1
|
Wang L, Rivas R, Wilson A, Park YM, Walls S, Yu T, Miller AC. Dose-Dependent Effects of Radiation on Mitochondrial Morphology and Clonogenic Cell Survival in Human Microvascular Endothelial Cells. Cells 2023; 13:39. [PMID: 38201243 PMCID: PMC10778067 DOI: 10.3390/cells13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
To better understand radiation-induced organ dysfunction at both high and low doses, it is critical to understand how endothelial cells (ECs) respond to radiation. The impact of irradiation (IR) on ECs varies depending on the dose administered. High doses can directly damage ECs, leading to EC impairment. In contrast, the effects of low doses on ECs are subtle but more complex. Low doses in this study refer to radiation exposure levels that are below those that cause immediate and necrotic damage. Mitochondria are the primary cellular components affected by IR, and this study explored their role in determining the effect of radiation on microvascular endothelial cells. Human dermal microvascular ECs (HMEC-1) were exposed to varying IR doses ranging from 0.1 Gy to 8 Gy (~0.4 Gy/min) in the AFRRI 60-Cobalt facility. Results indicated that high doses led to a dose-dependent reduction in cell survival, which can be attributed to factors such as DNA damage, oxidative stress, cell senescence, and mitochondrial dysfunction. However, low doses induced a small but significant increase in cell survival, and this was achieved without detectable DNA damage, oxidative stress, cell senescence, or mitochondrial dysfunction in HMEC-1. Moreover, the mitochondrial morphology was assessed, revealing that all doses increased the percentage of elongated mitochondria, with low doses (0.25 Gy and 0.5 Gy) having a greater effect than high doses. However, only high doses caused an increase in mitochondrial fragmentation/swelling. The study further revealed that low doses induced mitochondrial elongation, likely via an increase in mitochondrial fusion protein 1 (Mfn1), while high doses caused mitochondrial fragmentation via a decrease in optic atrophy protein 1 (Opa1). In conclusion, the study suggests, for the first time, that changes in mitochondrial morphology are likely involved in the mechanism for the radiation dose-dependent effect on the survival of microvascular endothelial cells. This research, by delineating the specific mechanisms through which radiation affects endothelial cells, offers invaluable insights into the potential impact of radiation exposure on cardiovascular health.
Collapse
Affiliation(s)
- Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Rafael Rivas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Angelo Wilson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Yu Min Park
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shannon Walls
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Tianzheng Yu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandra C. Miller
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Radiation Science and Radiology, Uniformed Services University Health Sciences, Bethesda, MD 20889, USA
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Duarte GT, Volkova PY, Fiengo Perez F, Horemans N. Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1178. [PMID: 36904038 PMCID: PMC10005729 DOI: 10.3390/plants12051178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical applications, and as a result of radiation disasters or nuclear tests. In the current review, we discuss modern sources of radioactivity, its direct and indirect effects on different plant species, and the scope of the radiation protection of plants. We present an overview of the molecular mechanisms of radiation responses in plants, which leads to a tempting conjecture of the evolutionary role of IR as a limiting factor for land colonization and plant diversification rates. The hypothesis-driven analysis of available plant genomic data suggests an overall DNA repair gene families' depletion in land plants compared to ancestral groups, which overlaps with a decrease in levels of radiation exposure on the surface of Earth millions of years ago. The potential contribution of chronic IR as an evolutionary factor in combination with other environmental factors is discussed.
Collapse
Affiliation(s)
| | | | | | - Nele Horemans
- Belgian Nuclear Research Centre—SCK CEN, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
3
|
Guan H, Zhang W, Xie D, Nie Y, Chen S, Sun X, Zhao H, Liu X, Wang H, Huang X, Bai C, Huang B, Zhou P, Gao S. Cytosolic Release of Mitochondrial DNA and Associated cGAS Signaling Mediates Radiation-Induced Hematopoietic Injury of Mice. Int J Mol Sci 2023; 24:ijms24044020. [PMID: 36835431 PMCID: PMC9960871 DOI: 10.3390/ijms24044020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Mitochondrion is an important organelle of eukaryotic cells and a critical target of ionizing radiation (IR) outside the nucleus. The biological significance and mechanism of the non-target effect originating from mitochondria have received much attention in the field of radiation biology and protection. In this study, we investigated the effect, role, and radioprotective significance of cytosolic mitochondrial DNA (mtDNA) and its associated cGAS signaling on hematopoietic injury induced by IR in vitro culture cells and in vivo total body irradiated mice in this study. The results demonstrated that γ-ray exposure increases the release of mtDNA into the cytosol to activate cGAS signaling pathway, and the voltage-dependent anion channel (VDAC) may contribute to IR-induced mtDNA release. VDAC1 inhibitor DIDS and cGAS synthetase inhibitor can alleviate bone marrow injury and ameliorate hematopoietic suppression induced by IR via protecting hematopoietic stem cells and adjusting subtype distribution of bone marrow cells, such as attenuating the increase of the F4/80+ macrophage proportion in bone marrow cells. The present study provides a new mechanistic explanation for the radiation non-target effect and an alternative technical strategy for the prevention and treatment of hematopoietic acute radiation syndrome.
