1
|
Buck E, Lee S, Stone LS, Cerruti M. Protein Adsorption on Surfaces Functionalized with COOH Groups Promotes Anti-inflammatory Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7021-7036. [PMID: 33539069 DOI: 10.1021/acsami.0c16509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Implants can induce a foreign body reaction that leads to chronic inflammation and fibrosis in the surrounding tissue. Macrophages help detect the foreign material, play a role in the inflammatory response, and may promote fibrosis instead of the desired tissue regeneration around implants. Implant surface properties impact macrophage responses by changing the nature of the adsorbed protein layer, but conflicting studies highlight the complexity of this relationship. In this study, the effect of surface chemistry on macrophage behavior was investigated with poly(styrene) surfaces containing common functional groups at similar surface densities. The protein layer was characterized to identify the proteins that adsorbed on the surfaces from the medium and the proteins secreted onto the surfaces by adherent macrophages. Of the surface chemistries studied, carboxylic acid (COOH) groups promoted anti-inflammatory responses from unstimulated macrophages and did not exacerbate inflammation upon stimulation. These surfaces also enhanced the adsorption of proteins involved in integrin signaling and promoted the secretion of proteins related to angiogenesis, integrin signaling, and cytokine signaling, which have been previously associated with improved biomaterial integration. Therefore, this study suggests that surface modification with COOH groups may help improve the integration of implants in the body by enhancing anti-inflammatory macrophage responses through altered protein adsorption.
Collapse
Affiliation(s)
- Emily Buck
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Seunghwan Lee
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
2
|
Bohgaki M, Matsumoto M, Atsumi T, Kondo T, Yasuda S, Horita T, Nakayama KI, Okumura F, Hatakeyama S, Koike T. Plasma gelsolin facilitates interaction between β2 glycoprotein I and α5β1 integrin. J Cell Mol Med 2011; 15:141-51. [PMID: 19840195 PMCID: PMC3822501 DOI: 10.1111/j.1582-4934.2009.00940.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antiphospholipid syndrome (APS) is characterized by thrombosis and the presence of antiphospholipid antibodies (aPL) that directly recognizes plasma β2-glycoprotein I (β2GPI). Tissue factor (TF), the major initiator of the extrinsic coagulation system, is induced on monocytes by aPL in vitro, explaining in part the pathophysiology in APS. We previously reported that the mitogen-activated protein kinase (MAPK) pathway plays an important role in aPL-induced TF expression on monocytes. In this study, we identified plasma gelsolin as a protein associated with β2GPI by using immunoaffinity chromatography and mass spectrometric analysis. An in vivo binding assay showed that endogenous β2GPI interacts with plasma gelsolin, which binds to integrin a5β1 through fibronectin. The tethering of β2GPI to monoclonal anti-β2GPI autoantibody on the cell surface was enhanced in the presence of plasma gelsolin. Immunoblot analysis demonstrated that p38 MAPK protein was phosphorylated by monoclonal anti-β2GPI antibody treatment, and its phosphorylation was attenuated in the presence of anti-integrin a5β1 antibody. Furthermore, focal adhesion kinase, a downstream molecule of the fibronectin-integrin signalling pathway, was phosphorylated by anti-β2GPI antibody treatment. These results indicate that molecules including gelsolin and integrin are involved in the anti-β2GPI antibody-induced MAPK pathway on monocytes and that integrin is a possible therapeutic target to modify a prothrombotic state in patients with APS.
