1
|
König S, Marco HG, Gäde G. Oxidation Products of Tryptophan and Proline in Adipokinetic Hormones-Artifacts or Post-Translational Modifications? Life (Basel) 2023; 13:2315. [PMID: 38137917 PMCID: PMC10744910 DOI: 10.3390/life13122315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Adipokinetic hormones (AKHs) regulate important physiological processes in insects. AKHs are short peptides with blocked termini and Trp in position 8. Often, proline occupies position 6. Few post-translational modifications have been found, including hydroxyproline ([Hyp6]) and kynurenine. Our recent data suggest that the Hyp- and Kyn-containing AKHs occur more often than originally thought and we here investigate if they are natural or artifactual. METHODS From crude extracts of the corpora cardiaca (CC) of various insect species, AKHs were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS). Synthetic [Hyp6]-AKHs were tested in an in vivo metabolic assay. Freshly dissected Periplaneta americana and Blaberus atropos CCs (with precautions taken against oxidation) were analyzed. B. atropos CC were placed into a depolarizing saline and the released AKHs were measured. RESULTS Hyp was detected in several decapeptides from cockroaches. The modified form accompanied the AKH at concentrations below 7%. The [Hyp6]-AKHs of B. atropos were present in fresh CC preparations and were shown to be releasable from the CC ex vivo. Synthetic [Hyp6]-containing peptides tested positively in a hypertrehalosemic bioassay. Hydroxyprolination was also detected for Manto-CC from the termite Kalotermes flavicollis and for Tetsu-AKH of the grasshopper, Tetrix subulata. Oxidized Trp-containing forms of Nicve-AKH were found in species of the burying beetle genus Nicrophorus. CONCLUSIONS Trp oxidation is known to occur easily during sample handling and is likely the reason for the present findings. For hydroxyprolination, however, the experimental evidence suggests endogenous processes.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany
| | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town 7700, South Africa; (H.G.M.); (G.G.)
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town 7700, South Africa; (H.G.M.); (G.G.)
| |
Collapse
|
2
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
3
|
Arif Z, Tarannum A, Arfat MY, Arif B, Shahab S, Arif M, Nelofar K, Badar A, Islam SN, Zaman A, Ahmad S, Iqubal MA, Gupta A, Aggarwal A, Alam K. Impact of endogenous stress on albumin structure in systemic lupus erythematosus (SLE) patients. Int J Biol Macromol 2020; 151:891-900. [PMID: 32014478 DOI: 10.1016/j.ijbiomac.2020.01.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory, autoimmune disorder of unknown etiology. The inflammatory stress in SLE patients may modify macromolecules and produce structural/functional abnormalities. The present study is aimed at examining the consequences of stresses on the structure of albumin in SLE patients. Albumin was isolated from the sera of SLE/healthy subjects. Multiple physicochemical techniques were used to elucidate, structure of albumin. Advanced glycation end products in SLE patients' albumin were identified by the AGE specific fluorescence. Quenching of tryptophan, tyrosine fluorescence and surface protein hydrophobicity was observed in SLE patients' albumin. Protein-bound carbonyls were elevated while free thiol, lysine, arginine, and alpha helicity was found to be decreased in SLE albumin. Furthermore, changes in the secondary structure of SLE albumin were observed as shift in the position of amide I/II bands. Functionality of SLE albumin was also compromised as its cobalt-binding ability was substantially declined. Adduction of moieties was detected by dynamic light scattering (DLS) and confirmed by matrix assisted laser desorption/ionization. DLS, thioflavin T and transmission electron microscopy results confirmed aggregates in SLE patients' albumin. This study may be helpful in understanding the role of modified albumin in the cofounding pathologies associated with SLE.
Collapse
Affiliation(s)
- Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India.
| | - Akhlas Tarannum
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mir Yasir Arfat
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Binish Arif
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Sana Shahab
- Department of Business and Administration, College of Business and Administration, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maryam Arif
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| | - Km Nelofar
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Badar
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Shireen Naaz Islam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Asif Zaman
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Shafeeque Ahmad
- Department of Biochemistry, Al-Falah School of Medical Science and Research Centre, Al-Falah University, Dhauj, Faridabad 121004, Haryana, India
| | - Mohammad Arif Iqubal
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Akankcha Gupta
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. J Proteomics 2017; 156:40-51. [PMID: 28062376 DOI: 10.1016/j.jprot.2016.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/14/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022]
Abstract
Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues are derivatised with biotin-hydrazide, enriched and characterised by tandem mass spectrometry. The strength of the method lies in an improved elution of biotinylated peptides from monomeric avidin resin using hot water (95°C) and increased sensitivity achieved by reduction of analyte losses during sample preparation and chromatography. For the first time MS/MS data analysis utilising diagnostic biotin fragment ions is used to pinpoint sites of biotin labelling and improve the confidence of carbonyl peptide assignments. We identified a total of 125 carbonylated residues in bovine serum albumin after extensive in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine, valine, alanine, isoleucine, glutamine, lysine and glutamic acid (+14Da), an oxidised form of methionine - aspartate semialdehyde (-32Da) - and decarboxylated glutamic acid and aspartic acid (-30Da). BIOLOGICAL SIGNIFICANCE Proteomic tools provide a promising way to decode disease mechanisms at the protein level and help to understand how carbonylation affects protein structure and function. The challenge for future research is to identify the type and nature of oxidised residues to gain a deeper understanding of the mechanism(s) governing carbonylation in cells and organisms and assess their role in disease.