Collapse
Affiliation(s)
- Hua Guan
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Correspondence: (H.G.); (S.G.)
| | - Wen Zhang
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dafei Xie
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuehua Nie
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Shi Chen
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Xiaoya Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Wang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Huang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, China
| | - Pingkun Zhou
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Correspondence: (H.G.); (S.G.)
| |
Collapse
|
4
|
Qin H, Zhang H, Zhang S, Zhu S, Wang H. Protective Effect of Sirt1 against Radiation-Induced Damage. Radiat Res 2021; 196:647-657. [PMID: 34459925 DOI: 10.1667/rade-20-00139.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2021] [Indexed: 11/03/2022]
Abstract
Radiotherapy is an important method for the treatment of malignant tumors. It can directly or indirectly lead to the formation of free radicals and DNA damage, resulting in a series of biological effects, including tumor cell death and normal tissue damage. These radiation effects are typically accompanied by the abnormal expression of sirtuin 1 (Sirt1), which deacetylates histones and non-histones. These Sirt1 substrates, including transcription factors and some catalytic enzymes, play a crucial role in anti-oxidative stress, DNA damage repair, autophagy regulation, anti-senescence, and apoptosis, which are closely related to triggering cell defense and survival in radiation-induced damage. In this article, we review the mechanisms underlying cellular responses to ionizing radiation and the role of Sirt1 in the process, with the aim of providing a theoretical basis for protection against radiation by Sirt1 as well as novel targets for developing radioprotective agents.
Collapse
Affiliation(s)
- Haoren Qin
- Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Heng Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, P.R. China
| | - Siwei Zhu
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, P.R. China
| | - Hui Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, P.R. China
| |
Collapse
|
5
|
Rusin A, Li M, Cocchetto A, Seymour C, Mothersill C. Radiation exposure and mitochondrial insufficiency in chronic fatigue and immune dysfunction syndrome. Med Hypotheses 2021; 154:110647. [PMID: 34358921 DOI: 10.1016/j.mehy.2021.110647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Chronic fatigue and Immune Dysfunction Syndrome (CFIDS) is a heterogeneous disease that may be promoted by various environmental stressors, including viral infection, toxin uptake, and ionizing radiation exposure. Previous studies have identified mitochondrial dysfunction in CFIDS patients, including modulation of mitochondrial respiratory chain activity, deletions in the mitochondrial genome, and upregulation of reactive oxygen species (ROS). This paper focuses on radiation effects and hypothesizes that CFIDS is primarily caused by stressor-induced mitochondrial metabolic insufficiency, which results in decreased energy production and anabolic metabolites required for normal cellular metabolism. Furthermore, tissues neighbouring or distant from directly perturbed tissues compensate for this dysfunction, which causes symptoms associated with CFIDS. This hypothesis is justified by reviewing the links between radiation exposure and CFIDS, cancer, immune dysfunction, and induction of oxidative stress. Moreover, the relevance of mitochondria in cellular responses to radiation and metabolism are discussed and putative mitochondrial biomarkers for CFIDS are introduced. Implications for diagnosis are then described, including a potential urine assay and PCR test for mitochondrial genome mutations. Finally, future research needs are offered with an emphasis on where rapid progress may be made to assist the afflicted.
Collapse
Affiliation(s)
- Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON Canada.
| | - Megan Li
- Department of Physics and Astronomy, McMaster University, Department of Physics and Astronomy, McMaster University, Hamilton, ON Canada
| | - Alan Cocchetto
- National CFIDS Foundation Inc., 103 Aletha Road, Needham, MA USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON Canada
| | | |
Collapse
|
6
|
Martens A, Schmid B, Akintola O, Saretzki G. Telomerase Does Not Improve DNA Repair in Mitochondria upon Stress but Increases MnSOD Protein under Serum-Free Conditions. Int J Mol Sci 2019; 21:ijms21010027. [PMID: 31861522 PMCID: PMC6981674 DOI: 10.3390/ijms21010027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Telomerase is best known for its function in maintaining telomeres but has also multiple additional, non-canonical functions. One of these functions is the decrease of oxidative stress and DNA damage due to localisation of the telomerase protein TERT into mitochondria under oxidative stress. However, the exact molecular mechanisms behind these protective effects are still not well understood. We had shown previously that overexpression of human telomerase reverse transcriptase (hTERT) in human fibroblasts results in a decrease of mitochondrial DNA (mtDNA) damage after oxidative stress. MtDNA damage caused by oxidative stress is removed via the base excision repair (BER) pathway. Therefore we aimed to analyse whether telomerase is able to improve this pathway. We applied different types of DNA damaging agents such as irradiation, arsenite treatment (NaAsO2) and treatment with hydrogen peroxide (H2O2). Using a PCR-based assay to evaluate mtDNA damage, we demonstrate that overexpression of hTERT in MRC-5 fibroblasts protects mtDNA from H2O2 and NaAsO2 induced damage, compared with their isogenic telomerase-negative counterparts. However, overexpression of hTERT did not seem to increase repair of mtDNA after oxidative stress, but promoted increased levels of manganese superoxide dismutase (MnSOD) and forkhead-box-protein O3 (FoxO3a) proteins during incubation in serum free medium as well as under oxidative stress, while no differences were found in protein levels of catalase. Together, our results suggest that rather than interfering with mitochondrial DNA repair mechanisms, such as BER, telomerase seems to increase antioxidant defence mechanisms to prevent mtDNA damage and to increase cellular resistance to oxidative stress. However, the result has to be reproduced in additional cellular systems in order to generalise our findings.