Collapse
Affiliation(s)
- Miyuki Bohgaki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Houard X, Leclercq A, Fontaine V, Coutard M, Martin-Ventura JL, Ho-Tin-Noé B, Touat Z, Meilhac O, Michel JB. Retention and Activation of Blood-Borne Proteases in the Arterial Wall. J Am Coll Cardiol 2006. [DOI: 10.1016/j.jacc.2006.04.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Abstract
Exciting studies involving the molecular regulation of lymphangiogenesis in lymphatic-associated disorders (e.g., wound healing, lymphedema and tumor metastasis) have focused renewed attention on the intrinsic relationship between lymphatic endothelial cells (LECs) and extracellular matrix (ECM) microenvironment. ECM molecules and remodeling events play a key role in regulating lymphangiogenesis, and the "functionality"-relating molecules, especially hyaluronan, integrins, reelin, IL-7, and matrix metalloproteinases, provide the most fundamental and critical prerequisite for LEC growth, migration, tube formation, and survival, although lymphangiogenesis is directly or/and indirectly controlled by VEGF-C/-D/VEGFR- 3- Prox-1-, Syk/SLP76-, podoplanin/Ang-2/Nrp-2-, FOXC2-, and other signaling pathways in embryonic and pathological processes. New knowledge regarding the differentiation of initial lymphatics should enable improvements in understanding of a variety of cytokines, chemokines, and other factors. The lymphatic colocalization with histochemical staining by using the novel molecular markers (e.g., LYVE-1), along with subsequent injection technique with ferritin or some tracer, will reveal functional and structural features of newly formed and preexisting lymphatics. Growing recognition of the multiple functions of ECM and LEC molecules for important physiological and pathological events may be helpful in identifying the crucial changes in tissues subjected to lymph circulation and ultimately in the search for rational therapeutic approaches to prevent lymphatic-associated disorders.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Department of Anatomy, Biology and Medicine, Oita University Faculty of Medicine, Oita, Japan.
| |
Collapse
|
5
|
Geutskens SB, Homo-Delarche F, Pleau JM, Durant S, Drexhage HA, Savino W. Extracellular matrix distribution and islet morphology in the early postnatal pancreas: anomalies in the non-obese diabetic mouse. Cell Tissue Res 2004; 318:579-89. [PMID: 15480796 DOI: 10.1007/s00441-004-0989-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
Previously, we reported elevated numbers of macrophages in the pancreas of NOD mice, a spontaneous animal model for T1D, during the early postnatal period. Extracellular matrix plays an important role in the tissue trafficking and retention of macrophages as well as in postnatal pancreas development. Therefore, we have examined the expression and distribution of laminin and fibronectin, two major extracellular matrix proteins and their corresponding integrin receptors, in the pre-weaning pancreases of NOD mice and control mouse strains. In addition, we have characterized the pancreas morphology during this period, since the morphology of the pre-weaning pancreas before the onset of lymphocytic peri-insulitis, when the pancreas is still subject to developmental changes, has been poorly documented. We show that laminin labeling is mainly associated with exocrine tissue, whereas fibronectin labeling was mostly localized at the islet-ductal pole, islet periphery and in intralobular septa. Moreover, the protein expression level of fibronectin was increased in NOD pancreases at the early stage of postnatal development, as compared to pancreases of C57BL/6 and BALB/c mouse strains. Interestingly, pancreatic macrophages were essentially found at sites of intense fibronectin labeling. The increased fibronectin content in NOD neonatal pancreas coincided with altered islet morphology, histologically reflected by enlarged and irregular shaped islets and increased percentages of total endocrine area as compared to that of control strains. In conclusion, increased levels of the extracellular matrix protein fibronectin were found in the early postnatal NOD pancreas, and this is associated with an enhanced accumulation of macrophages and altered islet morphology.
Collapse
Affiliation(s)
- Sacha Brigitte Geutskens
- Department of Immunology, Erasmus MC, Dr Molewaterplein 50, PO Box 1738, 3015 GE, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
Shive MS, Brodbeck WG, Colton E, Anderson JM. Shear stress and material surface effects on adherent human monocyte apoptosis. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 60:148-58. [PMID: 11835170 DOI: 10.1002/jbm.10035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Monocytes play a critical role as both phagocytes and mediators of inflammatory responses in the prevention of cardiovascular device-related infections. However, persistent infection of these devices still occurs and may be attributed to deleterious cellular alterations resulting from monocyte interactions with a foreign material in an environment of dynamic flow. Thus, the effects of both shear stress and adhesion to material surfaces on human monocyte apoptosis were investigated. A rotating disk system generated physiologically relevant shear stress levels (0-14 dyn/cm(2)), and shear-related apoptosis occurring in adherent monocytes was characterized. Using annexin V analysis, apoptosis of polyurethane-adherent monocytes under shear for 4 h increased to levels >70% with increasing shear in a near-linear fashion (r2 = 0.713). It was qualitatively confirmed using confocal microscopy that filamentous (F)-actin distribution was altered, that DNA fragmentation occurred, and that activated caspases were involved in shear-induced apoptosis. Static studies determined that spontaneous apoptosis was material-dependent over 72 h by demonstrating marked differences between apoptosis of monocytes adherent to a polyurethane compared to an alkyl-modified glass. Treatment with TNF-alpha augmented this material dependency in a dose-dependent fashion over time. F-actin content of TNF-alpha-treated cells decreased to <62% of untreated cells. We conclude that concomitant effects from both material surfaces and dynamic flow mediate human monocyte apoptosis and may have serious implications in the context of implanted cardiovascular device infection.