Collapse
|
5
|
Pietzsch J, Laube M, Bechmann N, Pietzsch FJ, Kniess T. Protective effects of 2,3-diaryl-substituted indole-based cyclooxygenase-2 inhibitors on oxidative modification of human low density lipoproteins in vitro. Clin Hemorheol Microcirc 2017; 61:615-32. [PMID: 25547413 DOI: 10.3233/ch-141923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has been suggested that 2,3-diaryl-substituted indole-based cyclooxygenase-2 (COX-2) inhibitors (2,3-diaryl-indole coxibs) do not only appear as potent anti-inflammatory agents but also show the ability to scavenge reactive oxygen species (ROS). This led to the hypothesis that 2,3-diaryl-indole coxibs also may act as potent inhibitors of oxidative modification of low-density lipoprotein (LDL), which is considered a key factor in atherogenesis. The aim of this study was to explore i) the reactivity of a series of new synthesized 2,3-diaryl-indoles with several well characterized LDL oxidation systems and ii) subsequent effects on an inflammatory/atherogenic microenvironment. The results demonstrate that under the present experimental conditions 2,3-diaryl-indoles showed potent ROS scavenging activity and were able to markedly inhibit LDL oxidation. Subsequently, this led to a substantial decrease of modified LDL uptake by scavenger receptors in THP-1 macrophages in vitro and in rats in vivo. Moreover, modified LDL-mediated monocyte/neutrophil adhesion to endothelial cells, macrophage NFκB activation, as well as macrophage and endothelial cell cytokine release was diminished in vitro. The reduction of modified LDL-induced atherogenic effects by antioxidant 2,3-diaryl-indole coxibs may widen the therapeutic window of COX-2 targeted treatment.
Collapse
Affiliation(s)
- Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Nicole Bechmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Franz-Jacob Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Medical Faculty and University Hospital, Centre for Translational Bone, Joint, and Soft Tissue Research, Dresden, Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| |
Collapse
|
6
|
Weber D, Davies MJ, Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol 2015; 5:367-380. [PMID: 26141921 PMCID: PMC4506980 DOI: 10.1016/j.redox.2015.06.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022] Open
Abstract
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples.
Collapse
Affiliation(s)
- Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| |
Collapse
|
7
|
Yan J, Lipka AE, Schmelz EA, Buckler ES, Jander G. Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:593-602. [PMID: 25271262 PMCID: PMC4286406 DOI: 10.1093/jxb/eru385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants produce a wide variety of defensive metabolites to protect themselves against herbivores and pathogens. Non-protein amino acids, which are present in many plant species, can have a defensive function through their mis-incorporation during protein synthesis and/or inhibition of biosynthetic pathways in primary metabolism. 5-Hydroxynorvaline was identified in a targeted search for previously unknown non-protein amino acids in the leaves of maize (Zea mays) inbred line B73. Accumulation of this compound increases during herbivory by aphids (Rhopalosiphum maidis, corn leaf aphid) and caterpillars (Spodoptera exigua, beet armyworm), as well as in response to treatment with the plant signalling molecules methyl jasmonate, salicylic acid and abscisic acid. In contrast, ethylene signalling reduced 5-hydroxynorvaline abundance. Drought stress induced 5-hydroxynorvaline accumulation to a higher level than insect feeding or treatment with defence signalling molecules. In field-grown plants, the 5-hydroxynorvaline concentration was highest in above-ground vegetative tissue, but it was also detectable in roots and dry seeds. When 5-hydroxynorvaline was added to aphid artificial diet at concentrations similar to those found in maize leaves and stems, R. maidis reproduction was reduced, indicating that this maize metabolite may have a defensive function. Among 27 tested maize inbred lines there was a greater than 10-fold range in the accumulation of foliar 5-hydroxynorvaline. Genetic mapping populations derived from a subset of these inbred lines were used to map quantitative trait loci for 5-hydroxynorvaline accumulation to maize chromosomes 5 and 7.
Collapse
Affiliation(s)
- Jian Yan
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Alexander E Lipka
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Eric A Schmelz
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA United States Department of Agriculture - Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA Department of Plant Breeding and Genetics Cornell University, Ithaca, NY, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| |
Collapse
|
8
|
Laube M, Tondera C, Sharma SK, Bechmann N, Pietzsch FJ, Pigorsch A, Köckerling M, Wuest F, Pietzsch J, Kniess T. 2,3-Diaryl-substituted indole based COX-2 inhibitors as leads for imaging tracer development. RSC Adv 2014. [DOI: 10.1039/c4ra05650g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of 2,3-diaryl-substituted indoles containing a fluorine or methoxy group was synthesized via Fischer indole synthesis, McMurry cyclization, or Bischler–Möhlau reaction to identify potential leads for PET radiotracer development.
