transport machinery and biosynthesize an abundance of B vitamins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement the host's nutritionally deficient diet. The absence of Wigglesworthia's contributions disrupts multiple metabolic pathways impacting carbohydrate and amino acid metabolism. These disruptions affect the dependent downstream processes of nucleotide biosynthesis and metabolism and biosynthesis of S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental knowledge of the symbiotic dialogue highlights new biological targets for the development of innovative vector control methods.
Collapse
Affiliation(s)
- XiaoLi Bing
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Geoffrey M Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Anna Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Homalodisca vitripennis) Reveal Differential Gene Expression in Bacteria Occupying Multiple Host Organs. G3-GENES GENOMES GENETICS 2017; 7:3073-3082. [PMID: 28705905 PMCID: PMC5592932 DOI: 10.1534/g3.117.044255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The agricultural pest known as the glassy-winged sharpshooter (GWSS) or Homalodisca vitripennis (Hemiptera: Cicadellidae) harbors two bacterial symbionts, “Candidatus Sulcia muelleri” and “Ca. Baumannia cicadellinicola,” which provide the 10 essential amino acids (EAAs) that are limited in the host plant-sap diet. Although they differ in origin and symbiotic age, both bacteria have experienced extensive genome degradation resulting from their ancient restriction to specialized host organs (bacteriomes) that provide cellular support and ensure vertical transmission. GWSS bacteriomes are of different origins and distinctly colored red and yellow. While Sulcia occupies the yellow bacteriome, Baumannia inhabits both. Aside from genomic predictions, little is currently known about the cellular functions of these bacterial symbionts, particularly whether Baumannia in different bacteriomes perform different roles in the symbiosis. To address these questions, we conducted a replicated, strand-specific RNA-seq experiment to assay global gene expression patterns in Sulcia and Baumannia. Despite differences in genomic capabilities, the symbionts exhibit similar profiles of their most highly expressed genes, including those involved in nutrition synthesis and protein stability (chaperonins dnaK and groESL) that likely aid impaired proteins. Baumannia populations in separate bacteriomes differentially express genes enriched in essential nutrient synthesis, including EAAs (histidine and methionine) and B vitamins (biotin and thiamine). Patterns of differential gene expression further reveal complexity in methionine synthesis. Baumannia’s capability to differentially express genes is unusual, as ancient symbionts lose the capability to independently regulate transcription. Combined with previous microscopy, our results suggest that the GWSS may rely on distinct Baumannia populations for essential nutrition and vertical transmission.
Collapse
|
6
|
Medina Munoz M, Pollio AR, White HL, Rio RV. Into the Wild: Parallel Transcriptomics of the Tsetse-Wigglesworthia Mutualism within Kenyan Populations. Genome Biol Evol 2017; 9:2276-2291. [PMID: 28934375 PMCID: PMC5601960 DOI: 10.1093/gbe/evx175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) have medical significance as the obligate vectors of African trypanosomes. In addition, tsetse harbor a simple gut microbiota. A predominant gut microbiota member, the Gammaproteobacterium Wigglesworthia spp., has coevolved with tsetse for a significant portion of Glossina radiation proving critical to tsetse fitness. Although multiple roles have been described for Wigglesworthia within colony flies, little research has been dedicated towards functional characterization within wild tsetse. Here, dual RNA-Seq was performed to characterize the tsetse-Wigglesworthia symbiosis within flies captured in Nguruman, Kenya. A significant correlation in Gene Ontology (GO) distribution between tsetse and Wigglesworthia was observed, with homogeneous enrichment in metabolic and transport categories, likely supporting a hallmark of the symbiosis-bidirectional metabolic exchange. Within field flies, highly transcribed Wigglesworthia loci included those involved in B vitamin synthesis and in substrate translocation, including amino acid transporters and multidrug efflux pumps, providing a molecular means for interaction. The universal expression of several Wigglesworthia and G. pallidipes orthologs, putatively involved in nutrient provisioning and resource allocation, was confirmed in sister tsetse species. These transcriptional profiles varied through host age and mating status likely addressing varying symbiont demands and also confirming their global importance within Glossina. This study, not only supports symbiont nutrient provisioning roles, but also serves as a foundation for insight into novel roles and molecular mechanisms associated with vector-microbiota interactions. The role of symbiont B vitamin provisioning towards impacting host epigenetics is discussed. Knowledge of vector-microbiota interactions may lead to the discovery of novel targets in pest control.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Adam R. Pollio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Hunter L. White
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Rita V.M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| |
Collapse
|
7
|
Yao J, Saenkham P, Levy J, Ibanez F, Noroy C, Mendoza A, Huot O, Meyer DF, Tamborindeguy C. Interactions "Candidatus Liberibacter solanacearum"-Bactericera cockerelli: Haplotype Effect on Vector Fitness and Gene Expression Analyses. Front Cell Infect Microbiol 2016; 6:62. [PMID: 27376032 PMCID: PMC4899927 DOI: 10.3389/fcimb.2016.00062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/25/2016] [Indexed: 01/18/2023] Open
Abstract