Collapse
Affiliation(s)
- Matthew S Shive
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
7
|
Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1259-68. [PMID: 11021830 PMCID: PMC1850160 DOI: 10.1016/s0002-9440(10)64641-x] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although apoptosis is a well-recognized phenomenon in chronic atherosclerotic disease, its role in sudden coronary death, in particular, acute plaque rupture is unknown. Culprit lesions from 40 cases of sudden coronary death were evaluated. Cases were divided into two mechanisms of death: ruptured plaques with acute thrombosis (n = 25) and stable plaques with and without healed myocardial infarction (n = 15). Apoptotic cells were identified by staining of fragmented DNA and confirmed in select cases by gold conjugate labeling combined with ultrastructural analysis. Additional studies were performed to examine the expression and activation of two inducers of apoptosis, caspases-1 and -3. Ruptured plaques showed extensive macrophage infiltration of the fibrous cap, in particular at rupture sites contrary to stable lesions, which contained fewer inflammatory cells. Among the culprit lesions, the overall incidence of apoptosis in fibrous caps was significantly greater in ruptured plaques (P < 0.001) and was predominantly localized to the CD68-positive macrophages. Furthermore, apoptosis at plaque rupture sites was more frequent than in areas of intact fibrous cap (P = 0. 028). Plaque rupture sites demonstrated a strong immunoreactivity to caspase-1 within the apoptotic macrophages; staining for caspase-3 was weak. Immunoblot analysis of ruptured plaques demonstrated caspase-1 up-regulation and the presence of its active p20 subunit whereas stable lesions showed only the precursor; nonatherosclerotic control segments were negative for both precursor and active enzyme. These findings demonstrate extensive apoptosis of macrophages limited to the site of plaque rupture. The proteolytic cleavage of caspase-1 in ruptured plaques suggests activation of this apoptotic precursor. Whether macrophage apoptosis is essential to acute plaque rupture or is a response to the rupture itself remains to be determined.
Collapse
|
8
|
Rouzaut A, Subirá ML, de Miguel C, Domingo-de-Miguel E, González A, Santiago E, López-Moratalla N. Co-expression of inducible nitric oxide synthase and arginases in different human monocyte subsets. Apoptosis regulated by endogenous NO. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:319-33. [PMID: 10556586 DOI: 10.1016/s0167-4889(99)00106-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human monocyte subsets, isolated from cultures of mononuclear cells, or freshly obtained from patients with multiple sclerosis, Graves' disease or pemphigus vulgaris, differed in phenotype, apoptotic features, mRNA levels of arginase II (A-II) and the inducible form of nitric oxide synthase (iNOS). Liver-type arginase I mRNA was present in all subsets. Apoptosis was followed by the expression of T cell intracellular antigen (TIA) and the simultaneous detection of DNA stainability by propidium iodine and annexin V binding. Apoptosis was practically absent both in activated CD14(++)CD33(++)DR(++)CD25(++)CD69(++)CD71(++/+) CD16(-) cells, expressing A-II mRNA and having arginase activity, but not iNOS mRNA, and in not fully mature large CD14(++)CD16(+)CD23(+)DR(++) monocytes, expressing simultaneously both mRNAs and having both enzyme activities. However, differentiated small CD14(+/++)CD16(+)CD69(+)CD25(+/-)CD71(++)CD23(+) DR(++) monocytes, expressing high levels of iNOS mRNA, exhibited apoptotic signs. Amounts of NO synthesised by monocytes co-expressing iNOS and arginase changed with the addition of arginine or an iNOS inhibitor; in that case a correlation of NO production and apoptotic features was observed. Data suggest a regulatory role for endogenous NO in apoptosis of stimulated and differentiated monocytes, and also that iNOS and A-II, when simultaneously present, could control the production of NO as a consequence of their competition for arginine.