Collapse
Affiliation(s)
- Alexander Martens
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Bianca Schmid
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Olasubomi Akintola
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Gabriele Saretzki
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
7
|
Hargitai R, Roivainen P, Kis D, Luukkonen J, Sáfrány G, Seppälä J, Szatmári T, Virén T, Vuolukka K, Salomaa S, Lumniczky K. Mitochondrial DNA damage in the hair bulb: can it be used as a noninvasive biomarker of local exposure to low LET ionizing radiation? Int J Radiat Biol 2019; 96:491-501. [PMID: 31846382 DOI: 10.1080/09553002.2020.1704910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Our aim was to evaluate whether mitochondrial DNA (mtDNA) damage in hair bulbs could be a suitable biomarker for the detection of local exposure to ionizing radiation.Materials and methods: Mouse hair was collected 4 and 24 hours, 3 and 10 days after single whole-body exposure to 0, 0.1, and 2 Gy radiation. Pubic hair (treated area) and scalp hair (control area) were collected from 13 prostate cancer patients before and after fractioned radiotherapy with an average total dose of 2.7 Gy to follicles after five fractions. Unspecified lesion frequency of mtDNA was analyzed with long PCR, large mtDNA deletion levels were tested with real-time PCR.Results: Unspecified lesion frequency of mtDNA significantly increased in mouse hair 24 hours after irradiation with 2 Gy, but variance among samples was high. No increase in lesion frequency could be detected after 0.1 Gy irradiation. In prostate cancer patients, there was no significant change in either the unspecified lesion frequency or in the proportion of 4934-bp deleted mtDNA in pubic hair after radiotherapy. The proportions of murine 3860-bp common deletion, human 4977-bp common deletion and 7455-bp deleted mtDNA were too low to be analyzed reliably.Conclusions: Our results suggest that the unspecified lesion frequency and proportion of large deletions of mtDNA in hair bulbs are not suitable biomarkers of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Rita Hargitai
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Päivi Roivainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dávid Kis
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Géza Sáfrány
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jan Seppälä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Tünde Szatmári
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | | | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
8
|
Kawamura K, Qi F, Kobayashi J. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. JOURNAL OF RADIATION RESEARCH 2018; 59:ii91-ii97. [PMID: 29415254 PMCID: PMC5941154 DOI: 10.1093/jrr/rrx091] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/04/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Exposure to ionizing radiation (IR) induces various types of DNA damage, of which DNA double-strand breaks are the most severe, leading to genomic instability, tumorigenesis, and cell death. Hence, cells have developed DNA damage responses and repair mechanisms. IR also causes the accumulation of endogenous reactive oxidative species (ROS) in the irradiated cells. Upon exposure to low-dose irradiation, the IR-induced biological effects mediated by ROS were relatively more significant than those mediated by DNA damage. Accumulating evidence suggests that such increase in endogenous ROS is related with mitochondria change in irradiated cells. Thus, in this review we focused on the mechanism of mitochondrial ROS production and its relationship to the biological effects of IR. Exposure of mammalian cells to IR stimulates an increase in the production of endogenous ROS by mitochondria, which potentially leads to mitochondrial dysfunction. Since the remains of damaged mitochondria could generate or leak more ROS inside the cell, the damaged mitochondria are removed by mitophagy. The disruption of this pathway, involved in maintaining mitochondrial integrity, could lead to several disorders (such as neurodegeneration) and aging. Thus, further investigation needs to be performed in order to understand the relationship between the biological effects of low-dose IR and mitochondrial integrity.
Collapse
Affiliation(s)
- Kasumi Kawamura
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fei Qi
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan
- Corresponding author. Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan. Tel: +81-75-753-7554; Fax: +81-75-753-7564;
| |
Collapse
|
9
|
Friedland W, Schmitt E, Kundrát P, Baiocco G, Ottolenghi A. Track-structure simulations of energy deposition patterns to mitochondria and damage to their DNA. Int J Radiat Biol 2018; 95:3-11. [PMID: 29584515 DOI: 10.1080/09553002.2018.1450532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Mitochondria have been implicated in initiating and/or amplifying the biological effects of ionizing radiation not mediated via damage to nuclear DNA. To help elucidate the underlying mechanisms, energy deposition patterns to mitochondria and radiation damage to their DNA have been modelled. METHODS Track-structure simulations have been performed with PARTRAC biophysical tool for 60Co γ-rays and 5 MeV α-particles. Energy deposition to the cell's mitochondria has been analyzed. A model of mitochondrial DNA reflecting experimental information on its structure has been developed and used to assess its radiation-induced damage. RESULTS Energy deposition to mitochondria is highly inhomogeneous, especially at low doses. Although a dose-dependent fraction of mitochondria sees no energy deposition at all, the hit ones receive rather high amounts of energy. Nevertheless, only little damage to mitochondrial DNA occurs, even at large doses. CONCLUSION Mitochondrial DNA does not represent a critical target for radiation effects. Likely, the key role of mitochondria in radiation-induced biological effects arises from the communication between mitochondria and/or with the nucleus. Through this signaling, initial modifications in a few heavily hit mitochondria seem to be amplified to a massive long-term effect manifested in the whole cell or even tissue.
