1
|
Michalska Z, Ostaszewska A, Fularczyk M, Dzierżyńska M, Bielak K, Morytz J, Sieradzan AK, Archacka K, Brzoska E, Rodziewicz-Motowidło S, Ciemerych MA. In Vitro Bioactivity Evaluation of IL-4 and SDF-1 Mimicking Peptides Engineered to Enhance Skeletal Muscle Reconstruction. J Biomed Mater Res A 2025; 113:e37898. [PMID: 40087853 DOI: 10.1002/jbm.a.37898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Skeletal muscle regeneration depends on satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, this process may not be properly executed, and muscle function may be affected. Thus, pro-regenerative actions, such as the use of various factors or cells, are widely tested as a tool to improve muscle regeneration. In the current study, we designed peptides derived from the IL-4 and SDF-1 proteins, namely IL-4-X, IL-4-Y, SDF-1-X, and SDF-1-Y. We showed that these peptides can bind to appropriate receptors and can adopt proper structure in solution. Importantly, we documented, using in vitro culture, that they do not negatively affect the cells that are present and active in skeletal muscles, such as myoblasts and fibroblasts, bone marrow stromal cells, as well as induced pluripotent stem cells, which can serve as a source of myoblasts. The presence of peptides did not affect cell proliferation compared to untreated cells. In vitro culture and differentiation protocols documented that selected IL-4 and SDF-1 peptides increased cell migration and inhibited undesirable adipogenic differentiation. Thus, we proved that these peptides are safe to use in in vivo studies aimed at improving skeletal muscle regeneration.
Collapse
Affiliation(s)
- Zuzanna Michalska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ostaszewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Kacper Bielak
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Justyna Morytz
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam K Sieradzan
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist. Eur J Med Chem 2022; 231:114150. [DOI: 10.1016/j.ejmech.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
3
|
Endogenous Peptide Inhibitors of HIV Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:65-85. [DOI: 10.1007/978-981-16-8702-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Huang LSM, Snyder EY, Schooley RT. Strategies and progress in CXCR4-targeted anti-HIV therapeutic development. Clin Infect Dis 2021; 73:919-924. [PMID: 33624027 DOI: 10.1093/cid/ciab160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
The acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has been a global public health challenge for several decades. The majority of HIV infection is caused by the human immunodeficiency virus type 1 (HIV-1) which enters and infects a host cell via the cell surface proteins of CD4 as the primary receptor, and chemokine receptors CXCR4 or CCR5 as the co-receptor-then undergoing replication using the cell's intracellular machinery. Whereas many drugs targeting CCR5-mediated entry or HIV-1 replication via reverse transcriptase or proteases have long been used clinically, agents targeting CXCR4 are yet to be advanced to clinical application. Here in this review we highlight some of the strategies for and progress made in the discovery of novel small molecules, peptides, and larger molecules that target CXCR4, and their future prospects for translation into the clinic as a new class of anti-HIV therapeutics.
Collapse
Affiliation(s)
- Lina S M Huang
- Center for Innovative Phage Applications and Therapeutics, Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, U.S.A
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, U.S.A.,Sanford Consortium for Regenerative Medicine.,Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla U.S.A
| | - Robert T Schooley
- Center for Innovative Phage Applications and Therapeutics, Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, U.S.A
| |
Collapse
|
5
|
Zhu S, Meng Q, Schooley RT, An J, Xu Y, Huang Z. Structural and Biological Characterizations of Novel High-Affinity Fluorescent Probes with Overlapped and Distinctive Binding Regions on CXCR4. Molecules 2019; 24:molecules24162928. [PMID: 31412600 PMCID: PMC6720714 DOI: 10.3390/molecules24162928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023] Open
Abstract
CXC-type chemokine receptor 4 (CXCR4) is well known as a co-receptor for cellular entry and infection of human immunodeficiency virus type 1 (HIV-1). As an important member of the G protein-coupled receptor (GPCR) family, CXCR4 also mediates a variety of cellular processes and functions, such as cell chemotaxis, proliferation, and calcium signal transductions. Identification and characterization of molecular ligands or probes of CXCR4 have been an intensive area of investigations as such ligands or probes are of significant clinical values for the studies and treatments of HIV-1 infection and other human diseases mediated by the receptor. The crystal structures of CXCR4 in complex with different ligands have revealed two distinctive binding regions or subpockets. Thus, understanding the interactions of diverse ligands with these distinctive CXCR4 binding regions has become vital for elucidating the relationship between binding modes and biological mechanisms of ligand actions. Peptidic CVX15 is the only ligand that has been validated to bind one of these distinctive binding regions (or so called the major subpocket) of CXCR4. Therefore, in this study, we developed an efficient probe system including two high-affinity peptidic fluorescent probes, designated as FITC-CVX15 and FITC-DV1, with the aim of targeting distinctive CXCR4 subpockets. We conducted rational design and chemical characterization of the two CXCR4-specific probes and examined their application in biological experiments including competitive binding assays, flow cytometry analysis, and confocal imaging. Especially these two probes were applied in parallel CXCR4 competitive binding assays to detect and analyze potential binding modes of diverse CXCR4 ligands, together with molecular docking and simulations. Our results have indicated that these peptidic fluorescent probe systems provide novel ligand detecting tools, as well as present a new approach for analyzing distinctive binding modes of diverse CXCR4 ligands.