"Candidatus Liberibacter solanacearum" (Lso) has emerged as a serious threat world-wide. Five Lso haplotypes have been identified so far. Haplotypes A and B are present in the Americas and/or New Zealand, where they are vectored to solanaceous plants by the potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). The fastidious nature of these pathogens has hindered the study of the interactions with their eukaryotic hosts (vector and plant). To understand the strategies used by these pathogens to infect their vector, the effects of each Lso haplotype (A or B) on psyllid fitness was investigated, and genome-wide transcriptomic and RT-qPCR analyses were performed to evaluate Lso gene expression in association with its vector. Results showed that psyllids infected with haplotype B had significantly lower percentage of nymphal survival compared to psyllids infected with haplotype A. Although overall gene expression across Lso genome was similar between the two Lso haplotypes, differences in the expression of key candidate genes were found. Among the 16 putative type IV effector genes tested, four of them were differentially expressed between Lso haplotypes, while no differences in gene expression were measured by qPCR or transcriptomic analysis for the rest of the genes. This study provides new information regarding the pathogenesis of Lso haplotypes in their insect vector.
Collapse
Affiliation(s)
- Jianxiu Yao
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Panatda Saenkham
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M UniversityCollege Station, TX, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Christophe Noroy
- CIRAD, UMR CMAEEPetit-Bourg, Guadeloupe, France
- Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
- Université des Antilles, Pointe-à-PitreGuadeloupe, France
| | - Azucena Mendoza
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Ordom Huot
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Damien F. Meyer
- CIRAD, UMR CMAEEPetit-Bourg, Guadeloupe, France
- Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
| | | |
Collapse
|
8
|
Masson F, Zaidman-Rémy A, Heddi A. Antimicrobial peptides and cell processes tracking endosymbiont dynamics. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150298. [PMID: 27160600 PMCID: PMC4874395 DOI: 10.1098/rstb.2015.0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
Many insects sustain long-term relationships with intracellular symbiotic bacteria that provide them with essential nutrients. Such endosymbiotic relationships likely emerged from ancestral infections of the host by free-living bacteria, the genomes of which experience drastic gene losses and rearrangements during the host-symbiont coevolution. While it is well documented that endosymbiont genome shrinkage results in the loss of bacterial virulence genes, whether and how the host immune system evolves towards the tolerance and control of bacterial partners remains elusive. Remarkably, many insects rely on a 'compartmentalization strategy' that consists in secluding endosymbionts within specialized host cells, the bacteriocytes, thus preventing direct symbiont contact with the host systemic immune system. In this review, we compile recent advances in the understanding of the bacteriocyte immune and cellular regulators involved in endosymbiont maintenance and control. We focus on the cereal weevils Sitophilus spp., in which bacteriocytes form bacteriome organs that strikingly evolve in structure and number according to insect development and physiological needs. We discuss how weevils track endosymbiont dynamics through at least two mechanisms: (i) a bacteriome local antimicrobial peptide synthesis that regulates endosymbiont cell cytokinesis and helps to maintain a homeostatic state within bacteriocytes and (ii) some cellular processes such as apoptosis and autophagy which adjust endosymbiont load to the host developmental requirements, hence ensuring a fine-tuned integration of symbiosis costs and benefits.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Florent Masson
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, 69621 Villeurbanne, France
| | - Anna Zaidman-Rémy
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, 69621 Villeurbanne, France
| | - Abdelaziz Heddi
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, 69621 Villeurbanne, France
| |
Collapse
|
9
|
A Tale of Transmission: Aeromonas veronii Activity within Leech-Exuded Mucus. Appl Environ Microbiol 2016; 82:2644-55. [PMID: 26896136 DOI: 10.1128/aem.00185-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/16/2016] [Indexed: 11/20/2022] Open
Abstract
Transmission, critical to the establishment and persistence of host-associated microbiotas, also exposes symbionts to new environmental conditions. With horizontal transmission, these different conditions represent major lifestyle shifts. Yet genome-wide analyses of how microbes adjust their transcriptomes toward these dramatic shifts remain understudied. Here, we provide a comprehensive and comparative analysis of the global transcriptional profiles of a symbiont as it shifts between lifestyles during transmission. The gammaproteobacterium Aeromonas veronii is transmitted from the gut of the medicinal leech to other hosts via host mucosal castings, yet A. veronii can also transition from mucosal habitancy to a free-living lifestyle. These three lifestyles are characterized by distinct physiological constraints and consequently lifestyle-specific changes in the expression of stress-response genes. Mucus-bound A. veronii had the greatest expression in terms of both the number of loci and levels of transcription of stress-response mechanisms. However, these bacteria are still capable of proliferating within the mucus, suggesting the availability of nutrients within this environment. We found that A. veronii alters transcription of loci in a synthetic pathway that obtains and incorporates N-acetylglucosamine (NAG; a major component of mucus) into the bacterial cell wall, enabling proliferation. Our results demonstrate that symbionts undergo dramatic local adaptation, demonstrated by widespread transcriptional changes, throughout the process of transmission that allows them to thrive while they encounter new environments which further shape their ecology and evolution.
