1
|
Zhao D, Han X, Huang L, Wang J, Zhang X, Jeon JH, Zhao Q, Dong JT. Transcription factor ZFHX3 regulates calcium influx in mammary epithelial cells in part via the TRPV6 calcium channel. Biochem Biophys Res Commun 2019; 519:366-371. [PMID: 31519324 DOI: 10.1016/j.bbrc.2019.08.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Zinc finger homeobox 3 (ZFHX3) is a transcription factor that regulates multiple cellular processes including cell proliferation, differentiation and neoplastic development. It is also involved in the function of steroid hormones estrogen and progesterone and the peptide hormone prolactin in mammary epithelial cells. In this study, we investigated whether and how ZFHX3 regulates intracellular calcium homeostasis in mammary epithelial cells. We found that ZFHX3 affected both store operated calcium entry and store independent calcium entry (SOCE and SICE). Simultaneously, the expression of the calcium channel TRPV6 was regulated by ZFHX3, as demonstrated by expression analysis and luciferase reporter assay. In cells with knockdown of ZFHX3, calcium entry was partially rescued by the overexpression of wild type but not the pore mutants of TRPV6. In addition, overexpression of TRPV6 promoted differentiation of the MCF10A mammary epithelial cells in three-dimensional culture, which is consistent with our previous findings that ZFHX3 is essential for mammary gland differentiation. These findings suggest that ZFHX3 plays an important role in intracellular calcium homeostasis in mammary epithelial cells, at least in part, by regulating TRPV6.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueying Han
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lili Huang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianpeng Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xi Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, South Korea
| | - Qiang Zhao
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China; Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Li M, Zhang C, Zhong Y, Zhao J. Cellular localization of ATBF1 protein and its functional implication in breast epithelial cells. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Zhao D, Ma G, Zhang X, He Y, Li M, Han X, Fu L, Dong XY, Nagy T, Zhao Q, Fu L, Dong JT. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity. J Biol Chem 2016; 291:12809-12820. [PMID: 27129249 DOI: 10.1074/jbc.m116.719377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic differentiation in mouse mammary glands. At different stages of mammary gland development, Zfhx3 protein was expressed at varying levels, with the highest level at lactation. In the HC11 mouse mammary epithelial cell line, an in vitro model of lactogenesis, knockdown of Zfhx3 attenuated prolactin-induced β-casein expression and morphological changes, indicators of lactogenic differentiation. In mouse mammary tissue, knock-out of Zfhx3 interrupted lactogenesis, resulting in underdeveloped glands with much smaller and fewer alveoli, reduced β-casein expression, accumulation of large cytoplasmic lipid droplets in luminal cells after parturition, and failure in lactation. Mechanistically, Zfhx3 maintained the expression of Prlr (prolactin receptor) and Prlr-Jak2-Stat5 signaling activity, whereas knockdown and knock-out of Zfhx3 in HC11 cells and mammary tissues, respectively, decreased Prlr expression, Stat5 phosphorylation, and the expression of Prlr-Jak2-Stat5 target genes. These findings indicate that Zfhx3 plays an essential role in proper lactogenic development in mammary glands, at least in part by maintaining Prlr expression and Prlr-Jak2-Stat5 signaling activity.
Collapse
Affiliation(s)
- Dan Zhao
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Gui Ma
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolin Zhang
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan He
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mei Li
- the Ningbo Institute of Medical Sciences, Ningbo 315020, China
| | - Xueying Han
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liya Fu
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue-Yuan Dong
- the Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322
| | - Tamas Nagy
- the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, and
| | - Qiang Zhao
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Fu
- the Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Jin-Tang Dong
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China,; the Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322,.