Collapse
Affiliation(s)
- Siyu Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Qian Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Robert T Schooley
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Jing An
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Yan Xu
- School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China.
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Choi WT, Yang Y, Xu Y, An J. Targeting chemokine receptor CXCR4 for treatment of HIV-1 infection, tumor progression, and metastasis. Curr Top Med Chem 2016; 14:1574-89. [PMID: 25159167 DOI: 10.2174/1568026614666140827143541] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
The chemokine receptor CXCR4 is required for the entry of human immunodeficiency virus type 1 (HIV-1) into target cells and for the development and dissemination of various types of cancers, including gastrointestinal, cutaneous, head and neck, pulmonary, gynecological, genitourinary, neurological, and hematological malignancies. The T-cell (T)-tropic HIV-1 strains use CXCR4 as the entry coreceptor; consequently, multiple CXCR4 antagonistic inhibitors have been developed for the treatment of acquired immune deficiency syndrome (AIDS). However, other potential applications of CXCR4 antagonists have become apparent since its discovery in 1996. In fact, increasing evidence demonstrates that epithelial and hematopoietic tumor cells exploit the interaction between CXCR4 and its natural ligand, stromal cellderived factor (SDF)-1α, which normally regulates leukocyte migration. The CXCR4 and/or SDF-1α expression patterns in tumor cells also determine the sites of metastatic spread. In addition, the activation of CXCR4 by SDF-1α promotes invasion and proliferation of tumor cells, enhances tumor-associated neoangiogenesis, and assists in the degradation of the extracellular matrix and basement membrane. As such, the evaluation of CXCR4 and/or SDF-1α expression levels has a significant prognostic value in various types of malignancies. Several therapeutic challenges remain to be overcome before the use of CXCR4 inhibitors can be translated into clinical practice, but promising preclinical data demonstrate that CXCR4 antagonists can mobilize tumor cells from their protective microenvironments, interfere with their metastatic and tumorigenic potentials, and/or make tumor cells more susceptible to chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
7
|
Mona CE, Besserer-Offroy É, Cabana J, Leduc R, Lavigne P, Heveker N, Marsault É, Escher E. Design, synthesis, and biological evaluation of CXCR4 ligands. Org Biomol Chem 2016; 14:10298-10311. [DOI: 10.1039/c6ob01484d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An amino functionalized analog of the CXCR4 ligand IT1t is of higher affinity and inverse agonistic potency on the CXCR4-CAM receptor N119S than IT1t.
Collapse
Affiliation(s)
- Christine E. Mona
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Jérôme Cabana
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Richard Leduc
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Pierre Lavigne
- Department of Biochemistry
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Nikolaus Heveker
- Department of Biochemistry and Molecular Medicine
- Centre de Recherche Hôpital Sainte-Justine
- Université de Montréal
- Montreal
- Canada
| | - Éric Marsault
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Emanuel Escher
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| |
Collapse
|
8
|
Kuil J, Buckle T, van Leeuwen FWB. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev 2012; 41:5239-61. [PMID: 22743644 DOI: 10.1039/c2cs35085h] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction between the chemokine receptor 4 (CXCR4) and stromal cell-derived factor-1 (SDF-1, also known as CXCL12) is a natural regulatory process in the human body. However, CXCR4 over-expression is also found in diseases such as cancer, where it plays a role in, among others, the metastatic spread. For this reason it is an interesting biomarker for the field of diagnostic oncology, and therefore, it is gaining increasing interest for applications in molecular imaging. Especially "small-molecule" imaging agents based on T140, FC131 and AMD3100 have been extensively studied. SDF-1, antibodies, pepducins and bioluminescence have also been used to visualize CXCR4. In this critical review reported CXCR4 targeting imaging agents are described based on their affinity, specificity and biodistribution. The level wherein CXCR4 is up-regulated in cancer patients and its relation to the different cell lines and animal models used to evaluate the efficacy of the imaging agents is also discussed (221 references).