Collapse
|
10
|
Masson F, Vallier A, Vigneron A, Balmand S, Vincent-Monégat C, Zaidman-Rémy A, Heddi A. Systemic infection generates a local-like immune response of the bacteriome organ in insect symbiosis. J Innate Immun 2015; 7:290-301. [PMID: 25632977 DOI: 10.1159/000368928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/07/2014] [Indexed: 01/29/2023] Open
Abstract
Endosymbiosis is common in insects thriving in nutritionally unbalanced habitats. The cereal weevil, Sitophilus oryzae, houses Sodalis pierantonius, a Gram-negative intracellular symbiotic bacterium (endosymbiont), within a dedicated organ called a bacteriome. Recent data have shown that the bacteriome expresses certain immune genes that result in local symbiont tolerance and control. Here, we address the question of whether and how the bacteriome responds to insect infections involving exogenous bacteria. We have established an infection model by challenging weevil larvae with the Gram-negative bacterium Dickeya dadantii. We showed that D. dadantii infects host tissues and triggers a systemic immune response. Gene transcript analysis indicated that the bacteriome is also immune responsive, but it expresses immune effector genes to a lesser extent than the systemic and intestinal responses. Most genes putatively involved in immune pathways remain weakly expressed in the bacteriome following D. dadantii infection. Moreover, quantitative PCR experiments showed that the endosymbiont load is not affected by insect infection or the resulting bacteriome immune activation. Thus, the contained immune effector gene expression in the bacteriome may prevent potentially harmful effects of the immune response on endosymbionts, whilst efficiently protecting them from bacterial intruders.
Collapse
Affiliation(s)
- Florent Masson
- Biologie Fonctionnelle Insectes et Interactions, UMR203 BF2I, INRA, INSA-Lyon, Université de Lyon, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
12
|
Survival and innovation: The role of mutational robustness in evolution. Biochimie 2014; 119:254-61. [PMID: 25447135 DOI: 10.1016/j.biochi.2014.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022]
Abstract
Biological systems are resistant to perturbations caused by the environment and by the intrinsic noise of the system. Robustness to mutations is a particular aspect of robustness in which the phenotype is resistant to genotypic variation. Mutational robustness has been linked to the ability of the system to generate heritable genetic variation (a property known as evolvability). It is known that greater robustness leads to increased evolvability. Therefore, mechanisms that increase mutational robustness fuel evolvability. Two such mechanisms, molecular chaperones and gene duplication, have been credited with enormous importance in generating functional diversity through the increase of system's robustness to mutational insults. However, the way in which such mechanisms regulate robustness remains largely uncharacterized. In this review, I provide evidence in support of the role of molecular chaperones and gene duplication in innovation. Specifically, I present evidence that these mechanisms regulate robustness allowing unstable systems to survive long periods of time, and thus they provide opportunity for other mutations to compensate the destabilizing effects of functionally innovative mutations. The findings reported in this study set new questions with regards to the synergy between robustness mechanisms and how this synergy can alter the adaptive landscape of proteins. The ideas proposed in this article set the ground for future research in the understanding of the role of robustness in evolution.