Collapse
Affiliation(s)
- Markus Laube
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Christoph Tondera
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Sai Kiran Sharma
- Department of Oncology
- Cross Cancer Institute
- University of Alberta
- Edmonton, Canada T6G 1Z2
| | - Nicole Bechmann
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Franz-Jacob Pietzsch
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Centre for Translational Bone, Joint, and Soft Tissue Research
| | - Arne Pigorsch
- Department of Inorganic Solid State Chemistry
- Institute of Chemistry
- University of Rostock
- 18059 Rostock, Germany
| | - Martin Köckerling
- Department of Inorganic Solid State Chemistry
- Institute of Chemistry
- University of Rostock
- 18059 Rostock, Germany
| | - Frank Wuest
- Department of Oncology
- Cross Cancer Institute
- University of Alberta
- Edmonton, Canada T6G 1Z2
| | - Jens Pietzsch
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Torsten Kniess
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
| |
Collapse
|
9
|
Abstract
Abstract
The mechanisms of oxidation of low-density lipoproteins (LDLs) are not well defined, but epidemiological and experimental studies suggest that iron-catalyzed processes may contribute to atherogenesis. The aim of this study was to test the hypothesis that iron-catalyzed oxidations of LDLs in vitro produce diagnostic biomarkers of oxidation of the apolipoprotein that could be applied to studies in vivo. LDLs were oxidized in the presence of Fe2+, EDTA, and ascorbic acid for up to 40 h. Following delipidation and trypsin digestion, the peptides were separated by HPLC, with four peaks detected at 365 nm, whereas none were observed in peptides from unoxidized LDLs. The peptides were identified by MALDI-QTOF mass spectrometry as IVQILP(W+4) EQNEQVK, IYSL(W+4)EHSTK, FEGLQE(W+4)EGK, and YH(W+4)EHTGLTLR, with (W+4) rather than the W residues of the unoxidized protein. The mass gains (+4 increase in m/z in tryptophan, W) and absorbance at 365 nm indicate kynurenines, which were trypsin-releasable peptides that are on the surface of LDL particles. All four peptides thus characterized share the sequence of WE. The preferential oxidation of W residues in WE sequences suggest contributions from the C-proximate glutamate residues in chelation of the iron species, thereby influencing site selectivities of oxidation. These kynurenine-containing peptides might serve as biomarkers of iron-mediated oxidations in vivo.
Collapse
|
10
|
Wang M, Zhang P, Zong W, Xu Q, Liu R. The charge ratio between O and N on amide bonds: a new approach to the mobile proton model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1915-1919. [PMID: 21689971 DOI: 10.1016/j.saa.2011.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 05/30/2023]
Abstract
The influence of charge distribution on the cleavage of the peptides was investigated by fragmentation efficiency curves and quantum chemical calculations in order to clarify the fragmentation mechanism in this paper. The peptide Arg-Gly-Asp-Cys (RGDC) was oxidized to change the charge distribution, but its main sequence was retained. Under this study, it was illustrated that the fragmentation of the peptide RGDC became easier with each addition of an O atom to the Cys hydrosulfide group and the relative charge ratios between O and N (QO/QN) in the amide bonds had much to do with the cleavage of the peptide RGDC. For each amide bond, the situations coincided with overall conclusion: the increase of the QO/QN values results in a higher fragmentation efficiency and vice versa. The methods which combined fragmentation efficiency curves with the charge distribution of peptides provided a way to refine the mobile proton model for peptide fragmentation and to probe the discrepant fragmentation of peptides in peptide/protein identification.
