1
|
Cohen D, Papillon J, Aoudjit L, Li H, Cybulsky AV, Takano T. Role of calcium-independent phospholipase A2 in complement-mediated glomerular epithelial cell injury. Am J Physiol Renal Physiol 2008; 294:F469-79. [DOI: 10.1152/ajprenal.00372.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In experimental membranous nephropathy, complement C5b-9-induced glomerular epithelial cell (GEC) injury leads to morphological changes in GEC and proteinuria, in association with phospholipase A2 (PLA2) activation. The present study addresses the role of calcium-independent PLA2 (iPLA2) in GEC injury. iPLA2β short and iPLA2γ were expressed in cultured rat GEC and normal rat glomeruli. To determine whether iPLA2 is involved in complement-mediated arachidonic acid (AA) release, GEC were stably transfected with iPLA2γ or iPLA2β cDNAs (GEC-iPLA2γ; GEC-iPLA2β). Compared with control cells (GEC-Neo), GEC-iPLA2γ and GEC-iPLA2β demonstrated greater expression of iPLA2 proteins and activities. Complement-mediated release of [3H]AA was augmented significantly in GEC-iPLA2γ compared with GEC-Neo, and the augmented [3H]AA release was inhibited by the iPLA2-directed inhibitor bromoenol lactone (BEL). For comparison, overexpression of iPLA2γ also amplified [3H]AA release after incubation of GEC with H2O2, or chemical anoxia followed by reexposure to glucose (in vitro ischemia-reperfusion injury). In parallel with release of [3H]AA, complement-mediated production of prostaglandin E2 was amplified in GEC-iPLA2γ. Complement-mediated cytotoxicity was attenuated significantly in GEC-iPLA2γ compared with GEC-Neo, and the cytoprotective effect of iPLA2γ was reversed by BEL, and in part by indomethacin. Overexpression of iPLA2β did not amplify complement-dependent [3H]AA release, but nonetheless attenuated complement-mediated cytotoxicity. Thus iPLA2γ may be involved in complement-mediated release of AA. Expression of iPLA2γ or iPLA2β induces cytoprotection against complement-dependent GEC injury. Modulation of iPLA2 activity may prove to be a novel approach to reducing GEC injury.
Collapse
|
2
|
Poulsen KA, Pedersen SF, Kolko M, Lambert IH. Induction of group VIA phospholipase A2activity during in vitro ischemia in C2C12 myotubes is associated with changes in the level of its splice variants. Am J Physiol Cell Physiol 2007; 293:C1605-15. [PMID: 17804611 DOI: 10.1152/ajpcell.00012.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The involvement of group VI Ca2+-independent PLA2s (iPLA2-VI) in in vitro ischemia [oxygen and glucose deprivation (OGD)] in mouse C2C12 myotubes was investigated. OGD induced a time-dependent (0–6 h) increase in bromoenol lactone (BEL)-sensitive iPLA2activity, which was suppressed by specific short interfering (si)RNA knockdown of iPLA2-VIA. OGD was associated with an increase in iPLA2-VIA protein levels, whereas mRNA levels were unchanged. The levels of iPLA2-VIB mRNA and protein were not increased by OGD. RT-PCR and Western blot analysis identified a mouse iPLA2-VIA homolog to catalytically inactive 50-kDa iPLA2-VIA-ankyrin variants previously identified in humans. Both the mRNA and protein levels of this ∼50-kDa variant were reduced significantly within 1 h following OGD. In C2C12 myoblasts, iPLA2-VIA seemed to predominantly reside at the endoplasmatic reticulum, where it accumulated further during OGD. A time-dependent reduction in cell viability during the early OGD period (3 h) was partially prevented by iPLA2-VIA knockdown or pharmacological inhibition (10 μM BEL), whereas iPLA2-VIA overexpression had no effect on cell viability. Taken together, these data demonstrate that OGD in C2C12 myotubes is associated with an increase in iPLA2-VIA activity that decreases cell viability. iPLA2-VIA activation may be modulated by changes in the levels of active and inactive iPLA2-VIA isoforms.