Collapse
|
13
|
Vigneron A, Masson F, Vallier A, Balmand S, Rey M, Vincent-Monégat C, Aksoy E, Aubailly-Giraud E, Zaidman-Rémy A, Heddi A. Insects Recycle Endosymbionts when the Benefit Is Over. Curr Biol 2014; 24:2267-73. [DOI: 10.1016/j.cub.2014.07.065] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
14
|
Ibanez F, Levy J, Tamborindeguy C. Transcriptome analysis of "Candidatus Liberibacter solanacearum" in its psyllid vector, Bactericera cockerelli. PLoS One 2014; 9:e100955. [PMID: 24992557 PMCID: PMC4081026 DOI: 10.1371/journal.pone.0100955] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
"Candidatus Liberibacter solanacearum" (Lso) is an emergent pathogen of carrots in Europe and solanaceous plants in North and Central America and New Zealand. This bacterium is closely related to other pathogenic Candidatus Liberibacter spp., all vectored by psyllids. In order to understand the molecular interaction of this pathogen and its psyllid vector, Bactericera cockerelli, Illumina sequencing of psyllid harboring Lso was performed to determine if this approach could be used to assess the bacterial transcriptome in this association. Prior to sequencing, psyllid RNA was purified and insect and bacterial rRNA were removed. Mapping of reads to Lso genome revealed that over 92% of the bacterial genes were expressed in the vector, and that the COG categories Translation and Post-translational modification, protein turnover, chaperone functions were the most expressed functional categories. Expression levels of selected Lso genes were confirmed by RT-qPCR. The transcriptomic analysis also helped correct Lso genome annotation by identifying the expression of genes that were not predicted in the genome sequencing effort.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Kupper M, Gupta SK, Feldhaar H, Gross R. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol Lett 2014; 353:1-10. [DOI: 10.1111/1574-6968.12390] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Kupper
- Chair of Microbiology; Biocenter; University of Würzburg; Würzburg Germany
| | - Shishir K. Gupta
- Chair of Microbiology; Biocenter; University of Würzburg; Würzburg Germany
- Chair of Bioinformatics; Biocenter; University of Würzburg; Würzburg Germany
| | - Heike Feldhaar
- Animal Ecology I; Bayreuth Center for Environment and Ecology Research (BayCEER); University of Bayreuth; Bayreuth Germany
| | - Roy Gross
- Chair of Microbiology; Biocenter; University of Würzburg; Würzburg Germany
| |
Collapse
|
16
|
Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 2014; 6:76-93. [PMID: 24407854 PMCID: PMC3914690 DOI: 10.1093/gbe/evt210] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association.
Collapse
Affiliation(s)
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | | | | - Cindy Hamil
- Department of Human Genetics, University of Utah
| | - Alex Aoyagi
- Department of Human Genetics, University of Utah
| | - Brett Duval
- Department of Human Genetics, University of Utah
| | | | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Agnès Vallier
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | | | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | | | - Abdelaziz Heddi
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | - Colin Dale
- Department of Biology, University of Utah
| |
Collapse
|
17
|
Login FH, Heddi A. Insect immune system maintains long-term resident bacteria through a local response. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:232-239. [PMID: 22771302 DOI: 10.1016/j.jinsphys.2012.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/23/2012] [Accepted: 06/27/2012] [Indexed: 05/27/2023]
Abstract
Long-term associations between bacteria and animals are widely represented in nature and play an important role in animal adaptation and evolution. In insects thriving on nutritionally unbalanced diets, intracellular symbiotic bacteria (endosymbionts) complement the host nutrients with amino acids and vitamins and interfere with host physiology and reproduction. Endosymbionts permanently infect host cells, called bacteriocytes, which express an adapted local immune response that permits symbiont maintenance and control. Among the immune players in bacteriocytes, the coleoptericin A (ColA) antimicrobial peptide of the cereal weevil, Sitophilus zeamais, was recently found to specifically trigger endosymbionts and to inhibit their cytokinesis, thereby limiting bacterial cell division and dispersion throughout the insect tissues. This review focuses on the biological and evolutionary features of Sitophilus symbiosis, and discusses the possible interactions of ColA with weevil endosymbiont proteins and pathways.
Collapse
Affiliation(s)
- Frédéric H Login
- INSA-Lyon, UMR203 BF2I, INRA, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 ave. Albert Einstein, F-69621 Villeurbanne, France
| | | |
Collapse
|
18
|
Fan Y, Thompson JW, Dubois LG, Moseley MA, Wernegreen JJ. Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes. J Proteome Res 2012. [PMID: 23205679 DOI: 10.1021/pr3007842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 "best flier" peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/μg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned 3 orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses.