Collapse
Affiliation(s)
- A Rouzaut
- Department of Biochemistry, University of Navarra, Apartado 177, 31080, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Integrins are a diverse family of heterodimeric (alphabeta) adhesion receptors recently shown to be concentrated within synapses and involved in the consolidation of long-term potentiation. Whether neuronal types or anatomical systems in the adult rat brain are coded by integrin type was studied in the present experiments by mapping the relative densities of mRNAs for nine alpha and four beta subunits. Expression patterns were markedly different and in some regions complementary. General results and areas of notable labeling were as follows: alpha1-limited neuronal expression, neocortical layer V, hippocampal CA3; alpha3 and alpha5-diffuse neuronal and glial labeling, Purkinje cells, hippocampal stratum pyramidale, locus coeruleus (alpha3); alpha4- discrete limbic regions, olfactory cortical layer II, hippocampal CA2; alpha6-most prominently neuronal, neocortical subplate, endopiriform, subiculum; alpha7-discrete, all neocortical layers, hippocampal granule cells and CA3, cerebellar granule and Purkinje cells, all efferent cranial nerve nuclei; alpha8-discrete neuronal, deep cortex, hippocampal CA1, basolateral amygdala, striatum; alphaV-all cortical layers, striatum, Purkinje cells; beta4-dentate gyrus granule cells; beta5-broadly distributed, neocortex, medial amygdala, cerebellar granule and Purkinje cells, efferent cranial nerve nuclei; alpha2, beta2, and beta3-mRNAs not detected. These results establish that brain subfields express different balances of integrin subunits and thus different integrin receptors. Such variations will determine which matrix proteins are recognized by neurons and the types of intraneuronal signaling generated by matrix binding. They also could generate important differences in synaptic plasticity across brain systems.
Collapse
|
10
|
Carey GB, Chang NS. Cloning and characterization of a transforming growth factor beta 1-induced anti-apoptotic adhesion protein TIF2. Biochem Biophys Res Commun 1998; 249:283-6. [PMID: 9705873 DOI: 10.1006/bbrc.1998.9132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-beta (TGF-beta) antagonizes the cytotoxic function of tumor necrosis factor (TNF). By differential display and library screening, we isolated a murine TIF2 (TGF-beta-induced factor 2) cDNA, encoding a putative 15-kDa membrane adhesion protein, which possesses an RGD sequence at the extracellular region. When TNF-sensitive murine L929 fibroblasts were stably transfected with TIF2 cDNA, these cells significantly resisted TNF killing. In contrast, L929 cells, which stably expressed the TIF2 antisense mRNA, acquired enhanced TNF susceptibility. Calculated EC50 values, i.e., the amount of TNF needed for killing 50% cells, are 10, 55, and 1.5 ng/ml, respectively, for vector control, sense transfectant, and antisense transfectant. TGF-beta 1 rapidly induces TIF2 gene expression (approximately 1 hr), which correlates with time-related acquisition of TNF-resistance in TGF-beta 1-treated L929 cells. Notably, TIF2 gene expression is markedly increased in human breast cancer and lymphoid leukemia cells, compared to normal human cells, suggesting its potential role in cancer development. Together, the anti-apoptotic function of TIF2 is responsible in part for TGF-beta-mediated protection of L929 cells against TNF cytotoxicity.
Collapse
Affiliation(s)
- G B Carey
- Guthrie Research Institute, Laboratory of Molecular Immunology, Guthrie Medical Center, Sayre, Pennsylvania 18840, USA
| | | |
Collapse
|