Collapse
Affiliation(s)
- K A Poulsen
- Dept. of Molecular Biology, Univ. of Copenhagen, Universitetsparken 13, Copenhagen Ø DK-2100, Denmark.
| | | | | | | |
Collapse
|
3
|
Blanc L, Barres C, Bette-Bobillo P, Vidal M. Reticulocyte-secreted exosomes bind natural IgM antibodies: involvement of a ROS-activatable endosomal phospholipase iPLA2. Blood 2007; 110:3407-16. [PMID: 17666570 DOI: 10.1182/blood-2007-04-085845] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reticulocytes release small membrane vesicles termed exosomes during their maturation into erythrocytes. It has been suggested that reticulocytes remodel the plasma membrane of the immature red cell during erythropoiesis by specifically eliminating various proteins. We report here that exosome release is associated with a physiologic cascade induced by the expression of a 15-lipoxygenase at the reticulocyte stage. We found that the phospholipase iPLA2 specifically associated with the endosomal and exosomal membranes could be activated by reactive oxygen species (ROSs) produced during mitochondria degeneration induced by 15-lipoxygenase. Since iPLA2 has recently been demonstrated to participate in the clearance of apoptotic cells, we investigated its role in vesicle removal. We found that exosomes isolated directly from the blood of an anemic rat or released during in vitro maturation of rat reticulocytes bind IgM antibodies on their surface, in contrast to immature and mature red cells. These natural IgM antibodies recognize lysophosphatidylcholine and are able to specifically bind to apoptotic cells. Finally, evidence of C3 deposition on the exosome surface leads us to hypothesize that this cascade may favor the clearance of exosomes by cells once released into the bloodstream, via a mechanism similar to that involved in the elimination of apoptotic cells.
Collapse
Affiliation(s)
- Lionel Blanc
- Dynamique des Interactions Membranaìres Normales et Pathologiques, Université Montpellier II et I, Centre National de la Recherche Scientifique (Unité Mixte de Recherche [UMR] 5235), Montpellier 34095, France
| | | | | | | |
Collapse
|
4
|
Poulsen KA, Young JF, Theil P, Kolko M, Oksbjerg N, Lambert IH. Role of phospholipase A2 in the induction of drip loss in porcine muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:1970-6. [PMID: 17288434 DOI: 10.1021/jf062341n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The role of phospholipase A2 in the induction of drip loss from pig muscle has been investigated. In samples from porcine M. longissimus dorsi, total PLA2 activity as well as mRNA and protein levels of the group VIA iPLA2 (iPLA2-VIA) increased during the initial 4 h post-mortem period. Morphological studies of porcine muscle showed that at 4 h post-mortem, gaps had formed between muscle fibers and that the sarcolemma membrane borders appeared blurred. At the same time iPLA2-VIA protein levels were increased inside muscle fibers and at the sarcolemma. iPLA2-VIA mRNA abundance in samples from different breeds of pigs with variations in drip loss revealed no clear correlation between drip loss level and iPLA2-VIA expression. Together, these data indicate that during the post-mortem period, iPLA2-VIA expression and activity is increased at the muscle fiber membranes. PLA2 activity may affect membrane permeability and consequently the progression of drip formation in porcine muscle.
Collapse
Affiliation(s)
- Kristian A Poulsen
- Institute of Molecular Biology, The August Krogh Building, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
5
|
Balboa MA, Balsinde J. Oxidative stress and arachidonic acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:385-91. [PMID: 16651022 DOI: 10.1016/j.bbalip.2006.03.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species are known to contribute to tissue damage during injury and inflammation. However, these species can also be sensed by the cells and trigger intracellular signaling cascades. This review examines recent evidence on the involvement of reactive oxygen species in lipid signaling. Attention is focused on activation of phospholipase A2s, enzymes whose action on membrane phospholipids can also render molecules with opposite effects on cells. The participation of Ca2+-dependent and Ca2+-independent phospholipase A2s in arachidonic acid mobilization from phospholipids is discussed, with particular attention to the interplay between cytosolic and secreted Ca2+-dependent forms. The involvement of alternative routes for arachidonic acid mobilization under oxidative stress is also considered.