Collapse
Affiliation(s)
- Yongliang Fan
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
19
|
Vigneron A, Charif D, Vincent-Monégat C, Vallier A, Gavory F, Wincker P, Heddi A. Host gene response to endosymbiont and pathogen in the cereal weevil Sitophilus oryzae. BMC Microbiol 2012; 12 Suppl 1:S14. [PMID: 22375912 PMCID: PMC3287511 DOI: 10.1186/1471-2180-12-s1-s14] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Insects thriving on nutritionally poor habitats have integrated mutualistic intracellular symbiotic bacteria (endosymbionts) in a bacteria-bearing tissue (the bacteriome) that isolates the endosymbionts and protects them against a host systemic immune response. Whilst the metabolic and physiological features of long-term insect associations have been investigated in detail over the past decades, cellular and immune regulations that determine the host response to endosymbionts and pathogens have attracted interest more recently. Results To investigate bacteriome cellular specificities and weevil immune responses to bacteria, we have constructed and sequenced 7 cDNA libraries from Sitophilus oryzae whole larvae and bacteriomes. Bioinformatic analysis of 26,886 ESTs led to the generation of 8,941 weevil unigenes. Based on in silico analysis and on the examination of genes involved in the cellular pathways of potential interest to intracellular symbiosis (i.e. cell growth and apoptosis, autophagy, immunity), we have selected and analyzed 29 genes using qRT-PCR, taking into consideration bacteriome specificity and symbiosis impact on the host response to pathogens. We show that the bacteriome tissue accumulates transcripts from genes involved in cellular development and survival, such as the apoptotic inhibitors iap2 and iap3, and endosomal fusion and trafficking, such as Rab7, Hrs, and SNARE. As regards our investigation into immunity, we first strengthen the bacteriome immunomodulation previously reported in S. zeamais. We show that the sarcotoxin, the c-type lysozyme, and the wpgrp2 genes are downregulated in the S. oryzae bacteriome, when compared to aposymbiotic insects and insects challenged with E. coli. Secondly, transcript level comparison between symbiotic and aposymbiotic larvae provides evidence that the immune systemic response to pathogens is decreased in symbiotic insects, as shown by the relatively high expression of wpgrp2, wpgrp3, coleoptericin-B, diptericin, and sarcotoxin genes in aposymbiotic insects. Conclusions Library sequencing significantly increased the number of unigenes, allowing for improved functional and genetic investigations in the cereal weevil S. oryzae. Transcriptomic analyses support selective and local immune gene expression in the bacteriome tissue and uncover cellular pathways that are of potential interest to bacteriocyte survival and homeostasis. Bacterial challenge experiments have revealed that the systemic immune response would be less induced in a symbiotic insect, thus highlighting new perspectives on host immunity in long-term invertebrate co-evolutionary associations.
Collapse
|
20
|
2-D difference gel electrophoresis approach to assess protein expression profiles in Bathymodiolus azoricus from Mid-Atlantic Ridge hydrothermal vents. J Proteomics 2011; 74:2909-19. [DOI: 10.1016/j.jprot.2011.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 12/20/2022]
|
21
|
Login FH, Balmand S, Vallier A, Vincent-Monégat C, Vigneron A, Weiss-Gayet M, Rochat D, Heddi A. Antimicrobial peptides keep insect endosymbionts under control. Science 2011; 334:362-5. [PMID: 22021855 DOI: 10.1126/science.1209728] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.
Collapse
Affiliation(s)
- Frédéric H Login
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pérez-Brocal V, Latorre A, Moya A. Symbionts and pathogens: what is the difference? Curr Top Microbiol Immunol 2011; 358:215-43. [PMID: 22076025 DOI: 10.1007/82_2011_190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ecological relationships that organisms establish with others can be considered as broad and diverse as the forms of life that inhabit and interact in our planet. Those interactions can be considered as a continuum spectrum, ranging from beneficial to detrimental outcomes. However, this picture has revealed as more complex and dynamic than previously thought, involving not only factors that affect the two or more members that interact, but also external forces, with chance playing a crucial role in this interplay. Thus, defining a particular symbiont as mutualist or pathogen in an exclusive way, based on simple rules of classification is increasingly challenging if not unfeasible, since new methodologies are providing more evidences that depict exceptions, reversions and transitions within either side of this continuum, especially evident at early stages of symbiotic associations. This imposes a wider and more dynamic view of a complex landscape of interactions.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain.
| | | | | |
Collapse
|
23
|
|
24
|
Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol 2010; 47:608-18. [DOI: 10.1016/j.fgb.2010.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/26/2010] [Accepted: 03/08/2010] [Indexed: 11/27/2022]
|
25
|
Abstract
The perpetuation of symbioses through host generations relies on symbiont transmission. Horizontally transmitted symbionts are taken up from the environment anew by each host generation, and vertically transmitted symbionts are most often transferred through the female germ line. Mixed modes also exist. In this Review we describe the journey of symbionts from the initial contact to their final residence. We provide an overview of the molecular mechanisms that mediate symbiont attraction and accumulation, interpartner recognition and selection, as well as symbiont confrontation with the host immune system. We also discuss how the two main transmission modes shape the evolution of the symbiotic partners.