| |
Collapse
|
4
|
Sun X, Fu X, Li J, Xing C, Frierson HF, Wu H, Ding X, Ju T, Cummings RD, Dong JT. Deletion of atbf1/zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia 2014; 16:377-89. [PMID: 24934715 PMCID: PMC4198693 DOI: 10.1016/j.neo.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023] Open
Abstract
The ATBF1/ZFHX3 gene at 16q22 is the second most frequently mutated gene in human prostate cancer and has reduced expression or mislocalization in several types of human tumors. Nonetheless, the hypothesis that ATBF1 has a tumor suppressor function in prostate cancer has not been tested. In this study, we examined the role of ATBF1 in prostatic carcinogenesis by specifically deleting Atbf1 in mouse prostatic epithelial cells. We also examined the effect of Atbf1 deletion on gene expression and signaling pathways in mouse prostates. Histopathologic analyses showed that Atbf1 deficiency caused hyperplasia and mouse prostatic intraepithelial neoplasia (mPIN) primarily in the dorsal prostate but also in other lobes. Hemizygous deletion of Atbf1 also increased the development of hyperplasia and mPIN, indicating a haploinsufficiency of Atbf1. The mPIN lesions expressed luminal cell markers and harbored molecular changes similar to those in human PIN and prostate cancer, including weaker expression of basal cell marker cytokeratin 5 (Ck5), cell adhesion protein E-cadherin, and the smooth muscle layer marker Sma; elevated expression of the oncoproteins phospho-Erk1/2, phospho-Akt and Muc1; and aberrant protein glycosylation. Gene expression profiling revealed a large number of genes that were dysregulated by Atbf1 deletion, particularly those that encode for secretory and cell membrane proteins. The four signaling networks that were most affected by Atbf1 deletion included those centered on Erk1/2 and IGF1, Akt and FSH, NF-κB and progesterone and β-estradiol. These findings provide in vivo evidence that ATBF1 is a tumor suppressor in the prostate, suggest that loss of Atbf1 contributes to tumorigenesis by dysregulating membrane and secretory proteins and multiple signaling pathways, and provide a new animal model for prostate cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, VA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322
| | - Xiaokun Ding
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322.
| |
Collapse
|
5
|
Sun X, Li J, Dong FN, Dong JT. Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. PLoS One 2014; 9:e92746. [PMID: 24651376 PMCID: PMC3961433 DOI: 10.1371/journal.pone.0092746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/24/2014] [Indexed: 11/30/2022] Open
Abstract
ATBF1/ZFHX3 is a large transcription factor that functions in development, tumorigenesis and other biological processes. ATBF1 is normally localized in the nucleus, but is often mislocalized in the cytoplasm in cancer cells. The mechanism underlying the mislocalization of ATBF1 is unknown. In this study, we analyzed the nuclear localization of ATBF1, and found that ectopically expressed ATBF1 formed nuclear body (NB)-like dots in the nucleus, some of which indeed physically associated with promyelocytic leukemia (PML) NBs. We also defined a 3-amino acid motif, KRK2615-2617, as the nuclear localization signal (NLS) for ATBF1. Interestingly, diffusely distributed nuclear SUMO1 proteins were sequestered into ATBF1 dots, which could be related to ATBF1's physical association with PML NBs, known SUMOylation hotspots. Furthermore, ATBF1 itself was SUMOylated. ATBF1 SUMOylation occurred at more than 3 lysine residues including K2349, K2806 and K3258 and was nuclear specific. Finally, the PIAS3 SUMO1 E3 ligase, which interacts with ATBF1 directly, diminished rather than enhanced ATBF1 SUMOylation, preventing the co-localization of ATBF1 with SUMO1 in the nucleus. These findings suggest that nuclear localization and SUMOylation are important for the transcription factor function of ATBF1, and that ATBF1 could cooperate with PML NBs to regulate protein SUMOylation in different biological processes.