Collapse
Affiliation(s)
- Meijie Wang
- Shandong Key Laboratory of Water Pollution Control and Resource 4 Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, PR China
| | | | | | | | | |
Collapse
|
11
|
Chakraborty S, Cai Y, Tarr MA. Mapping oxidations of apolipoprotein B-100 in human low-density lipoprotein by liquid chromatography-tandem mass spectrometry. Anal Biochem 2010; 404:109-17. [PMID: 20470747 DOI: 10.1016/j.ab.2010.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 04/13/2010] [Accepted: 05/10/2010] [Indexed: 02/02/2023]
Abstract
Human low-density lipoprotein (LDL) is a major cholesterol carrier in blood. Elevated concentration of low-density lipoprotein, especially when oxidized, is a risk factor for atherosclerosis and other cardiac inflammatory diseases. Past research has connected free radical initiated oxidations of LDL with the formation of atherosclerotic lesions and plaque in the arterial wall. The role of LDL protein in the associated diseases is still poorly understood, partially due to a lack of structural information. In this study, LDL was oxidized by hydroxyl radical. The oxidized protein was then delipidated and subjected to trypsin digestion. Peptides derived from trypsin digestion were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identification of modified peptide sequences was achieved by a database search against apo B-100 protein sequences using the SEQUEST algorithm. At different hydroxyl radical concentrations, oxidation products of tyrosine, tryptophan, phenylalanine, proline, and lysine were identified. Oxidized amino acid residues are likely located on the exterior of the LDL particle in contact with the aqueous environment or directly bound to the free radical permeable lipid layer. These modifications provided insight for understanding the native conformation of apo B-100 in LDL particles. The presence of some natural variants at the protein level was also confirmed in our study.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | | | | |
Collapse
|
12
|
Sun F, Liu R, Zong W, Tian Y, Wang M, Zhang P. A Unique Approach to the Mobile Proton Model: Influence of Charge Distribution on Peptide Fragmentation. J Phys Chem B 2010; 114:6350-3. [DOI: 10.1021/jp911772q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Feng Sun
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Wansong Zong
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Yanmin Tian
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Meijie Wang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Pengjun Zhang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Tolmacheva NA, Gerus II, Dolovanyuk VG, Kondratov IS, Haufe G. Synthesis of New δ-(Polyfluoroalkyl)-δ-hydroxy-α-amino Acids. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Painter RG, Valentine VG, Lanson NA, Leidal K, Zhang Q, Lombard G, Thompson C, Viswanathan A, Nauseef WM, Wang G, Wang G. CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 2006; 45:10260-9. [PMID: 16922501 PMCID: PMC2931333 DOI: 10.1021/bi060490t] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Production of hypochlorous acid (HOCl) in neutrophils, a critical oxidant involved in bacterial killing, requires chloride anions. Because the primary defect of cystic fibrosis (CF) is the loss of chloride transport function of the CF transmembrane conductance regulator (CFTR), we hypothesized that CF neutrophils may be deficient in chlorination of bacterial components due to a limited chloride supply to the phagolysosomal compartment. Multiple approaches, including RT-PCR, immunofluorescence staining, and immunoblotting, were used to demonstrate that CFTR is expressed in resting neutrophils at the mRNA and protein levels. Probing fractions of resting neutrophils isolated by Percoll gradient fractionation and free flow electrophoresis for CFTR revealed its presence exclusively in secretory vesicles. The CFTR chloride channel was also detected in phagolysosomes, a special organelle formed after phagocytosis. Interestingly, HL-60 cells, a human promyelocytic leukemia cell line, upregulated CFTR expresssion when induced to differentiate into neutrophils with DMSO, strongly suggesting its potential role in mature neutrophil function. Analyses by gas chromatography and mass spectrometry (GC-MS) revealed that neutrophils from CF patients had a defect in their ability to chlorinate bacterial proteins from Pseudomonas aeruginosa metabolically prelabeled with [(13)C]-l-tyrosine, unveiling defective intraphagolysosomal HOCl production. In contrast, both normal and CF neutrophils exhibited normal extracellular production of HOCl when stimulated with phorbol ester, indicating that CF neutrophils had the normal ability to produce this oxidant in the extracellular medium. This report provides evidence which suggests that CFTR channel expression in neutrophils and its dysfunction affect neutrophil chlorination of phagocytosed bacteria.
Collapse
Affiliation(s)
- Richard G Painter
- Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Koller E, Volf I, Gurvitz A, Koller F. Modified Low-Density Lipoproteins and High-Density Lipoproteins. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 35:322-45. [PMID: 16877881 DOI: 10.1159/000093225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has long been known that the oxidative state of the various plasma lipoproteins modulates platelet aggregability, thereby contributing to atherogenesis. Low-density lipoprotein (LDL), occurring in vivo both in the native and oxidised forms, interacts directly with platelets, by binding to specific receptors. While the identity of the receptors for native LDL and some subfractions of high-density lipoproteins (HDL) remains disputed, apoE-containing HDL(2) binds to LRP8. The nature of these interactions as well as the distinction between candidate receptor proteins was elucidated using covalently modified apolipoproteins, which pointed to the participation of apolipoproteins in high affinity binding. However, the platelet effects initiated by binding of native lipoproteins remain controversial. Some of this ambiguity can be traced to the fact that native LDL inevitably undergoes substantial oxidisation upon modification, including by radiolabelling. The platelet-activating effects provoked by oxidised LDL are irrefutable, but many details remain unknown. The role of CD36 in platelet binding by oxidised LDL is well established, although additional receptors may exist. Much less is known about the interaction of oxidised HDL with platelets, since platelet activation was observed in some, but not all studies. Various frequently applied in vitro oxidation methods produce modified lipoprotein species that may not be relevant in vivo. Based on the reported modifications obtained by in vitro oxidation of LDL, early investigations focused mainly on the formation and the eventual effects of oxidised lipids. More recently, alterations to lipoproteins performed using hypochloric acid and myeloperoxidase redirected the attention to the role of modified apoproteins in triggering platelet responses.