Collapse
Affiliation(s)
- Monika Bright
- University of Vienna, Department of Marine Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | | |
Collapse
|
26
|
Gil R, Latorre A, Moya A. Evolution of Prokaryote-Animal Symbiosis from a Genomics Perspective. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Wernegreen JJ, Wheeler DE. Remaining flexible in old alliances: functional plasticity in constrained mutualisms. DNA Cell Biol 2009; 28:371-82. [PMID: 19435425 PMCID: PMC2905307 DOI: 10.1089/dna.2009.0872] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/12/2022] Open
Abstract
Central to any beneficial interaction is the capacity of partners to detect and respond to significant changes in the other. Recent studies of microbial mutualists show their close integration with host development, immune responses, and acclimation to a dynamic external environment. While the significance of microbial players is broadly appreciated, we are just beginning to understand the genetic, ecological, and physiological mechanisms that generate variation in symbiont functions, broadly termed "symbiont plasticity" here. Some possible mechanisms include shifts in symbiont community composition, genetic changes via DNA acquisition, gene expression fluctuations, and variation in symbiont densities. In this review, we examine mechanisms for plasticity in the exceptionally stable mutualisms between insects and bacterial endosymbionts. Despite the severe ecological and genomic constraints imposed by their specialized lifestyle, these bacteria retain the capacity to modulate functions depending on the particular requirements of the host. Focusing on the mutualism between Blochmannia and ants, we discuss the roles of gene expression fluctuations and shifts in bacterial densities in generating symbiont plasticity. This symbiont variation is best understood by considering ant colony as the host superorganism. In this eusocial host, the bacteria meet the needs of the colony and not necessarily the individual ants that house them.
Collapse
|
28
|
Sánchez MS, Hastings A. Uniform vertical transmission and selection in a host–symbiont system. Non-random symbiont distribution generates apparent differential selection. J Theor Biol 2003; 225:517-30. [PMID: 14615211 DOI: 10.1016/s0022-5193(03)00303-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigate the survival, prevalence, and distribution of a symbiont in its host population when the forces of vertical transmission (beta) and symbiont-induced selection (s) are uniform (invariant across host genotypes). We use host-symbiont disequilibria to quantify the role played by non-random associations between host genotypes and the symbiont in altering host genetic structure. Results show a larger part of the parameter space permits symbiont survival under mutualism (beta>/=0.25) than parasitism (beta>0.5). The nonlinear interaction between beta and s determines symbiont survival and prevalence at equilibrium; initial symbiont prevalence is a factor only in a small number of parameter combinations. The symbiont's non-random distribution generates apparent differential selection, when selective differences across host genotypes and alleles exist under uniform selection. The direction of change in host allele frequencies is determined exclusively by the signs of s and the allelic disequilibrium. Disequilibria cannot be created or maintained, and heterozygote disequilibrium changes sign in a greater number of runs and at higher magnitudes than homozygote disequilibria. This investigation increases our understanding of the interactions between vertical transmission and selection, and their effect on the coevolutionary dynamics and final states of interacting species under different selection regimes.