Collapse
Affiliation(s)
- Joeri Kuil
- Department of Radiology, Interventional Molecular Imaging, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | |
Collapse
|
9
|
Oishi S, Fujii N. Peptide and peptidomimetic ligands for CXC chemokine receptor 4 (CXCR4). Org Biomol Chem 2012; 10:5720-31. [DOI: 10.1039/c2ob25107h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Choi WT, Duggineni S, Xu Y, Huang Z, An J. Drug discovery research targeting the CXC chemokine receptor 4 (CXCR4). J Med Chem 2011; 55:977-94. [PMID: 22085380 DOI: 10.1021/jm200568c] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Won-Tak Choi
- Department of Pathology, The University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | | | | | | |
Collapse
|
11
|
Chevigné A, Fievez V, Schmit JC, Deroo S. Engineering and screening the N-terminus of chemokines for drug discovery. Biochem Pharmacol 2011; 82:1438-56. [DOI: 10.1016/j.bcp.2011.07.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/21/2023]
|
12
|
Choi WT, An J. Biology and clinical relevance of chemokines and chemokine receptors CXCR4 and CCR5 in human diseases. Exp Biol Med (Maywood) 2011; 236:637-47. [PMID: 21565895 DOI: 10.1258/ebm.2011.010389] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemokines and their receptors are implicated in a wide range of human diseases, including acquired immune deficiency syndrome (AIDS). The entry of human immunodeficiency virus type 1 (HIV-1) into a cell is initiated by the interaction of the virus's surface envelope proteins with two cell surface components of the target cell, namely CD4 and a chemokine co-receptor, usually CXCR4 or CCR5. Typical anti-HIV-1 agents include protease and reverse transcriptase inhibitors, but the targets of these agents tend to show rapid mutation rates. As such, strategies based on HIV-1 co-receptors have appeal because they target invariant host determinants. Chemokines and their receptors are also of general interest since they play important roles in numerous physiological and pathological processes in addition to AIDS. Therefore, intensive basic and translational research is ongoing for the dissection of their structure - function relationships in an effort to understand the molecular mechanism of chemokine - receptor interactions and signal transductions across cellular membranes. This paper reviews and discusses recent advances and the translation of new knowledge and discoveries into novel interventional strategies for clinical application.
Collapse
Affiliation(s)
- Won-Tak Choi
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
13
|
Abstract
Highly active antiretroviral therapy (HAART) has led to major declines in morbidity and mortality of HIV-1-infected individuals, but the increasing prevalence of drug-resistant viral isolates, combined with the toxicity and other limitations of current treatments, make the development of new therapies a high priority. As knowledge of viral entry has expanded, this step of the viral life cycle has become a target for novel therapeutic strategies. An emerging group of antiretrovirals, known collectively as entry inhibitors, targets several distinct steps in viral entry including CD4 binding, chemokine receptor engagement and the structural changes in the viral envelope required for fusion between viral and cellular membranes. Many entry inhibitors are in various stages of clinical development, with one already licensed for use. This review will provide an overview of the mechanisms involved in the entry process, highlight promising entry blockers under development and discuss several considerations related to treatment that are unique to this class of antiretroviral drugs.
Collapse
Affiliation(s)
- Brian Tomkowicz
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
14
|
Sachpatzidis A, Benton BK, Manfredi JP, Wang H, Hamilton A, Dohlman HG, Lolis E. Identification of allosteric peptide agonists of CXCR4. J Biol Chem 2003; 278:896-907. [PMID: 12417595 DOI: 10.1074/jbc.m204667200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor CXCR4 is a co-receptor for T-tropic strains of HIV-1. A number of small molecule antagonists of CXCR4 are in development but all are likely to lead to adverse effects due to the physiological function of CXCR4. To prevent these complications, allosteric agonists may be therapeutically useful as adjuvant therapy in combination with small molecule antagonists. A synthetic cDNA library coding for 160,000 different SDF-based peptides was screened for CXCR4 agonist activity in a yeast strain expressing a functional receptor. Peptides that activated CXCR4 in an autocrine manner induced colony formation. Two peptides, designated RSVM and ASLW, were identified as novel agonists that are insensitive to the CXCR4 antagonist AMD3100. In chemotaxis assays using the acute lymphoblastic leukemia cell line CCRF-CEM, RSVM behaves as a partial agonist and ASLW as a superagonist. The superagonist activity of ASLW may be related to its inability to induce receptor internalization. In CCRF-CEM cells, the two peptides are also not inhibited by another CXCR4 antagonist, T140, or the neutralizing monoclonal antibodies 12G5 and 44717.111. These results suggest that alternative agonist-binding sites are present on CXCR4 that could be screened to develop molecules for therapeutic use.