Collapse
Affiliation(s)
- Elisabeth Koller
- Department of Physiology, Center of Physiology and Pathophysiology, Medical University of Vienna, Austria.
| | | | | | | |
Collapse
|
16
|
Julius U, Pietzsch J. Glucose-induced enhancement of hemin-catalyzed LDL oxidation in vitro and in vivo. Antioxid Redox Signal 2005; 7:1507-12. [PMID: 16356114 DOI: 10.1089/ars.2005.7.1507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growing evidence indicates that oxidative modification of low-density lipoprotein (LDL) is increased in diabetes mellitus; however, the mechanism(s) of this phenomenon is still unclear. gamma-Glutamyl semialdehyde (gammaGSA) is a product of hemin (Fe(3+)-protoporphyrin IX)-catalyzed oxidation of apolipoprotein B-100 (apoB- 100) proline and arginine residues. On reduction, gammaGSA forms 5-hydroxy-2-aminovaleric acid (HAVA). This report describes the application of sensitive HAVA assay, to characterize gammaGSA formation in LDL under normo- and hyperglycemic conditions, both in vitro and in vivo. In vitro studies revealed that apoB-100 proline and arginine residues are not oxidized to HAVA by HOCl or the myeloperoxidase/hydrogen peroxide (H(2)O(2)) oxidation system. Cu(2+), Cu(2+)/H(2)O(2), and Fe(2+) induced only minor HAVA formation. In contrast, the hemin oxidation system appeared reactive toward LDL apoB-100 proline and arginine residues. The resulting significant HAVA formation was specifically inhibited by a redox-inert ferric iron chelator. Glucose further enhanced hemin-induced increase in relative electrophoretic mobility of LDL and apoB-100 HAVAformation. In vivo we observed elevated concentrations of HAVA in LDL apoB-100 in patients with impaired glucose tolerance and with manifest diabetes mellitus. In conclusion, glucose promotes iron-mediated oxidation of apoB- 100 proline and arginine residues via a superoxide-dependent mechanism, thus rendering the LDL particles more atherogenic. The findings (a) identify a potential mechanism of enhanced atherogenesis in subjects with diabetes mellitus and (b) support the value of HAVA as a specific marker of LDL apoB-100 oxidation. Antioxid. Redox Signal. 7, 1507-1512.
Collapse
Affiliation(s)
- U Julius
- Medical Clinic and Outpatient Department III, University Hospital Dresden, Dresden, Germany.
| | | |
Collapse
|
17
|
Pietzsch J, Bergmann R, Wuest F, Pawelke B, Hultsch C, van den Hoff J. Catabolism of native and oxidized low density lipoproteins: in vivo insights from small animal positron emission tomography studies. Amino Acids 2005; 29:389-404. [PMID: 16012780 DOI: 10.1007/s00726-005-0203-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 02/07/2005] [Indexed: 12/20/2022]
Abstract
The human organism is exposed to numerous processes that generate reactive oxygen species (ROS). ROS may directly or indirectly cause oxidative modification and damage of proteins. Protein oxidation is regarded as a crucial event in the pathogenesis of various diseases ranging from rheumatoid arthritis to Alzheimer's disease and atherosclerosis. As a representative example, oxidation of low density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Data concerning the role of circulating oxidized LDL (oxLDL) in the development and outcome of diseases are scarce. One reason for this is the shortage of methods for direct assessment of the metabolic fate of circulating oxLDL in vivo. We present an improved methodology based on the radiolabelling of apoB-100 of native LDL (nLDL) and oxLDL, respectively, with the positron emitter fluorine-18 ((18)F) by conjugation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). Radiolabelling of both nLDL and oxLDL using [(18)F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively, in vitro. The method was further evaluated with respect to the radiopharmacological properties of both [(18)F]fluorobenzoylated nLDL and oxLDL by biodistribution studies in male Wistar rats. The metabolic fate of [(18)F]fluorobenzoylated nLDL and oxLDL in rats in vivo was further delineated by dynamic positron emission tomography (PET) using a dedicated small animal tomograph (spatial resolution of 2 mm). From this study we conclude that the use of [(18)F]FB-labelled LDL particles is an attractive alternative to, e.g., LDL iodination methods, and is of value to characterize and to discriminate the kinetics and the metabolic fate of nLDL and oxLDL in small animals in vivo.