Collapse
Affiliation(s)
- María S Sánchez
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
29
|
|
30
|
Abstract
Many insect species rely on intracellular bacterial symbionts for their viability and fecundity. Large-scale DNA-sequence analyses are revealing the forces that shape the evolution of these bacterial associates and the genetic basis of their specialization to an intracellular lifestyle. The full genome sequences of two obligate mutualists, Buchnera aphidicola of aphids and Wigglesworthia glossinidia of tsetse flies, reveal substantial gene loss and an integration of host and symbiont metabolic functions. Further genomic comparisons should reveal the generality of these features among bacterial mutualists and the extent to which they are shared with other intracellular bacteria, including obligate pathogens.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
| |
Collapse
|
31
|
Haines LR, Haddow JD, Aksoy S, Gooding RH, Pearson TW. The major protein in the midgut of teneral Glossina morsitans morsitans is a molecular chaperone from the endosymbiotic bacterium Wigglesworthia glossinidia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1429-1438. [PMID: 12530210 DOI: 10.1016/s0965-1748(02)00063-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecules in the midgut of the tsetse fly (Diptera: Glossinidiae) are thought to play an important role in the life cycle of African trypanosomes by influencing their initial establishment in the midgut and subsequent differentiation events that ultimately affect parasite transmission. It is thus important to determine the molecular composition of the tsetse midgut to aid in understanding disease transmission by these medically important insect vectors. Here, we report that the most abundant protein in the midguts of teneral (unfed) Glossina morsitans morsitans is a 60 kDa molecular chaperone of bacterial origin. Two species of symbiotic bacteria reside in the tsetse midgut, Sodalis glossinidius and Wigglesworthia glossinidia. To determine the exact origin of the 60 kDa molecule, a protein microchemical approach involving two-dimensional (2-D) gel electrophoresis and mass spectrometry was used. Peptide mass maps were compared to virtual peptide maps predicted for S. glossinidius and W. glossinidia 60 kDa chaperone sequences. Four signature peptides were identified, revealing that the source of the chaperone was W. glossinidia. Comparative 2-D gel electrophoresis and immunoblotting further revealed that this protein was localized to the bacteriome and not the distal portion of the tsetse midgut. The possible function of this highly abundant endosymbiont chaperone in the tsetse midgut is discussed.
Collapse
Affiliation(s)
- L R Haines
- Department of Biochemistry and Microbiology, Box 3055, Petch Building, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | | | | | | | | |
Collapse
|
32
|
Fares MA, Barrio E, Sabater-Muñoz B, Moya A. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol 2002; 19:1162-1170. [PMID: 12082135 DOI: 10.1093/oxfordjournals.molbev.a004174] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The heat-shock protein GroEL is a double-ring-structured chaperonin that assists the folding of many newly synthesized proteins in Escherichia coli and the refolding in vitro, with the cochaperonin GroES, of conformationally damaged proteins. This protein is constitutively overexpressed in the primary symbiotic bacteria of many insects, constituting approximately 10% of the total protein in Buchnera, the primary endosymbiont of aphids. In the present study, we perform a maximum likelihood (ML) analysis to unveil the selective constraints in GroEL. In addition, we apply a new statistical approach to determine the patterns of evolution in this highly interesting protein. The main conclusion derived from our analysis is that GroEL has suffered an accelerated rate of amino acid substitution upon the symbiotic integration of Buchnera into the aphids. It is most interesting that the ML analysis of codon substitutions in the different branches of the phylogenetic tree strongly supports the action of positive selection in the different lineages of BUCHNERA: Additionally, the new sliding window analysis of the complete groEL sequence reveals different regions of the molecule under the action of positive selection, mainly located in the apical domain, that are important for both peptide and GroES binding.
Collapse
Affiliation(s)
- Mario Ali Fares
- Institut "Cavanilles" de Biodiversitat i Biologia Evolutiva and Department de Genètica, Universitat de València, Spain
| | | | | | | |
Collapse
|
33
|
Fares MA, Ruiz-González MX, Moya A, Elena SF, Barrio E. Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 2002; 417:398. [PMID: 12024205 DOI: 10.1038/417398a] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mario A Fares
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Genètica, Universitat de València, PO Box 22085, 46071 València, Spain
| | | | | | | | | |
Collapse
|
34
|
Jung GH, Ahn TI. Purification and characterization of the GroESLx chaperonins from the symbiotic X-bacteria in Amoeba proteus. Protein Expr Purif 2001; 23:459-67. [PMID: 11722184 DOI: 10.1006/prep.2001.1535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
GroELx and GroESx proteins of symbiotic X-bacteria from Amoeba proteus were overproduced in Escherichia coli transformed with pAJX91 and pUXGPRM, respectively, and their chaperonin functions were assayed. We utilized sigma(70)-dependent specific promoters of groEx in the expression vectors and grew recombinant cells at 37 degrees C to minimize coexpression of host groE of E. coli. For purifying the proteins, we applied the principle of heat stability for GroELx and pI difference for GroESx to minimize copurification with the hosts GroEL and GroES, respectively. After ultracentrifugation in a sucrose density gradient, the yield and purity of GroELx were 56 and 89%, respectively. The yield and purity of GroESx after anion-exchange chromatography were 62 and 91%, respectively. Purified GroELx had an ATPase activity of 53.2 nmol Pi released/min/mg protein at 37 degrees C. The GroESx protein inhibited ATPase activity of GroELx to 60% of the control at a ratio of 1 for GroESx-7mer/GroELx-14mer. GroESLx helped refolding of urea-unfolded rhodanese up to 80% of the native activity at 37 degrees C. By chemical cross-linking analysis, oligomeric properties of GroESx and GroELx were confirmed as GroESx(7) and GroELx(14) in two stacks of GroELx(7). In this study, we developed a method for the purification of GroESLx and demonstrated that their chaperonin function is homologous to GroESL of E. coli.