Collapse
Affiliation(s)
- Werner Friedland
- a Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany
| | - Elke Schmitt
- a Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany
| | - Pavel Kundrát
- a Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany
| | - Giorgio Baiocco
- b Department of Physics , University of Pavia , Pavia , Italy
| | | |
Collapse
|
10
|
Wahba A, Lehman SL, Tofilon PJ. Radiation-induced translational control of gene expression. TRANSLATION (AUSTIN, TEX.) 2016; 5:e1265703. [PMID: 28702276 PMCID: PMC5501380 DOI: 10.1080/21690731.2016.1265703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Radiation-induced gene expression has long been hypothesized to protect against cell death. Defining this process would provide not only insight into the mechanisms mediating cell survival after radiation exposure, but also a novel source of targets for radiosensitization. However, whereas the radiation-induced gene expression profiles using total cellular mRNA have been generated for cell lines as well as normal tissues, with few exception, the changes in mRNA do not correlate with changes in the corresponding protein. The traditional approach to profiling gene expression, i.e., using total cellular RNA, does not take into account posttranscriptional regulation. In this review, we describe the use of gene expression profiling of polysome-bound RNA to establish that radiation modifies gene expression via translational control. Because changes in polysome-bound mRNA correlate with changes in protein, analysis of the translational profiles provides a unique data set for investigating the mechanisms mediating cellular radioresponse.
Collapse
Affiliation(s)
- Amy Wahba
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Stacey L. Lehman
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Philip J. Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
11
|
Kam WWY, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013; 65:607-619. [PMID: 23892359 DOI: 10.1016/j.freeradbiomed.2013.07.024] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/08/2023]
Abstract
The current concept of radiobiology posits that damage to the DNA in the cell nucleus is the primary cause for the detrimental effects of radiation. However, emerging experimental evidence suggests that this theoretical framework is insufficient for describing extranuclear radiation effects, particularly the response of the mitochondria, an important site of extranuclear, coding DNA. Here, we discuss experimental observations of the effects of ionizing radiation on the mitochondria at (1) the DNA and (2) functional levels. The roles of mitochondria in (3) oxidative stress and (4) late radiation effects are discussed. In this review, we summarize the current understanding of targets for ionizing radiation outside the cell nucleus. Available experimental data suggest that an increase in the tumoricidal efficacy of radiation therapy might be achievable by targeting mitochondria. Likewise, more specific protection of mitochondria and its coding DNA should reduce damage to healthy cells exposed to ionizing radiation.
Collapse
Affiliation(s)
- Winnie Wai-Ying Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia.
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia; National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
12
|
Kam WWY, McNamara AL, Lake V, Banos C, Davies JB, Kuncic Z, Banati RB. Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: A Monte Carlo simulation and quantitative PCR study. Mitochondrion 2013; 13:736-42. [DOI: 10.1016/j.mito.2013.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/14/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
13
|
Kam WWY, Lake V, Banos C, Davies J, Banati R. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers. Int J Mol Sci 2013; 14:11544-59. [PMID: 23722662 PMCID: PMC3709747 DOI: 10.3390/ijms140611544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/18/2013] [Accepted: 05/16/2013] [Indexed: 12/12/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.
Collapse
Affiliation(s)
- Winnie W. Y. Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +61-2-9717-7241; Fax: +61-2-9717-9262
| | - Vanessa Lake
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Connie Banos
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- School of Physics, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
14
|
Green fluorescent protein alters the transcriptional regulation of human mitochondrial genes after gamma irradiation. J Fluoresc 2013; 23:613-9. [PMID: 23475276 DOI: 10.1007/s10895-013-1206-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/24/2013] [Indexed: 12/21/2022]
Abstract
Green fluorescent proteins (GFP), extensively used as reporters in biological and imaging studies, are assumed to be mostly biologically inert. Here, we test the assumption in regard to the transcriptional regulation of 18 mitochondrially encoded genes in GFP expressing human T-cell line (JURKAT cells) exposed to gamma radiation. Using quantitative polymerase chain reaction, we demonstrate that wild type and GFP expressing JURKAT cells have different baseline mitochondrial transcript expression (10 out of the 18 tested genes) and after a single dose of radiation (100 Gy) show a significantly different transcriptional regulation of their mitochondrial genes. While in wild type cells, ten of the tested genes are up-regulated in response to radiation exposure, GFP expressing cells show less transcriptional regulation with a small down-regulation in five genes. Our results indicate that the presence of GFP in the cytoplasm can alter the cellular response to ionizing radiation.