Collapse
Affiliation(s)
- Aristidis Sachpatzidis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Thordsen I, Polzer S, Schreiber M. Infection of cells expressing CXCR4 mutants lacking N-glycosylation at the N-terminal extracellular domain is enhanced for R5X4-dualtropic human immunodeficiency virus type-1. BMC Infect Dis 2002; 2:31. [PMID: 12489987 PMCID: PMC139973 DOI: 10.1186/1471-2334-2-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2002] [Accepted: 12/19/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infection with human immunodeficiency virus type-1 (HIV-1) requires binding of the viral envelope gp120 to CD4 and to the CXCR4 coreceptor. Both, gp120 and CXCR4 are subject to N-glycosylation. Here we investigated the influence of the N-linked glycans g1 and g2 present on CXCR4 for HIV-1 infection. METHODS The two CXCR4 N-glycosylation sites g1 (NYT) and g2 (NVS) were mutated by changing the first or third amino acids N or T/S to Q and A respectively (g1; N11Q or T13A; g2, N176Q or S178A). Human osteosarcoma cells (GHOST) expressing human CD4 and the various CXCR4 glycosylation mutants were tested for infection using NL4-3-based viruses with X4, R5 or R5X4-tropism differing only in the V3 loop region. RESULTS All constructed cell lines expressing the various CXCR4 glycomutants showed similar permissiveness for the X4-monotropic virus and no change in the coreceptor specificity that allows infection of a CCR5-dependent R5-monotropic virus. Interestingly, the removal of glycan g1 significantly enhanced the permissiveness of GHOST cells for the R5X4 dualtropic virus. GHOST cells expressing the CXCR4-g1 or CXCR4-g1/2 mutants were infected at higher rates by the R5X4-dualtropic virus compared to cells expressing CXCR4-wt or CXCR4-g2 coreceptors. CONCLUSION Our present observations underscore a role for glycans present on the CXCR4 coreceptor in the entry process of HIV-1. The data will help to better understand the multifaceted mechanism of HIV infection and the selective forces which drive HIV-1 evolution from mono- to dual-tropism.
Collapse
Affiliation(s)
- Ingo Thordsen
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, 20359 Hamburg, Germany
| | - Svenja Polzer
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, 20359 Hamburg, Germany
| | - Michael Schreiber
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, 20359 Hamburg, Germany
| |
Collapse
|
16
|
Zhou N, Luo Z, Luo J, Fan X, Cayabyab M, Hiraoka M, Liu D, Han X, Pesavento J, Dong CZ, Wang Y, An J, Kaji H, Sodroski JG, Huang Z. Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with D-peptides derived from chemokines. J Biol Chem 2002; 277:17476-85. [PMID: 11880384 DOI: 10.1074/jbc.m202063200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokine receptor CXCR4 plays an important role in the immune system and the cellular entry of human immunodeficiency virus type 1 (HIV-1). To probe the stereospecificity of the CXCR4-ligand interface, d-amino acid peptides derived from natural chemokines, viral macrophage inflammatory protein II (vMIP-II) and stromal cell-derived factor-1alpha (SDF-1alpha), were synthesized and found to compete with (125)I-SDF-1alpha and monoclonal antibody 12G5 binding to CXCR4 with potency and selectivity comparable with or higher than their l-peptide counterparts. This was surprising because of the profoundly different side chain topologies between d- and l-enantiomers, which circular dichroism spectroscopy showed adopt mirror image conformations. Further direct binding experiments using d-peptide labeled with fluorescein (designated as FAM-DV1) demonstrated that d- and l-peptides shared similar or at least overlapping binding site(s) on the CXCR4 receptor. Structure-activity analyses of related peptide analogs of mixed chiralities or containing alanine replacements revealed specific residues at the N-terminal half of the peptides as key binding determinants. Acting as CXCR4 antagonists and with much higher biological stability than l-counterparts, the d-peptides showed significant activity in inhibiting the replication of CXCR4-dependent HIV-1 strains. These results show the remarkable stereochemical flexibility of the CXCR4-peptide interface. Further studies to understand the mechanism of this unusual feature of the CXCR4 binding surface might aid the development of novel CXCR4-binding molecules like the d-peptides that have high affinity and stability.