Collapse
Affiliation(s)
- Xiaodong Sun
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jie Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Frederick N. Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Li M, Zhao D, Ma G, Zhang B, Fu X, Zhu Z, Fu L, Sun X, Dong JT. Upregulation of ATBF1 by progesterone-PR signaling and its functional implication in mammary epithelial cells. Biochem Biophys Res Commun 2013; 430:358-63. [DOI: 10.1016/j.bbrc.2012.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/03/2012] [Indexed: 12/23/2022]
|
7
|
Li M, Fu X, Ma G, Sun X, Dong X, Nagy T, Xing C, Li J, Dong JT. Atbf1 regulates pubertal mammary gland development likely by inhibiting the pro-proliferative function of estrogen-ER signaling. PLoS One 2012; 7:e51283. [PMID: 23251482 PMCID: PMC3520988 DOI: 10.1371/journal.pone.0051283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
ATBF1 is a candidate tumor suppressor that interacts with estrogen receptor (ER) to inhibit the function of estrogen-ER signaling in gene regulation and cell proliferation control in human breast cancer cells. We therefore tested whether Atbf1 and its interaction with ER modulate the development of pubertal mammary gland, where estrogen is the predominant steroid hormone. In an in vitro model of cell differentiation, i.e., MCF10A cells cultured in Matrigel, ATBF1 expression was significantly increased, and knockdown of ATBF1 inhibited acinus formation. During mouse mammary gland development, Atbf1 was expressed at varying levels at different stages, with higher levels during puberty, lower during pregnancy, and the highest during lactation. Knockout of Atbf1 at the onset of puberty enhanced ductal elongation and bifurcation and promoted cell proliferation in both ducts and terminal end buds of pubertal mammary glands. Enhanced cell proliferation primarily occurred in ER-positive cells and was accompanied by increased expression of ER target genes. Furthermore, inactivation of Atbf1 reduced the expression of basal cell markers (CK5, CK14 and CD44) but not luminal cell markers. These findings indicate that Atbf1 plays a role in the development of pubertal mammary gland likely by modulating the function of estrogen-ER signaling in luminal cells and by modulating gene expression in basal cells.
Collapse
Affiliation(s)
- Mei Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gui Ma
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xueyuan Dong
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (XD) (XD); (JTD) (JD)
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jie Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (XD) (XD); (JTD) (JD)
| |
Collapse
|
8
|
Sun X, Fu X, Li J, Xing C, Martin DW, Zhang HH, Chen Z, Dong JT. Heterozygous deletion of Atbf1 by the Cre-loxP system in mice causes preweaning mortality. Genesis 2012; 50:819-27. [PMID: 22644989 DOI: 10.1002/dvg.22041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 11/10/2022]
Abstract
ATBF1 is a large nuclear protein that contains multiple zinc-finger motifs and four homeodomains. In mammals, ATBF1 regulates differentiation, and its mutation and/or downregulation is involved in tumorigenesis in several organs. To gain more insight into the physiological functions of ATBF1, we generated and validated a conditional allele of mouse Atbf1 in which exons 7 and 8 were flanked by loxP sites (Atbf1(flox) ). Germline deletion of a single Atbf1 allele was achieved by breeding to EIIa-cre transgenic mice, and Atbf1 heterozygous mice displayed reduced body weight, preweaning mortality, increased cell proliferation, and attenuated cytokeratin 18 expression, indicating haploinsufficiency of Atbf1. Floxed Atbf1 mice will help us understand such biological processes as neuronal differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Beuten J, Gelfond JAL, Franke JL, Weldon KS, Crandall AC, Johnson-Pais TL, Thompson IM, Leach RJ. Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:1869-80. [PMID: 19505920 DOI: 10.1158/1055-9965.epi-09-0076] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To estimate the prostate cancer risk conferred by individual single nucleotide polymorphisms (SNPs), SNP-SNP interactions, and/or cumulative SNP effects, we evaluated the association between prostate cancer risk and the genetic variants of 12 key genes within the steroid hormone pathway (CYP17, HSD17B3, ESR1, SRD5A2, HSD3B1, HSD3B2, CYP19, CYP1A1, CYP1B1, CYP3A4, CYP27B1, and CYP24A1). A total of 116 tagged SNPs covering the group of genes were analyzed in 2,452 samples (886 cases and 1,566 controls) in three ethnic/racial groups. Several SNPs within CYP19 were significantly associated with prostate cancer in all three ethnicities (P = 0.001-0.009). Genetic variants within HSD3B2 and CYP24A1 conferred increased risk of prostate cancer in non-Hispanic or Hispanic Caucasians. A significant gene-dosage effect for increasing numbers of potential high-risk genotypes was found in non-Hispanic and Hispanic Caucasians. Higher-order interactions showed a seven-SNP interaction involving HSD17B3, CYP19, and CYP24A1 in Hispanic Caucasians (P = 0.001). In African Americans, a 10-locus model, with SNPs located within SRD5A2, HSD17B3, CYP17, CYP27B1, CYP19, and CYP24A1, showed a significant interaction (P = 0.014). In non-Hispanic Caucasians, an interaction of four SNPs in HSD3B2, HSD17B3, and CYP19 was found (P < 0.001). These data are consistent with a polygenic model of prostate cancer, indicating that multiple interacting genes of the steroid hormone pathway confer increased risk of prostate cancer.