Collapse
Affiliation(s)
- María A Balboa
- Institute of Molecular Biology and Genetics Spanish Research Council and University of Valladolid School of Medicine Calle Sanz y Forés s/n,47003 Valladolid, Spain
| | | |
Collapse
|
6
|
Chalimoniuk M, Głowacka J, Zabielna A, Eckert A, Strosznajder JB. Nitric oxide alters arachidonic acid turnover in brain cortex synaptoneurosomes. Neurochem Int 2005; 48:1-8. [PMID: 16216387 DOI: 10.1016/j.neuint.2005.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) and arachidonic acid (AA) and also its metabolites are very important inter- and intracellular second messengers. They are involved in mechanisms of learning and memory. However, liberated in excessive amount in brain ischemia, Parkinson and Alzheimer diseases they are responsible for cell degeneration and death. Previously, we could show that Alzheimer disease's amyloid-beta protein enhanced nitric oxide liberation. The role of NO in AA metabolism is till now not well understood. Therefore, the aim of the present study was to investigate the mechanisms of NO-evoked activation of AA release and inhibition of AA incorporation into phospholipids of cortical rat brain synaptoneurosomes. The studies were carried out using NO donors, butyryl-cGMP (b-cGMP) and H2O2. All these compounds enhanced AA liberation from phosphatydilinositol (PI) and phosphatidylcholine (PC). Protein kinase ERK1/2, protein kinase C (PKC), cGMP-dependent protein kinase G (PKG) were involved in basal and NO-induced cytosolic phospholipase A2 (cPLA2) activation. Moreover, NO donors, b-cGMP and hydrogen peroxide (H2O2) exerted inhibitory effect on AA incorporation into PI and PC influencing arachidonyl-CoA transferase (AA-CoA-T) activity. AA-CoA synthase (AA-CoA-S) activity did not change. Specific inhibitors of protein kinase ERK1/2 (UO126), PKC (GF109203X), PKG (KT5823) had no effect on NO-mediated lowering of AA incorporation into PI and PC but inhibited the basal AA-CoA-S activity. Our data indicated that AA (10 microM) itself markedly decreased AA incorporation by about 50% into phospholipids of synaptoneurosomes membranes. Increasing release of AA and its metabolites causes the lowering of AA incorporation evoked by NO, b-cGMP and H2O2. Antioxidant, Resveratrol (100 microM) prevented NO- and cGMP-evoked inhibition of AA incorporation. These results suggest that NO affects the intracellular level of AA through alteration of cPLA2 and AA-CoA acyltransferase activities and may have an important implication in alterations of nerve endings properties and function.
Collapse
Affiliation(s)
- Małgorzata Chalimoniuk
- Department of Cellular Signaling, Medical Research Centre, Polish Academy of Sciences, Pawińskiego Street 5, 02-106 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
7
|
Pérez R, Melero R, Balboa MA, Balsinde J. Role of group VIA calcium-independent phospholipase A2 in arachidonic acid release, phospholipid fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen peroxide. J Biol Chem 2004; 279:40385-91. [PMID: 15252038 DOI: 10.1074/jbc.m402562200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group VIA calcium-independent phospholipase A2 (iPLA2) has been shown to play a major role in regulating basal phospholipid deacylation reactions in certain cell types. More recently, roles for this enzyme have also been suggested in the destruction of membrane phospholipid during apoptosis and after oxidant injury. Proposed iPLA2 roles have rested heavily on the use of bromoenol lactone as an iPLA2-specific inhibitor, but this compound actually inhibits other enzymes and lipid pathways unrelated to PLA2, which makes it difficult to define the contribution of iPLA2 to specific functions. In previous work, we pioneered the use of antisense technology to decrease cellular iPLA2 activity as an alternative approach to study iPLA2 functions. In the present study, we followed the opposite strategy and prepared U937 cells that exhibited enhanced iPLA activity by stably expressing a plasmid containing iPLA2 cDNA. Compared with control cells, the iPLA2 -overexpressing U937 cells showed elevated responses to hydrogen peroxide with regard to both arachidonic acid mobilization and incorporation of the fatty acid into phospholipids, thus providing additional evidence for the key role that iPLA2 plays in these events. Long-term exposure of the cells to hydrogen peroxide resulted in cell death by apoptosis, and this process was accelerated in the iPLA2-overexpressing cells. Increased phospholipid hydrolysis and fatty acid release also occurred in these cells. Unexpectedly, however, abrogation of U937 cell iPLA2 activity by either methyl arachidonyl fluorophosphonate or an antisense oligonucleotide did not delay or decrease the extent of apoptosis induced by hydrogen peroxide. These results indicate that, although iPLA2-mediated phospholipid hydrolysis occurs during apoptosis, iPLA2 may actually be dispensable for the apoptotic process to occur. Thus, beyond a mere destructive role, iPLA2 may play other roles during apoptosis.