Collapse
Affiliation(s)
- J Pietzsch
- Positron Emission Tomography Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Davies MJ. The oxidative environment and protein damage. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:93-109. [PMID: 15680218 DOI: 10.1016/j.bbapap.2004.08.007] [Citation(s) in RCA: 989] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/18/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
Proteins are a major target for oxidants as a result of their abundance in biological systems, and their high rate constants for reaction. Kinetic data for a number of radicals and non-radical oxidants (e.g. singlet oxygen and hypochlorous acid) are consistent with proteins consuming the majority of these species generated within cells. Oxidation can occur at both the protein backbone and on the amino acid side-chains, with the ratio of attack dependent on a number of factors. With some oxidants, damage is limited and specific to certain residues, whereas other species, such as the hydroxyl radical, give rise to widespread, relatively non-specific damage. Some of the major oxidation pathways, and products formed, are reviewed. The latter include reactive species, such as peroxides, which can induce further oxidation and chain reactions (within proteins, and via damage transfer to other molecules) and stable products. Particular emphasis is given to the oxidation of methionine residues, as this species is readily oxidised by a wide range of oxidants. Some side-chain oxidation products, including methionine sulfoxide, can be employed as sensitive, specific, markers of oxidative damage. The product profile can, in some cases, provide valuable information on the species involved; selected examples of this approach are discussed. Most protein damage is non-repairable, and has deleterious consequences on protein structure and function; methionine sulfoxide formation can however be reversed in some circumstances. The major fate of oxidised proteins is catabolism by proteosomal and lysosomal pathways, but some materials appear to be poorly degraded and accumulate within cells. The accumulation of such damaged material may contribute to a range of human pathologies.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, 145 Missenden Road, Sydney, NSW 2050, Australia.
| |
Collapse
|
19
|
Hušek P. Quantitation of Amino Acids as Chloroformates – A Return to Gas Chromatography. JOURNAL OF CHROMATOGRAPHY LIBRARY 2005. [DOI: 10.1016/s0301-4770(05)80003-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Pietzsch J, Bergmann R, Rode K, Hultsch C, Pawelke B, Wuest F, van den Hoff J. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo. Nucl Med Biol 2004; 31:1043-50. [PMID: 15607486 DOI: 10.1016/j.nucmedbio.2004.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 08/08/2004] [Indexed: 12/31/2022]
Abstract
Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ((18)F) by conjugation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [(18)F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [(18)F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo.
Collapse
Affiliation(s)
- Jens Pietzsch
- PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, D-01314 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu G, Takamoto K, Chance MR. Radiolytic Modification of Basic Amino Acid Residues in Peptides: Probes for Examining Protein−Protein Interactions. Anal Chem 2003; 75:6995-7007. [PMID: 14670063 DOI: 10.1021/ac035104h] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein footprinting utilizing hydroxyl radicals coupled with mass spectrometry has become a powerful technique for mapping the solvent accessible surface of proteins and examining protein-protein interactions in solution. Hydroxyl radicals generated by radiolysis or chemical methods efficiently react with many amino acid residue side chains, including the aromatic and sulfur-containing residues along with proline and leucine, generating stable oxidation products that are valuable probes for examining protein structure. In this study, we examine the radiolytic oxidation chemistry of histidine, lysine, and arginine for comparison with their metal-catalyzed oxidation products. Model peptides containing arginine, histidine, and lysine were irradiated using white light from a synchrotron X-ray source or a cesium-137 gamma-ray source. The rates of oxidation and the radiolysis products were primarily characterized by electrospray mass spectrometry including tandem mass spectrometry. Arginine is very sensitive to radiolytic oxidation, giving rise to a characteristic product with a 43 Da mass reduction as a result of the loss of guanidino group and conversion to gamma-glutamyl semialdehyde, consistent with previous metal-catalyzed oxidation studies. Histidine was oxidized to generate a mixture of products with characteristic mass changes primarily involving rupture of and addition to the imidazole ring. Lysine was converted to hydroxylysine or carbonylysine by radiolysis. The development of methods to probe these residues due to their high frequency of occurrence, their typical presence on the protein surface, and their frequent participation in protein-protein interactions considerably extends the utility of protein footprinting.
Collapse
Affiliation(s)
- Guozhong Xu
- Department of Physiology & Biophysics, Department of Biochemistry, and Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, USA
| | | | | |
Collapse
|
22
|
Pietzsch J, Bergmann R. Measurement of 5-hydroxy-2-aminovaleric acid as a specific marker of metal catalysed oxidation of proline and arginine residues of low density lipoprotein apolipoprotein B-100 in human atherosclerotic lesions. J Clin Pathol 2003; 56:622-3. [PMID: 12890816 PMCID: PMC1770034 DOI: 10.1136/jcp.56.8.622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
gamma-Glutamyl-semialdehyde (gammaGSA) is a major product of the metal catalysed oxidation of apolipoprotein B-100 (apoB-100) proline and arginine residues. On reduction, gammaGSA forms 5-hydroxy-2-aminovaleric acid (HAVA). This report describes the application of HAVA measurement to characterise the formation of gammaGSA in low density lipoprotein (LDL) recovered from human atherosclerotic lesions. HAVA concentrations were greatly increased in LDL from early (mean, 10.25; SD, 3.49 mol/mol apoB-100; p < 0.01), intermediate (mean, 11.18; SD, 2.37 mol/mol apoB-100; p < 0.01), and advanced (mean, 9.91; SD, 2.15 mol/mol apoB-100; p < 0.01) lesions, when compared with LDL from normal aortic tissue (mean, 0.05; SD, 0.01 mol/mol apoB-100). These findings support the hypothesis that pathways involving metal catalysed oxidation of LDL apoB-100 are of pathological importance in atherogenesis.