Collapse
Affiliation(s)
- Joke Beuten
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Willing BP, Van Kessel AG. Intestinal microbiota differentially affect brush border enzyme activity and gene expression in the neonatal gnotobiotic pig. J Anim Physiol Anim Nutr (Berl) 2008; 93:586-95. [PMID: 19141103 DOI: 10.1111/j.1439-0396.2008.00841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To study microbial influence on intestinal development pertaining to nutrient digestion, two separate gnotobiotic experiments were performed, each with 16 piglets allocated to four treatment groups: germfree (GF), monoassociation with Escherichia coli, monoassociation with Lactobacillus fermentum or conventionalization with faecal bacteria (CV). Enzyme activity and gene expression of lactase phlorizin hydrolase (LPH) and aminopeptidase N (APN) were measured in isolated enterocytes, harvested on day 14, using specific substrates and quantitative PCR respectively. Enterocytes of CV pigs had reduced APN activity, but had increased gene expression relative to GF, making the specific activity:mRNA (A:G) ratio dramatically lower (p < 0.05). Similarly, LPH A:G ratio was significantly reduced (p < 0.05) in enterocytes of CV pigs as compared with GF. The results of co-incubation of L. fermentum, E. coli and faecal bacteria with APN indicate a direct relationship between enzyme inactivation and specific A:G ratio in enterocytes. We conclude that enterocyte up-regulation of APN expression occurs as either a direct response to microbial colonization or as a feedback mechanism in response to reduced enzyme activity through microbial degradation. This mechanism may play a role in ensuring effective competition of the host with the intestinal microbiota for available nutrients.
Collapse
Affiliation(s)
- B P Willing
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
11
|
Mori Y, Kataoka H, Miura Y, Kawaguchi M, Kubota E, Ogasawara N, Oshima T, Tanida S, Sasaki M, Ohara H, Mizoshita T, Tatematsu M, Asai K, Joh T. Subcellular localization of ATBF1 regulates MUC5AC transcription in gastric cancer. Int J Cancer 2007; 121:241-7. [PMID: 17330845 DOI: 10.1002/ijc.22654] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human gastric epithelium has a unique mucin gene expression pattern, which becomes markedly altered in gastrointestinal disorder. This alteration in mucin expression, including the mucin MUC5AC, may be related to the development and prognosis of gastric cancers, and MUC5AC-positive gastric cancer has been reported to be poor prognosis. However, the molecular mechanism of MUC5AC transcriptional regulation has not been fully elucidated. AT motif-binding factor 1 (ATBF1) is a homeotic transcriptional regulatory factor recently identified as a tumor suppressor gene, and its subcellular localization suggests a link to cell proliferation and differentiation. We investigated the mechanism of MUC5AC transcriptional regulation by ATBF1. In 123 gastric cancer lesions, ATBF1 expressed in the nucleus significantly suppressed MUC5AC expression, as determined by immunohistochemistry. In addition, analysis of the MUC5AC promoter region revealed an AT motif-like element. This element was found to be essential for ATBF1 suppression of MUC5AC promoter activity as shown in a dual luciferase-reporter assay. Over-expressed ATBF1 also significantly suppressed endogenous MUC5AC protein expression in gastric cancer cells. Chromatin immunoprecipitation demonstrated that ATBF1 binds to the AT motif-like element in the MUC5AC promoter. These results indicate that ATBF1 in the nucleus negatively regulates the MUC5AC gene in gastric cancer by binding to an AT motif-like element in the MUC5AC promoter.