Collapse
Affiliation(s)
- Rebeca Pérez
- Institute of Molecular Biology and Genetics, University of Valladolid School of Medicine, 47005 Valladolid, Spain
| | | | | | | |
Collapse
|
8
|
Abstract
The catalytic activity of calcium-independent phospholipase A2 (iPLA2), which is classified as a group VI PLA2, is regulated by protein kinase C, calmodulin, and others such as reactive oxygen species. Numerous findings have shown that iPLA2 is involved in stimulus-induced arachidonic acid release and lysophospholipid generation, although the participation is dependent upon the cell type and stimulus. The catalytic action of iPLA2 is known to be responsible for phospholipid remodeling as a housekeeping function. However, it has been widely accepted that arachidonic acid and lysophospholipid generated by iPLA2 act as a signaling molecule in cellular functions. Those include eicosanoid production, glucose-induced insulin secretion, Fas-induced apoptosis, cellular proliferation, membrane traffic in fusion, contribution to myocardial ischemia, and others. In this review, the functional role of iPLA2 in cellular responses upon stimulation is the focus.
Collapse
Affiliation(s)
- Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | |
Collapse
|
9
|
Abstract
Excessive generation of reactive oxygen species (ROS) in the central nervous system (CNS) is a leading cause of neuronal injury. Despite yet unknown mechanisms, oxidant compounds such as H(2)O(2) have been shown to stimulate the release of arachidonic acid (AA) in a number of cell systems. In this study, H(2)O(2) and menadione, a compound known to release H(2)O(2) intracellularly, were used to examine the phospholipases A(2) (PLA(2)) responsible for AA release from primary murine astrocytes. Both H(2)O(2) and menadione dose-dependently stimulated AA release, and the release mediated by H(2)O(2) was completely inhibited by catalase. H(2)O(2) also stimulated phosphorylation of extracellular signal-regulated kinases (ERK1/2) and cytosolic phospholipase A(2) (cPLA(2)). However, complete inhibition of cPLA(2) phosphorylation by U0126, an inhibitor for mitogen-activated protein kinase kinase (MEK) and GF109203x, a nonselective PKC inhibitor preferring the conventional and novel isoforms, only reduced H(2)O(2)-stimulated AA release by 50%. MAFP, a selective, active, site-directed, irreversible inhibitor of both cPLA(2) and the Ca(2+)-independent iPLA(2), nearly completely inhibited H(2)O(2)-mediated AA release; but, HELSS, a potent irreversible inhibitor of iPLA(2), only inhibited H(2)O(2)-mediated AA release by 40%. Along with the observation that H(2)O(2)-mediated AA release was only partially inhibited upon chelating intracellular Ca(2+) by BAPTA, these results indicate the involvement of both cPLA(2) and iPLA(2) in H(2)O(2)-mediated AA release in murine astrocytes.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Biochemistry, University of Missouri, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
10
|
Asai K, Hirabayashi T, Houjou T, Uozumi N, Taguchi R, Shimizu T. Human group IVC phospholipase A2 (cPLA2gamma). Roles in the membrane remodeling and activation induced by oxidative stress. J Biol Chem 2003; 278:8809-14. [PMID: 12502717 DOI: 10.1074/jbc.m212117200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To create the unique properties of a certain cellular membrane, both the composition and the metabolism of membrane phospholipids are key factors. Phospholipase A(2) (PLA(2)), with hydrolytic enzyme activities at the sn-2 position in glycerophospholipids, plays critical roles in maintaining the phospholipid composition as well as producing bioactive lipid mediators. In this study we examined the contribution of a Ca(2+)-independent group IVC PLA(2) isozyme (cPLA(2)gamma), a paralogue of cytosolic PLA(2)alpha (cPLA(2)alpha), to phospholipid remodeling. The enzyme was localized in the endoplasmic reticulum and Golgi apparatus, as seen using green fluorescence fusion proteins. Electrospray ionization mass spectrometric analysis of membrane extracts revealed that overexpression of cPLA(2)gamma increased the proportion of polyunsaturated fatty acids in phosphatidylethanolamine, suggesting that the enzyme modulates the phospholipid composition. We also found that H(2)O(2) and other hydroperoxides induced arachidonic acid release in cPLA(2)gamma-transfected human embryonic kidney 293 cells, possibly through the tyrosine phosphorylation pathway. Thus, we propose that cPLA(2)gamma is constitutively expressed in the endoplasmic reticulum and plays important roles in remodeling and maintaining membrane phospholipids under various conditions, including oxidative stress.