Collapse
Affiliation(s)
- J Pietzsch
- Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf, PO Box 510119, D-01314 Dresden, Germany.
| | | |
Collapse
|
23
|
Pietzsch J, Kopprasch S, Bergmann R. Analysis of 3-chlorotyrosine as a specific marker of protein oxidation: the use of N(O,S)-ethoxycarbonyltrifluoroethyl ester derivatives and gas chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:767-770. [PMID: 12672128 DOI: 10.1002/rcm.977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
N(O,S)-ethoxycarbonyltrifluoroethyl amino acid esters are formed by the reaction of amino acids with ethylchloroformate plus trifluoroethanol plus pyridine. The use of these derivatives for a rapid and sensitive determination of 3-chlorotyrosine, a highly specific marker of myeloperoxidase-catalyzed protein oxidation, by using standard gas chromatography/electron impact mass spectrometry, is discussed.
Collapse
Affiliation(s)
- Jens Pietzsch
- Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, PO Box 51 01 19, 01314 Dresden, Germany.
| | | | | |
Collapse
|
24
|
Abstract
Increased LDL oxidation is associated with coronary artery disease. The predictive value of circulating oxidized LDL is additive to the Global Risk Assessment Score for cardiovascular risk prediction based on age, gender, total and HDL cholesterol, diabetes, hypertension, and smoking. Circulating oxidized LDL does not originate from extensive metal ion-induced oxidation in the blood but from mild oxidation in the arterial wall by cell-associated lipoxygenase and/or myeloperoxidase. Oxidized LDL induces atherosclerosis by stimulating monocyte infiltration and smooth muscle cell migration and proliferation. It contributes to atherothrombosis by inducing endothelial cell apoptosis, and thus plaque erosion, by impairing the anticoagulant balance in endothelium, stimulating tissue factor production by smooth muscle cells, and inducing apoptosis in macrophages. HDL cholesterol levels are inversely related to risk of coronary artery disease. HDL prevents atherosclerosis by reverting the stimulatory effect of oxidized LDL on monocyte infiltration. The HDL-associated enzyme paraoxonase inhibits the oxidation of LDL. PAF-acetyl hydrolase, which circulates in association with HDL and is produced in the arterial wall by macrophages, degrades bioactive oxidized phospholipids. Both enzymes actively protect hypercholesterolemic mice against atherosclerosis. Oxidized LDL inhibits these enzymes. Thus, oxidized LDL and HDL are indeed antagonists in the development of cardiovascular disease.
Collapse
MESH Headings
- 1-Alkyl-2-acetylglycerophosphocholine Esterase
- Animals
- Aryldialkylphosphatase
- Coronary Artery Disease/etiology
- Esterases/metabolism
- Humans
- Lipoproteins, HDL/antagonists & inhibitors
- Lipoproteins, HDL/physiology
- Lipoproteins, LDL/antagonists & inhibitors
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/physiology
- Membrane Proteins
- Mice
- Models, Cardiovascular
- Phospholipases A/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Thrombosis/etiology
Collapse
Affiliation(s)
- A Mertens
- Center for Experimental Surgery and Anesthesiology, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
25
|
Pietzsch J, Julius U. Different susceptibility to oxidation of proline and arginine residues of apolipoprotein B-100 among subspecies of low density lipoproteins. FEBS Lett 2001; 491:123-6. [PMID: 11226433 DOI: 10.1016/s0014-5793(01)02181-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
gamma-Glutamyl semialdehyde is a primary oxidation product of apolipoprotein (apo) B-100 proline (Pro) and arginine (Arg) side chain residues. By reduction gamma-glutamyl semialdehyde forms 5-hydroxy-2-aminovaleric acid (HAVA). Here we describe the application of sensitive and specific HAVA measurement to characterize the formation of gamma-glutamyl semialdehyde in several domains of apoB-100 in LDL(1) (S(f) 7-12) and LDL(2) (S(f) 0-7) subfractions subjected to oxidative damage in the presence of iron in vitro. Results suggest that susceptibility of apoB-100 Pro and Arg residues toward oxygen radicals drastically changes along the lipoprotein metabolic cascade.