Collapse
Affiliation(s)
- Yoshinori Mori
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jung CG, Kim HJ, Kawaguchi M, Khanna KK, Hida H, Asai K, Nishino H, Miura Y. Homeotic factor ATBF1 induces the cell cycle arrest associated with neuronal differentiation. Development 2005; 132:5137-45. [PMID: 16251211 DOI: 10.1242/dev.02098] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study aimed to elucidate the function of AT motif-binding factor 1 (ATBF1) during neurogenesis in the developing brain and in primary cultures of neuroepithelial cells and cell lines (Neuro 2A and P19 cells). Here, we show that ATBF1 is expressed in the differentiating field in association with the neuronal differentiation markers beta-tubulin and MAP2 in the day E14.5 embryo rat brain, suggesting that it promotes neuronal differentiation. In support of this, we show that ATBF1 suppresses nestin expression, a neural stem cell marker, and activates the promoter of Neurod1 gene, a marker for neuronal differentiation. Furthermore, we show that in Neuro 2A cells, overexpressed ATBF1 localizes predominantly in the nucleus and causes cell cycle arrest. In P19 cells, which formed embryonic bodies in the floating condition, ATBF1 is mainly cytoplasmic and has no effect on the cell cycle. However, the cell cycle was arrested when ATBF1 became nuclear after transfer of P19 cells onto adhesive surfaces or in isolated single cells. The nuclear localization of ATBF1 was suppressed by treatment with caffeine, an inhibitor of PI(3)K-related kinase activity of ataxa-telangiectasia mutated (ATM) gene product. The cytoplasmic localization of ATBF1 in floating/nonadherent cells is due to CRM1-dependent nuclear export of ATBF1. Moreover, in the embryonic brain ATBF1 was expressed in the cytoplasm of proliferating stem cells on the ventricular zone, where cells are present at high density and interact through cell-to-cell contact. Conversely, in the differentiating field, where cell density is low and extracellular matrix is dense, the cell-to-matrix interaction triggered nuclear localization of ATBF1, resulting in the cell cycle arrest. We propose that ATBF1 plays an important role in the nucleus by organizing the neuronal differentiation associated with the cell cycle arrest.
Collapse
Affiliation(s)
- Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Mizuhoku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, Hamaguchi M, Kawaguchi M, Miura Y, Iwase H. ATBF1-A Messenger RNA Expression Is Correlated with Better Prognosis in Breast Cancer. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.193.11.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: The AT motif-binding factor 1 (ATBF1) gene was first identified as a suppressor of the α-fetoprotein (AFP) gene through its binding to an AT-rich enhancer element of this gene. The gene is located at chromosome 16q22.3-q23.1 where loss of heterozygosity has been observed in various malignant tumors, especially in breast cancer. It was also found that in highly malignant AFP-producing gastric cancer cells the expression of AFP is inhibited by ATBF1-A. This led us to hypothesize that there was a link between levels of ATBF1 expression and the metastatic potential of breast cancer and also, therefore, the prognosis of these patients.
Experimental Design: In the present study, the level of ATBF1-A mRNA expression was analyzed using quantitative real-time reverse transcriptase-PCR, in 153 female patients with invasive carcinoma of the breast. ATBF1-A protein expression was also determined by immunohistochemistry from available 90 cases of paired tissues. An association was sought between ATBF1-A expression and various clinicopathologic factors.