Collapse
|
15
|
Neil AJ, Belotserkovskii BP, Hanawalt PC. Transcription blockage by bulky end termini at single-strand breaks in the DNA template: differential effects of 5' and 3' adducts. Biochemistry 2012; 51:8964-70. [PMID: 23066636 DOI: 10.1021/bi301240y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA polymerases from phage-infected bacteria and mammalian cells have been shown to bypass single-strand breaks (SSBs) with a single-nucleotide gap in the template DNA strand during transcription elongation; however, the SSB bypass efficiency varies significantly depending upon the backbone end chemistries at the break. Using a reconstituted T7 phage transcription system (T7 RNAP) and RNA polymerase II (RNAPII) in HeLa cell nuclear extracts, we observe a slight reduction in the level of transcription arrest at SSBs with no gap as compared to those with a single-nucleotide gap. We have shown that biotin and carbon-chain moieties linked to the 3' side, and in select cases the 5' side, of an SSB in the template strand strongly increase the level of transcription arrest when compared to unmodified SSBs. We also find that a small carbon-chain moiety linked to the upstream side of an SSB aids transcriptional bypass of SSBs for both T7 RNAP and RNAP II. Analysis of transcription across SSBs flanked by bulky 3' adducts reveals the ability of 3' end chemistries to arrest T7 RNAP in a size-dependent manner. T7 RNAP is also completely arrested when 3' adducts or 3'-phosphate groups are placed opposite 5'-phosphate groups at an SSB. We have also observed that a biotinylated thymine in the template strand (without a break) does not pose a strong block to transcription. Taken together, these results emphasize the importance of the size of 3', but usually not 5', end chemistries in arresting transcription at SSBs, substantiating the notion that bulky 3' lesions (e.g., topoisomerase cleavable complexes, 3'-phosphoglycolates, and 3'-unsaturated aldehydes) pose very strong blocks to transcribing RNA polymerases. These findings have implications for the processing of DNA damage through SSB intermediates and the mechanism of SSB bypass by T7 RNAP and mammalian RNAPII.
Collapse
Affiliation(s)
- Alexander J Neil
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|
16
|
Evdokimovsky EV, Ushakova TE, Kudriavtcev AA, Gaziev AI. Alteration of mtDNA copy number, mitochondrial gene expression and extracellular DNA content in mice after irradiation at lethal dose. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:181-188. [PMID: 20814800 DOI: 10.1007/s00411-010-0329-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
High steady-state transcriptional activity is essential for normal mitochondrial function. The requisite transcription rate is satisfied in part by high copy number of mitochondrial DNA (mtDNA). In the present study, we analyze mtDNA copy number by real-time PCR in nucleated blood cells from control mice and mice exposed to 1- or 10-Gy X-radiation. Transcription of the oxidative phosphorylation-associated genes cytb, atp6, nd4, nd2 and d-loop region was monitored in these nucleated blood cells similarly by real-time PCR. We observed a 50% decrease in the ratio of mitochondrial to nuclear DNA (mtDNA/nDNA) in blood cells, while the mtDNA/nDNA ratio in serum increased. After a lethal 10-Gy dose of X-irradiation, we observed an 80% decrease in the number of circulating lymphocytes. In response to a 10-Gy radiation dose, we observed transiently increased mtDNA/nDNA ratio and transcription within the initial 5 h post-treatment. At 24-72 h, the mtDNA/nDNA ratio in surviving cells was reduced to the level observed in blood cells irradiated with 1 Gy. We observed a decrease in the serum mtDNA/nDNA ratio due to an increase in nDNA content rather than a decrease in mtDNA. Taken together, results presented herein suggest that the mtDNA/nDNA ratio may be of clinical value potentially as a diagnostic tool, particularly in oncology patients undergoing radiation therapy.
Collapse
Affiliation(s)
- Edward V Evdokimovsky
- Laboratory of Radiation and Molecular Biology, Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Instituskaya St., Pushchino, 142290, Russia.
| | | | | | | |
Collapse
|
17
|
Gubina NE, Merekina OS, Ushakova TE. Mitochondrial DNA transcription in mouse liver, skeletal muscle, and brain following lethal x-ray irradiation. BIOCHEMISTRY (MOSCOW) 2010; 75:777-83. [PMID: 20636270 DOI: 10.1134/s0006297910060131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using quantitative real-time PCR, the levels of mitochondrial DNA transcripts in murine tissues (skeletal muscle, liver, and brain) were determined at different time points (1, 5, and 24 h) following X-ray irradiation at the dose of 10 Gy. One hour after irradiation the levels of mitochondrial transcripts ND2, ND4, CYTB, and ATP6 dramatically decreased by 85-95% and remained at the same minimum level for 24 h in all analyzed tissues. This decrease was not associated with depletion of mtDNA as a matrix for transcription, since mtDNA copy number increased after irradiation in all tissues. The decrease in mitochondrial transcription in liver, brain, and skeletal muscle did not generally result from the damage of cell transcription apparatus, because the transcription level of nuclear housekeeping gene BETA-ACTIN remained virtually unchanged after irradiation. The mitochondrial gene transcription decreased after irradiation in the same manner as that of the nuclear gene TFB2M encoding mitochondrial transcription factor, whose regulatory role under normal conditions is well understood.