Collapse
Affiliation(s)
- G H Jung
- School of Biological Sciences, Seoul, 151-742, Korea
| | | |
Collapse
|
35
|
Sánchez MS, Arnold J, Asmussen MA. Symbiont survival and host-symbiont disequilibria under differential vertical transmission. Genetics 2000; 154:1347-65. [PMID: 10757775 PMCID: PMC1460980 DOI: 10.1093/genetics/154.3.1347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interspecific genetic interactions in host-symbiont systems raise intriguing coevolutionary questions and may influence the effectiveness of public health and management policies. Here we present an analytical and numerical investigation of the effects of host genetic heterogeneity in the rate of vertical transmission of a symbiont. We consider the baseline case with a monomorphic symbiont and a single diallelic locus in its diploid host, where vertical transmission is the sole force. Our analysis introduces interspecific disequilibria to quantify nonrandom associations between host genotypes and alleles and symbiont presence/absence. The transient and equilibrium behavior is examined in simulations with randomly generated initial conditions and transmission parameters. Compared to the case where vertical transmission rates are uniform across host genotypes, differential transmission (i) increases average symbiont survival from 50% to almost 60%, (ii) dramatically reduces the minimum average transmission rate for symbiont survival from 0.5 to 0.008, and (iii) readily creates permanent host-symbiont disequilibria de novo, whereas uniform transmission can neither create nor maintain such associations. On average, heterozygotes are slightly more likely to carry and maintain the symbiont in the population and are more randomly associated with the symbiont. Results show that simple evolutionary forces can create substantial nonrandom associations between two species.
Collapse
Affiliation(s)
- M S Sánchez
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
36
|
Heddi A, Grenier AM, Khatchadourian C, Charles H, Nardon P. Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc Natl Acad Sci U S A 1999; 96:6814-9. [PMID: 10359795 PMCID: PMC21998 DOI: 10.1073/pnas.96.12.6814] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 04/05/1999] [Indexed: 11/18/2022] Open
Abstract
Cell physiology in the weevil Sitophilus oryzae is coordinated by three integrated genomes: nuclear, mitochondrial, and the "S. oryzae principal endosymbiont" (SOPE). SOPE, a cytoplasmic bacterium (2 x 10(3) bacteria per specialized bacteriocyte cell and 3 x 10(6) bacteria per weevil) that belongs to the proteobacteria gamma3-subgroup, is present in all weevils studied. We discovered a fourth prokaryotic genome in somatic and germ tissues of 57% of weevil strains of three species, S. oryzae, Sitophilus zeamais, and Sitophilus granarius, distributed worldwide. We assigned this Gram-negative prokaryote to the Wolbachia group (alpha-proteobacteria), on the basis of 16S rDNA sequence and fluorescence in situ DNA-RNA hybridization (FISH). Both bacteria, SOPE and Wolbachia, were selectively eliminated by combined heat and antibiotic treatments. Study of bacteria involvement in this insect's genetics and physiology revealed that SOPE, which induces the specific differentiation of the bacteriocytes, increases mitochondrial oxidative phosphorylation through the supply of pantothenic acid and riboflavin. Elimination of this gamma3-proteobacterium impairs many physiological traits. By contrast, neither the presence nor the absence of Wolbachia significantly affects the weevil's physiology. Wolbachia, disseminated throughout the body cells, is in particularly high density in the germ cells, where it causes nucleocytoplasmic incompatibility. The coexistence of two distinct types of intracellular proteobacteria at different levels of symbiont integration in insects illustrates the genetic complexity of animal tissue. Furthermore, evolutionary timing can be inferred: first nucleocytoplasm, then mitochondria, then SOPE, and finally Wolbachia. Symbiogenesis, the genetic integration of long-term associated members of different species, in the weevil appears to be a mechanism of speciation (with Wolbachia) and provides a means for animals to acquire new genes that permit better adaptation to the environment (with SOPE).
Collapse
Affiliation(s)
- A Heddi
- Laboratoire de Biologie Appliquée, Institut National des Sciences Appliquées-Institut National de la Recherche Agronomique Unité Associée 203, France
| | | | | | | | | |
Collapse
|