Results: ATBF1-A mRNA was expressed at significantly higher levels in breast cancer patients with no axillary lymph node involvement, with small tumors measuring <2 cm and in estrogen receptor-α–positive tumors. By contrast, no relationship was found between ATBF1-A mRNA expression and ATBF1-A protein expression, and also no relationship was found between ATBF1-A protein expression and any of the other clinicopathologic factors. Patients expressing high levels of ATBF1-A mRNA tended to have a better prognosis than those expressing low levels. Univariate and multivariate prognostic analyses showed that ATBF1-A mRNA expression is an independent prognostic factor for disease-free survival.
Conclusions: In breast cancer, levels of ATBF1-A mRNA may serve as a predictive indicator of lymph node metastasis. The results of this study also imply that ATBF1-A gene expression may have potential both as a marker of endocrine responsiveness and also as a prognostic indicator for breast cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Keiko Mita
- 1Breast and Endocrine Surgery and Departments of
| | | | - Makoto Kawaguchi
- 3Department of Pathology, Niigata Rosai Hospital, Japan Labor Health and Welfare Organization, Niigata, Japan
| | - Yutaka Miura
- 2Bioregulation Research, Nagoya City University Medical School, Nagoya, Japan and
| | | |
Collapse
|
14
|
Nojiri S, Joh T, Miura Y, Sakata N, Nomura T, Nakao H, Sobue S, Ohara H, Asai K, Ito M. ATBF1 enhances the suppression of STAT3 signaling by interaction with PIAS3. Biochem Biophys Res Commun 2004; 314:97-103. [PMID: 14715251 DOI: 10.1016/j.bbrc.2003.12.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ATBF1 was first discovered as a suppressor of AFP expression in hepatocytes. It is present in brain, adult liver, lung, and gastro-intestinal tract. Recently, it has been reported that ATBF1 regulates myoblastic differentiation and interacts with v-Myb in regulation of its transactivation. Using the yeast two-hybrid system, we searched for protein-protein interactions to uncover new functions for ATBF1. We present here experimental evidence that ATBF1 is a new regulatory factor for STAT3-mediated signal transduction through its interaction with PIAS3. PIAS3 was thus identified as an ATBF1-binding protein. In co-transfection experiments, the full-length ATBF1 was found to form complexes with PIAS3 in Hep G2 cells. In the luciferase assay, ATBF1 was found to have no influence on STAT3 signaling induced by IL-6 stimulation, but it did synergistically enhance PIAS3 inhibition of activated STAT3. In conclusion, ATBF1 can suppress the IL-6-mediated cellular response by acting together with PIAS3.
Collapse
Affiliation(s)
- Shunsuke Nojiri
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Malago JJ, Koninkx JFJG, Douma PM, Dirkzwager A, Veldman A, Hendriks HGCJM, van Dijk JE. Differential modulation of enterocyte-like Caco-2 cells after exposure to short-chain fatty acids. FOOD ADDITIVES AND CONTAMINANTS 2003; 20:427-37. [PMID: 12775461 DOI: 10.1080/0265203031000137728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The response of intestinal epithelial cells to short-chain fatty acids, which are increasingly used as food additives, was investigated. Human small intestinal epithelial cell model Caco-2 cells were exposed to formate, propionate and butyrate to assess their effect on cellular growth, metabolism, differentiation and protection against bacteria. The Caco-2 cells were entirely grown in the different short-chain fatty acids and respective growth patterns were determined. Differentiated cells were exposed to 0-20 mM short-chain fatty acids for 48 h and changes in DNA, RNA, (glyco)protein syntheses, sucrase isomaltase activity, transepithelial electrical resistance and protection against Salmonella enteritidis were measured. The short-chain fatty acids, altered linearly and differentially the growth pattern ranging from stimulation by formate to inhibition by butyrate. Formate inhibited cellular metabolism. Low concentrations of up to 5 mM propionate and 2 mM butyrate stimulated metabolism, while higher doses were inhibitory. Formate had no effect on sucrase isomaltase enzyme activity and transepithelial electrical resistance, whereas propionate and butyrate increased these markers of differentiation. Infection with S. enteritidis did not benefit from the short-chain fatty acid-induced transepithelial electrical resistance. It is concluded that formate, propionate and butyrate selectively and differentially modulate growth characteristics, cellular metabolism, sucrase isomaltase activity and transepithelial electrical resistance in a concentration- and carbon atom-related fashion. The short-chain fatty acid-induced transepithelial electrical resistance does not confer protection against S. enteritidis.