Collapse
Affiliation(s)
- N E Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
18
|
Gulyaeva NA, Abdullaev SA, Malakhova LV, Antipova VN, Bezlepkin VG, Gaziev AI. Reduction of the number of mutant copies of mitochondrial DNA in tissues of irradiated mice in the postradiation period. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409070114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gasiev AI, Shaikhaev GO. Lesions of the mitochondrial genome and ways of its preservation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Antioxidants reduce consequences of radiation exposure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 614:165-78. [PMID: 18290327 DOI: 10.1007/978-0-387-74911-2_20] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antioxidants have been studied for their capacity to reduce the cytotoxic effects of radiation in normal tissues for at least 50 years. Early research identified sulfur-containing antioxidants as those with the most beneficial therapeutic ratio, even though these compounds have substantial toxicity when given in-vivo. Other antioxidant molecules (small molecules and enzymatic) have been studied for their capacity to prevent radiation toxicity both with regard to reduction of radiation-related cytotoxicity and for reduction of indirect radiation effects including long-term oxidative damage. Finally, categories of radiation protectors that are not primarily antioxidants, including those that act through acceleration of cell proliferation (e.g. growth factors), prevention of apoptosis, other cellular signaling effects (e.g. cytokine signal modifiers), or augmentation of DNA repair, all have direct or indirect effects on cellular redox state and levels of endogenous antioxidants. In this review we discuss what is known about the radioprotective properties of antioxidants, and what those properties tell us about the DNA and other cellular targets of radiation.
Collapse
|
21
|
Morel F, Renoux M, Lachaume P, Alziari S. Bleomycin-induced double-strand breaks in mitochondrial DNA of Drosophila cells are repaired. Mutat Res 2007; 637:111-7. [PMID: 17825327 DOI: 10.1016/j.mrfmmm.2007.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/28/2007] [Accepted: 07/17/2007] [Indexed: 11/23/2022]
Abstract
Mitochondrial DNA lesions cause numerous human diseases, and it is therefore important to identify the mechanisms whereby the mitochondrion repairs the damage. We have studied in cultured Drosophila cells the repair of bleomycin-induced double-strand breaks (DSBs) in mitochondrial DNA. Our results show that DSBs are repaired as rapidly and effectively in the mitochondria as in the nucleus. DNA repair is complete within 2h following bleomycin treatment, showing that Drosophila mitochondria have an effective system of DSB repair. The mechanism and mitochondrial proteins involved remain to be identified.
Collapse
Affiliation(s)
- Frederic Morel
- Equipe Genome Mitochondrial, UMR CNRS 6547, Université Blaise-Pascal, Clermont 2, 63177, Aubière-Cedex, France
| | | | | | | |
Collapse
|
22
|
Manova V, Gecheff K, Stoilov L. Efficient repair of bleomycin-induced double-strand breaks in barley ribosomal genes. Mutat Res 2006; 601:179-90. [PMID: 16930631 DOI: 10.1016/j.mrfmmm.2006.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 06/28/2006] [Accepted: 07/11/2006] [Indexed: 05/11/2023]
Abstract
Ability of barley ribosomal genes to cope with damage produced in vivo by the radiomimetic agent bleomycin was investigated. Repair kinetics of bleomycin-induced double-strand breaks in ribosomal and total genomic DNA was compared. Induction and repair of double-strand breaks in defined regions of the ribosomal genes was also analyzed. Preferential sensitivity of barley linker DNA towards bleomycin treatment in vivo was established. Relatively higher yield of initially induced double-strand breaks in genomic DNA in comparison to ribosomal DNA was also found. Fragments containing intergenic spacers of barley rRNA genes displayed higher sensitivity to bleomycin than the coding sequences. No heterogeneity in the repair of DSB between transcribed and non-transcribed regions of ribosomal genes was detected. Data indicate that DSB repair in barley rDNA, although more efficient than in genomic DNA, does not correlate with the activity of nucleolus organizer regions.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Genetics, Acad D Kostoff, BAS, Sofia, Bulgaria
| | | | | |
Collapse
|
23
|
Gouliaeva NA, Kuznetsova EA, Gaziev AI. Proteins associated with mitochondrial DNA protect it against X-rays and hydrogen peroxide. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906040166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Wilding CS, Cadwell K, Tawn EJ, Relton CL, Taylor GA, Chinnery PF, Turnbull DM. Mitochondrial DNA mutations in individuals occupationally exposed to ionizing radiation. Radiat Res 2006; 165:202-7. [PMID: 16435918 DOI: 10.1667/rr3494.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mutations in a 443-bp amplicon of the hypervariable region HVR1 of the D-loop of mitochondrial DNA (mtDNA) were quantified in DNA extracted from peripheral blood samples of 10 retired radiation workers who had accumulated external radiation doses of >0.9 Sv over the course of their working life and were compared to the levels of mutations in 10 control individuals matched for age and smoking status. The mutation rate in the 10 exposed individuals was 9.92 x 10(-5) mutations/ nucleotide, and for the controls it was 8.65 x 10(-5) mutations/ nucleotide, with a procedural error rate of 2.65 x 10(-5) mutations/nucleotide. No increase in mtDNA mutations due to radiation exposure was detectable (P = 0.640). In contrast, chromosomal translocation frequencies, a validated radiobiological technique for retrospective dosimetric purposes, were significantly elevated in the exposed individuals. This suggests that mutations identified through sequencing of mtDNA in peripheral blood lymphocytes do not represent a promising genetic marker of DNA damage after low-dose or low-dose-rate exposures to ionizing radiation. There was an increase in singleton mutations above that attributable to procedural error in both exposed and control groups that is likely to reflect age-related somatic mutation.