Collapse
Affiliation(s)
- J Pietzsch
- Institute and Policlinic of Clinical Metabolic Research, Medical Faculty Carl Gustav Carus, Technical University, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | | |
Collapse
|
26
|
Requena JR, Chao CC, Levine RL, Stadtman ER. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci U S A 2001; 98:69-74. [PMID: 11120890 PMCID: PMC14546 DOI: 10.1073/pnas.98.1.69] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metal-catalyzed oxidation results in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. Spectrophotometric measurement of these moieties, after their reaction with 2,4-dinitrophenylhydrazine, is a simple, accurate technique that has been widely used to reveal increased levels of protein carbonyls in aging and disease. We have initiated studies aimed at elucidating the chemical nature of protein carbonyls. Methods based on gas chromatography/mass spectrometry with isotopic dilution were developed for the quantitation of glutamic and aminoadipic semialdehydes after their reduction to hydroxyaminovaleric and hydroxyaminocaproic acids. Analysis of model proteins oxidized in vitro by Cu2+/ascorbate revealed that these two compounds constitute the majority of protein carbonyls generated. Glutamic and aminoadipic semialdehydes were also detected in rat liver proteins, where they constitute approximately 60% of the total protein carbonyl value. Aminoadipic semialdehyde was also measured in protein extracts from HeLa cells, and its level increased as a consequence of oxidative stress to cell cultures. These results indicate that glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins, and that this reaction is a major route leading to the generation of protein carbonyls in biological samples.
Collapse
Affiliation(s)
- J R Requena
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 3, Room 222, 3 Center Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
27
|
Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci U S A 2001. [PMID: 11120890 PMCID: PMC14546 DOI: 10.1073/pnas.011526698] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metal-catalyzed oxidation results in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. Spectrophotometric measurement of these moieties, after their reaction with 2,4-dinitrophenylhydrazine, is a simple, accurate technique that has been widely used to reveal increased levels of protein carbonyls in aging and disease. We have initiated studies aimed at elucidating the chemical nature of protein carbonyls. Methods based on gas chromatography/mass spectrometry with isotopic dilution were developed for the quantitation of glutamic and aminoadipic semialdehydes after their reduction to hydroxyaminovaleric and hydroxyaminocaproic acids. Analysis of model proteins oxidized in vitro by Cu2+/ascorbate revealed that these two compounds constitute the majority of protein carbonyls generated. Glutamic and aminoadipic semialdehydes were also detected in rat liver proteins, where they constitute approximately 60% of the total protein carbonyl value. Aminoadipic semialdehyde was also measured in protein extracts from HeLa cells, and its level increased as a consequence of oxidative stress to cell cultures. These results indicate that glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins, and that this reaction is a major route leading to the generation of protein carbonyls in biological samples.
Collapse
|
28
|
Pietzsch J, Lattke P, Julius U. Oxidation of apolipoprotein B-100 in circulating LDL is related to LDL residence time. In vivo insights from stable-isotope studies. Arterioscler Thromb Vasc Biol 2000; 20:E63-7. [PMID: 11031225 DOI: 10.1161/01.atv.20.10.e63] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-Hydroxy-2-aminovaleric acid (HAVA) has been suggested to be a specific marker of oxidation of apolipoprotein (apo) B-100 proline (Pro) and arginine (Arg) side-chain residues in low density lipoprotein (LDL) in vitro. Here we describe the application of sensitive mass spectrometric techniques to the characterization of Pro/Arg-modified apoB-100 in LDL(1) (S(f) 7 to 12) and LDL(2) (S(f) 0 to 7) in vivo. We studied 7 subjects with familial defective apoB-100 (FDB) and 8 normolipidemic controls. In FDB subjects, the presence of a mutant apoB-100 (FDB(3500Q)) in LDL markedly reduced its affinity for the LDL receptor, leading to increased residence times (RTs) of LDL(1) (65+/-21 versus 32+/-12 hours, P<0.005) and LDL(2) (230+/-40 versus 53+/-7 hours, P:<0.001) when compared with controls, as determined by stable-isotope turnover studies. LDL(1) HAVA content was not different between the groups (FDB, 0.004+/-0. 001 mol/mol apoB-100 versus controls, 0.003+/-0.001 mol/mol apoB-100, P=0.200). LDL(2) HAVA content was higher in FDB subjects (0. 374+/-0.088 versus 0.013+/-0.002 mol/mol apoB-100, P<0.001). In both groups, LDL(2) HAVA was positively associated with LDL(2) RT (FDB, r=0.893, P:=0.003; controls, r=0.976, P=0.000) and negatively correlated with LDL(2) alpha-tocopherol content (FDB, r=-0.929, P=0. 003; controls, r=-0.903, P=0.002). No significant correlations could be found between LDL(1) HAVA, LDL(1) RT, and alpha-tocopherol, respectively. The low LDL(1) HAVA content observed in both FDB and control groups was thought to be due to the relatively lower RT as well as the higher alpha-tocopherol content of these lipoproteins. In contrast, LDL(2) seemed to be strongly prone to direct oxidation of apoB-100 in vivo. The longer these particles linger in the circulation, the more apoB-100 Pro/Arg residues become modified.
Collapse
Affiliation(s)
- J Pietzsch
- Institute and Polyclinic of Clinical Metabolic Research, Technical University Dresden, Dresden, Germany.
| | | | | |
Collapse
|