Collapse
Affiliation(s)
- J J Malago
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ninomiya T, Mihara K, Fushimi K, Hayashi Y, Hashimoto-Tamaoki T, Tamaoki T. Regulation of the alpha-fetoprotein gene by the isoforms of ATBF1 transcription factor in human hepatoma. Hepatology 2002; 35:82-7. [PMID: 11786962 DOI: 10.1053/jhep.2002.30420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We investigated mechanisms regulating expression of alpha-fetoprotein (AFP) in 3 human hepatoma cell lines, HuH-7, HepG2, and huH-1, producing high, medium, and low levels of AFP, respectively. The silencer, a negative cis-acting element of the AFP gene, was highly activated in huH-1 and HepG2 to repress AFP enhancer activity by 91%, whereas only 26% repression was observed in HuH-7. To account for the difference in AFP production between HepG2 and huH-1, we investigated the roles of two isoforms of the AT motif-binding factor 1 (ATBF1) transcription factor, ATBF1-A and -B. Cotransfection assays showed that the ATBF1 isoforms regulated the AFP gene differently in HepG2 and huH-1. In huH-1 and HuH-7, both ATBF1 isoforms suppressed strongly enhancer activity and slightly promoter activity. In HepG2, on the other hand, ATBF1-A suppressed the enhancer and promoter activities, but surprisingly, ATBF1-B was found to stimulate enhancer activity while showing no effect on the promoter. Levels of ATBF1-A mRNA were similar in all 3 cell lines, whereas the expression ATBF1-B mRNA varied greatly, with the highest level seen in HepG2 followed by huH-1 and HuH-7. These results suggest that, in HepG2, ATBF1-B may have a dominant negative effect to relieve the transcriptional repression caused by its isoform. In support of this view, we found that the N-terminal region specific to the ATBF1-A molecule possessed transcriptional repressor activity. Thus, the use of the ATBF1 variants as well as the silencer may provide a unique mechanism that contributes to the determination of AFP levels in human hepatoma cell lines.
Collapse
Affiliation(s)
- Toshiaki Ninomiya
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Kawaguchi M, Miura Y, Ido A, Morinaga T, Sakata N, Oya T, Hashimoto-Tamaoki T, Sasahara M, Koizumi F, Tamaoki T. DNA/RNA-dependent ATPase activity is associated with ATBF1, a multiple homeodomain-zinc finger protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1550:164-74. [PMID: 11755205 DOI: 10.1016/s0167-4838(01)00284-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The AT motif-binding factor 1 (ATBF1)-A is a large transcription factor containing four homeodomains and 23 zinc finger motifs. It has a number of motifs involved in transcriptional regulation, and in addition, several motifs found in enzymes, such as ATPases and helicases. In this study, we examined whether ATPase activity is associated with the ATBF1-A molecule. A 263-amino acid segment of the ATBF1-A molecule, termed AHZ, which contains the ATPase A-motif, homeodomain IV and zinc finger 21, was expressed in Escherichia coli in the form of glutathione S-transferase fusion protein and analyzed for ATPase activity. We found that AHZ was able to hydrolyze ATP with K(m) 10.6 microM and K(cat) 0.055 min(-1) at 5 mM Mg(2+) and pH 7.75. AHZ retained bacterial DNA and removal of the DNA resulted in 70% decrease in ATPase activity. The addition of double- or single-stranded DNAs restored 70-75% ATPase activity and that of RNA restored 50-55% activity. Site-directed mutagenesis of the A-motif resulted in 34% reduction of ATPase activity with no significant loss of bound DNA. In contrast, mutation of homeodomain IV and zinc finger 21 resulted in 90 and 80% reduction of ATPase, respectively, with the loss of the ability to bind to DNA and RNA. These results show that ATBF1 has at least one enzyme activity in addition to regulation of DNA transcription. The ATPase activity associated with ATBF1-A is DNA/RNA-dependent and unique in that it requires both homeodomain and zinc finger motifs.