Collapse
Affiliation(s)
- Craig S Wilding
- Genetics Department, Westlakes Research Institute, Moor Row, Cumbria, CA24 3JY, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
25
|
Wilding CS, Trikic MZ, Hingston JL, Copplestone D, Janet Tawn E. Mitochondrial DNA mutation frequencies in experimentally irradiated compost worms, Eisenia fetida. Mutat Res 2006; 603:56-63. [PMID: 16378751 DOI: 10.1016/j.mrgentox.2005.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/21/2005] [Accepted: 10/27/2005] [Indexed: 05/05/2023]
Abstract
The compost worm Eisenia fetida is routinely used in ecotoxicological studies. A standard assay to assess genetic damage in this species would be extremely valuable. Since mitochondrial DNA (mtDNA) is known to exhibit an increased mutation rate following exposure to ionising radiation we assessed the validity of a mtDNA-based assay for measuring increases in mutation rate in laboratory-irradiated compost worms. To this end the mutation frequency in the mtDNA of the compost worm E. fetida was quantified following in vivo gamma-irradiation of adult worms in three dose groups. Five adult worms exposed to 1.4 mGy/h for 55 days (total dose 1.85 Gy), five adult worms exposed to 8.5 mGy/h for 55 days (total dose 11.22 Gy) and five adult control worms were used to assess the effect of irradiation on mtDNA mutation induction. DNA samples extracted from irradiated adult worms were used in high-fidelity PCR of a 486 bp region of mtDNA spanning the ATPase 8 gene, chosen for its high spontaneous mutation rate. PCR products were cloned and sequenced to identify mutations, with 89-102 clones successfully sequenced per individual. A significant elevation in mtDNA mutation frequency (p=0.032) was seen in worms exposed at the higher dose rate (8.5 mGy/h, total dose 11.22 Gy; mutation frequency 27.98+/-4.85 x 10(-5)mutations/bp) in comparison to controls (mutation frequency 12.68+/-3.06 x 10(-5)mutations/bp), but no elevation in mutation frequency (p=0.764) was seen for the lower dose rate (1.4 mGy/h, total dose 1.85 Gy; mutation frequency 13.74+/-1.29 x 10(-5)mutations/bp) compared with controls. This indicates that although the technique has the potential to detect an elevation in mutation frequency, it does not have sufficient sensitivity at the doses likely to be encountered in environmental monitoring scenarios.
Collapse
Affiliation(s)
- Craig S Wilding
- Genetics Department, Westlakes Research Institute, Moor Row, Cumbria CA24 3JY, UK.
| | | | | | | | | |
Collapse
|
26
|
Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev AI. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. Mitochondrion 2006; 6:43-7. [PMID: 16413832 DOI: 10.1016/j.mito.2005.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently, we demonstrated that the release of mtDNA fragments from mitochondria occurs as a result of the opening of a non-specific pore in the inner mitochondrial membrane. Here, we show that irradiation of mice stimulates the appearance of mtDNA fragments in the cytosolic fractions of the brain. The fragments of mtDNA were found as early as 1h after irradiation, when no observable alteration of mitochondrial functioning occurred. The involvement of mitochondrial permeability transition in this process is discussed.
Collapse
Affiliation(s)
- Maxim Patrushev
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russian Federation
| | | | | | | | | | | |
Collapse
|
27
|
Tornaletti S. Transcription arrest at DNA damage sites. Mutat Res 2005; 577:131-45. [PMID: 15904937 DOI: 10.1016/j.mrfmmm.2005.03.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/16/2022]
Abstract
Transcription arrest by RNA polymerase II at a DNA damage site on the transcribed strand is considered an essential step in initiation of transcription-coupled repair (TCR), a specialized repair pathway, which specifically removes lesions from transcribed strands of expressed genes. To understand how initiation of TCR occurs, it is necessary to characterize the properties of the transcription complex when it encounters a lesion in its path. The analysis of different types of arrested complexes should help us understand how an arrested RNA polymerase may signal the repair proteins to initiate a repair event. This article will review the recent literature describing how the presence of DNA damage along the DNA affects transcription elongation by RNA polymerase II and its implications for the initial steps of TCR.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
28
|
Oliva-Trastoy M, Trastoy MO, Defais M, Larminat F. Resistance to the antibiotic Zeocin by stable expression of the Sh ble gene does not fully suppress Zeocin-induced DNA cleavage in human cells. Mutagenesis 2005; 20:111-4. [PMID: 15755800 DOI: 10.1093/mutage/gei016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zeocin is a member of the bleomycin/phleomycin family of antibiotics, known to bind and cleave DNA. We established human SK-OV-3 cells that stably express the Zeocin resistance gene (Sh ble) using an ecdysone-inducible mammalian expression system. Surprisingly, our results demonstrated that Zeocin, added in the culture medium to maintain the expression of the ecdysone receptor, was responsible for the formation of DNA strand breaks in the recombinant cells. This suggests that the Zeocin is not completely detoxified and is still able to cleave DNA, despite the stable expression of the Sh ble gene in the recombinant clones. Our study indicates that one needs to be very cautious in the interpretation of data involving stable cell lines selected with Zeocin.