Collapse
Affiliation(s)
- Naiming Zhou
- Kimmel Cancer Center and the Department of Biochemistry, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou N, Luo Z, Luo J, Liu D, Hall JW, Pomerantz RJ, Huang Z. Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J Biol Chem 2001; 276:42826-33. [PMID: 11551942 DOI: 10.1074/jbc.m106582200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human CXC chemokine receptor 4 (CXCR4) is a receptor for the chemokine stromal cell-derived factor (SDF-1alpha) and a co-receptor for the entry of specific strains of human immunodeficiency virus type I (HIV-1). CXCR4 is also recognized by an antagonistic chemokine, the viral macrophage inflammatory protein II (vMIP-II) encoded by human herpesvirus type VIII. SDF-1alpha or vMIP-II binding to CXCR4 can inhibit HIV-1 entry via this co-receptor. An approach combining protein structural modeling and site-directed mutagenesis was used to probe the structure-function relationship of CXCR4, and interactions with its ligands SDF-1alpha and vMIP-II and HIV-1 envelope protein gp120. Hypothetical three-dimensional structures were proposed by molecular modeling studies of the CXCR4.SDF-1alpha complex, which rationalize extensive biological information on the role of CXCR4 in its interactions with HIV-1 envelope protein gp120. With site-directed mutagenesis, we have identified that the amino acid residues Asp (D20A) and Tyr (Y21A) in the N-terminal domain and the residue Glu (E268A) in extracellular loop 3 (ECL3) are involved in ligand binding, whereas the mutation Y190A in extracellular loop 2 (ECL2) impairs the signaling mediated by SDF-1alpha. As an HIV-1 co-receptor, we found that the N-terminal domain, ECL2, and ECL3 of CXCR4 are involved in HIV-1 entry. These structural and mutational studies provide valuable information regarding the structural basis for CXCR4 activity in chemokine binding and HIV-1 viral entry, and could guide the design of novel targeted inhibitors.
Collapse
Affiliation(s)
- N Zhou
- Kimmel Cancer Center, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Agrawal L, Alkhatib G, Agrawal L. Chemokine receptors: emerging opportunities for new anti-HIV therapies. Expert Opin Ther Targets 2001; 5:303-326. [PMID: 12540267 DOI: 10.1517/14728222.5.3.303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chemokine receptors CCR5 and CXCR4 are G-protein coupled receptors (GPCRs) of the immune system and the major co-receptors required for entry of HIV into CD4(+) target cells. CCR5 is critical for both human immunodeficiency virus (HIV) disease transmission and progression, whereas CXCR4 may be very important in late stages of disease. Additional co-receptors have been shown to function under certain conditions in vitro but evidence of supporting roles in HIV disease is currently lacking. The sheer number of co-receptors potentially used by HIV and the complexity of co-receptors usage are major challenges confronting usage of these molecules as drug development targets. Balanced against this, is a long history of success by the pharmaceutical industry in developing small molecule antagonists for many other classes of GPCRs. In this review, we discuss the current state of understanding of the co-receptor-based antiviral agents designed to block viral entry. The therapeutic potential of this field will be judged from future studies on the efficacy of these novel inhibitors in clinical trials. The data so far obtained from a number of studies point to the potential clinical use of this emerging class of therapeutic agents. Here we review current progress in co-receptor-based antiretroviral drug development and discuss the potential advantages and disadvantages of this approach.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, 1044 W Walnut Street, Room 302, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
19
|
Huang Z. Structural chemistry and therapeutic intervention of protein-protein interactions in immune response, human immunodeficiency virus entry, and apoptosis. Pharmacol Ther 2000; 86:201-15. [PMID: 10882809 DOI: 10.1016/s0163-7258(00)00052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein-protein interactions involved in diverse biological functions are largely unexplored therapeutic targets, and present a major challenge and opportunity for drug design research. Encouraging new approaches to this problem recently have emerged from studies of small molecule regulators of protein-protein complexes. This review outlines the basic concepts for two of these approaches, based on structural and chemical strategies, by illustrating their application in the design of small molecule inhibitors for three biological systems: (1) cell surface molecules CD4 and CD8 involved in immune response, (2) chemokine receptor-ligand interactions implicated in human immunodeficiency virus entry, and (3) B-cell leukemia/lymphoma-2 family proteins essential for regulation of programmed cell death or apoptosis. The design and discovery of these novel reagents provide valuable tools to probe fundamental questions about a particular protein-protein complex, and may lead to a new generation of potential therapeutic agents. Furthermore, these studies suggest a framework for chemical intervention of other protein-protein interactions involved in many pathological processes.
Collapse
Affiliation(s)
- Z Huang
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, 802 BLSB, 233 South 10th Street, Philadelphia, PA 19107 USA.
| |
Collapse
|