Collapse
Affiliation(s)
- M Kawaguchi
- Department of Pathology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liang L, Ma Y, Zhao Q, Yang J, Liu Y, Wang Z. Cloning of aminopeptidase N promoter and its activity in hematopoietic cell and different tumor cell lines. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf02900628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Berry FB, Miura Y, Mihara K, Kaspar P, Sakata N, Hashimoto-Tamaoki T, Tamaoki T. Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem 2001; 276:25057-65. [PMID: 11312261 DOI: 10.1074/jbc.m010378200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATBF1 gene encodes two protein isoforms, the 404-kDa ATBF1-A, possessing four homeodomains and 23 zinc fingers, and the 306-kDa ATBF1-B, lacking a 920-amino acid N-terminal region of ATBF1-A which contains 5 zinc fingers. In vitro, ATBF1-A was expressed in proliferating C2C12 myoblasts, but its expression levels decreased upon induction of myogenic differentiation in low serum medium. Forced expression of ATBF1-A in C2C12 cells resulted in repression of MyoD and myogenin expression and elevation of Id3 and cyclin D1 expression, leading to inhibition of myogenic differentiation in low serum. In contrast, transfection of C2C12 cells with the ATBF1-B isoform led to an acceleration of myogenic differentiation, as indicated by an earlier onset of myosin heavy chain expression and formation of a higher percentage of multinucleated myotubes. The fourth homeodomain of ATBF1-A bound to an AT-rich element adjacent to the E1 E-box of the muscle regulatory factor 4 promoter mediating transcriptional repression. The ATBF1-A-specific N-terminal region possesses general transcription repressor activity. These results suggest that ATBF1-A plays a role in the maintenance of the undifferentiated myoblast state, and its down-regulation is a prerequisite to initiate terminal differentiation of C2C12 cells.
Collapse
Affiliation(s)
- F B Berry
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Intestinal reabsorption of bile salts plays a crucial role in human health and disease. This process is primarily localized to the terminal ileum and is mediated by a 48-kd sodium-dependent bile acid cotransporter (SLC10A2 = ASBT). ASBT is also expressed in renal tubule cells, cholangiocytes, and the gallbladder. Exon skipping leads to a truncated version of ASBT, which sorts to the basolateral surface and mediates efflux of bile salts. Inherited mutation of ASBT leads to congenital diarrhea secondary to bile acid malabsorption. Partial inhibition of ASBT may be useful in the treatment of hypercholesterolemia and intrahepatic cholestasis. During normal development in the rat ileum, ASBT undergoes a biphasic pattern of expression with a prenatal onset, postnatal repression, and reinduction at the time of weaning. The bile acid responsiveness of the ASBT gene is not clear and may be dependent on both the experimental model used and the species being investigated. Future studies of the transcriptional and posttranscriptional regulation of the ASBT gene and analysis of ASBT knockout mice will provide further insight into the biology, physiology, and pathophysiology of intestinal bile acid transport.
Collapse
Affiliation(s)
- B L Shneider
- Mount Sinai Medical Center, New York, NY 10029, USA
| |
Collapse
|
21
|
Abstract
Study of the molecular and cellular biology of the small-intestinal mucosa is providing insights into the remarkable properties of this unique tissue. With its structured pattern of cell proliferation, differentiation, and apoptosis, and its ability to adapt following exposure to luminal nutrients or injury from surgery or pathogens, it functions in a regulated but responsive manner. We review recent publications on factors affecting development, gene expression, cell turnover, and adaptation.
Collapse
Affiliation(s)
- Paul A. Kitchen
- Gastroenterology Section, Department of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | |
Collapse
|