Collapse
|
29
|
Kathe SD, Shen GP, Wallace SS. Single-Stranded Breaks in DNA but Not Oxidative DNA Base Damages Block Transcriptional Elongation by RNA Polymerase II in HeLa Cell Nuclear Extracts. J Biol Chem 2004; 279:18511-20. [PMID: 14978042 DOI: 10.1074/jbc.m313598200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription and repair of many DNA helix-distorting lesions such as cyclobutane pyrimidine dimers have been shown to be coupled in cells across phyla from bacteria to humans. The signal for transcription-coupled repair appears to be a stalled transcription complex at the lesion site. To determine whether oxidative DNA lesions can block correctly initiated human RNA polymerase II, we examined the effect of site-specifically introduced oxidative damages on transcription in HeLa cell nuclear extracts. We found that transcription was blocked by single-stranded breaks, common oxidative DNA lesions, when present in the transcribed strand of the transcription template. Cyclobutane pyrimidine dimers, which have been previously shown to block transcription both in vitro and in vivo, also blocked transcription in the HeLa cell nuclear transcription assay. In contrast, the oxidative DNA base lesions, 8-oxoguanine, 5-hydroxycytosine, and thymine glycol did not inhibit transcription, although pausing was observed with the thymine glycol lesion. Thus, DNA strand breaks but not oxidative DNA base damages blocked transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Scott D Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
30
|
McKenna DJ, Rajab NF, McKeown SR, McKerr G, McKelvey-Martin VJ. Use of the comet-FISH assay to demonstrate repair of the TP53 gene region in two human bladder carcinoma cell lines. Radiat Res 2003; 159:49-56. [PMID: 12492368 DOI: 10.1667/0033-7587(2003)159[0049:uotcfa]2.0.co;2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The alkaline single-cell gel electrophoresis (comet) assay can be combined with fluorescence in situ hybridization (FISH) methodology to investigate the localization of specific gene domains within an individual cell. The position of the fluorescent hybridization spots in the comet head or tail indicates whether the sequence of interest lies within or in the vicinity of a damaged region of DNA. In this study, we used the comet-FISH assay to examine initial DNA damage and subsequent repair in the TP53 gene region of RT4 and RT112 bladder carcinoma cells after 5 Gy gamma irradiation. In addition to standard comet parameter measurements, the number and location of TP53 hybridization spots within each comet was recorded at each repair time. The results indicate that the rate of repair of the TP53 gene region was fastest during the first 15 min after damage in both cell lines. When compared to overall genomic repair, the repair of the TP53 gene region was observed to be significantly faster during the first 15 min and thereafter followed a rate similar to that for the overall genome. The data indicate that the TP53 domain in RT4 and RT112 cells is repaired rapidly after gamma irradiation. Furthermore, this repair may be preferential compared to the repair of overall genomic DNA, which gives a measure of the average DNA repair response of the whole genome. We suggest that the comet-FISH assay has considerable potential in the study of gene-specific repair after DNA damage.
Collapse
Affiliation(s)
- Declan J McKenna
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA
| | | | | | | | | |
Collapse
|
31
|
Dafotakis M, Vehoff J, Korr H, Schmitz C. Prenatal Programming of Depression and Schizophrenia? Neuroembryology Aging 2002. [DOI: 10.1159/000063531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Cui DX, Zeng GY, Wang F, Xu JR, Ren DQ, Guo YH, Tian FR, Yan XJ, Hou Y, Su CZ. Mechanism of exogenous nucleic acids and their precursors improving the repair of intestinal epithelium after gamma-irradiation in mice. World J Gastroenterol 2000; 6:709-717. [PMID: 11819679 PMCID: PMC4688848 DOI: 10.3748/wjg.v6.i5.709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2000] [Revised: 05/20/2000] [Accepted: 06/02/2000] [Indexed: 02/06/2023] Open
Abstract
AIM:To clone expressed genes associated with repair of irradiation-damaged mice intestinal gland cells treated by small intestinal RNA, and to explore the molecular mechanism of exogenous nucleic acids improving repair of intestinal crypt.METHODS:The animal mode of test group and control group was established, forty-five mice being irradiated by gamma ray were treated with small intestinal RNA as test group, forty mice being irradiated by gamma ray were treated with physiological saline as control group,five mice without irradiation were used as normal control, their jejunal specimens were collected respectively at 6h, 12h,24h, 4d and 8d after irradiation. Then by using LD-PCR based on subtractive hybridization, these gene fragments differentially expressed between test group and control group were obtained, and then were cloned into T vectors as well as being sequenced. Obtained sequences were screened against. GeneBank, if being new sequences, they were submitted to GeneBank.RESULTS:Ninety clones were associated with repair of irradiation-damaged intestinal gland cells treated by intestinal RNA. These clones from test group of 6h, 12h, 24h, 4d and 8d were respectively 18, 22, 25, 13, 12. By screening against GeneBank, 18 of which were new sequences, the others were dramatically similar to the known sequences, mainly similar to hsp, Nmi,Dutt1, alkaline phosphatase, homeobox, anti-CEA ScFv antibody, arginine/serine kinase and BMP-4,repA. Eighteen gene fragments were new sequences,their accept numbers in GeneBank were respectively AF240164-AF240181.CONCLUSION:Ninety clones were obtained to be associated with repair of irradiation damaged mice intestinal gland cells treated by small intestinal RNA, which may be related to abnormal expression of genes and matched proteins of hsp, Nmi, Dutt1, Na, K-ATPase,alkalineph-osphatase, glkA, single stranded replicative centromeric gene as well as 18 new sequences.
Collapse
|