Collapse
Affiliation(s)
- Kenji Asai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Core Research for Evolutional Science and Technology of the Japan Science and Technology Corporation, Hongo 7-3-1, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Prabhu R, Balasubramanian KA. Effect of oxidants on small intestinal brush border membranes and colonic apical membranes--a comparative study. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134:329-39. [PMID: 12643980 DOI: 10.1016/s1532-0456(02)00250-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study compares composition of the rat small intestinal brush border membranes (BBM) and colonic apical membranes (CAM) and their susceptibility to in vitro exposure to various oxidants. Differences were observed between BBM and CAM in their lipid composition, sugar content, alkaline phosphatase (ALP) activity and cholesterol/phospholipid ratio. BBM and CAM were exposed to superoxide generated by xanthine+xanthine oxidase (X-XO) or peroxides such as tertiary butyl hydroperoxide (tBuOOH) and hydrogen peroxide (H(2)O(2)) and alterations in ALP activity, peroxidation parameters and membrane lipids were analyzed. Exposure of BBM and CAM to superoxide resulted in decrease in ALP activity and increase in peroxidation parameters such as protein carbonyl content, malondialdehyde and conjugated diene. Superoxide exposure also resulted in lipid alterations specifically in certain phospholipids. These alterations were prevented either by superoxide dismutase or by allopurinol. Peroxides did not have any significant effect. These results suggest that both BBM and CAM are susceptible to superoxide, which can bring about peroxidation and degradation of membrane lipids specifically, certain phospholipids.
Collapse
Affiliation(s)
- R Prabhu
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, India
| | | |
Collapse
|
12
|
Balboa MA, Balsinde J. Involvement of calcium-independent phospholipase A2 in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells. J Biol Chem 2002; 277:40384-9. [PMID: 12181317 DOI: 10.1074/jbc.m206155200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that U937 cells are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in response to receptor-directed and soluble stimuli by a mechanism that involves the activation of Group IV cytosolic phospholipase A(2)alpha. In this paper we show that these cells also mobilize AA in response to an oxidative stress induced by H(2)O(2) through a mechanism that appears not to be mediated by cytosolic phospholipase A(2)alpha but by the calcium-independent Group VI phospholipase A(2) (iPLA(2)). This is supported by the following lines of evidence: (i) the response is essentially calcium-independent, (ii) it is inhibited by bromoenol lactone, and (iii) it is inhibited by an iPLA(2) antisense oligonucleotide. Enzyme assays conducted under a variety of conditions reveal that the specific activity of the iPLA(2) does not change as a result of H(2)O(2) exposure, which argues against the activation of a specific signaling cascade ending in the iPLA(2). Rather, the oxidant acts to perturb membrane homeostasis in a way that the enzyme susceptibility/accessibility to its substrate increases, and this results in altered fatty acid release. In support of this view, not only AA, but also other fatty acids, were found to be liberated in an iPLA(2)-dependent manner in the H(2)O(2)-treated cells. Collectively, these studies underscore the importance of the iPLA(2) in modulating homeostatic fatty acid deacylation reactions and document a potentially important route under pathophysiological conditions for increasing free fatty acid levels during oxidative stress.
Collapse
Affiliation(s)
- María A Balboa
- Institute of Molecular Biology and Genetics, School of Medicine, University of Valladolid, Avenida Ramón y Cajal 7, E-47005 Valladolid, Spain
| | | |
Collapse
|
13
|
Hayama M, Inoue R, Akiba S, Sato T. ERK and p38 MAP kinase are involved in arachidonic acid release induced by H(2)O(2) and PDGF in mesangial cells. Am J Physiol Renal Physiol 2002; 282:F485-91. [PMID: 11832430 DOI: 10.1152/ajprenal.00210.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased prostaglandin production is implicated in the pathogenesis of glomerular disease. With this consideration, we examined the combined effects of reactive oxygen species and platelet-derived growth factor (PDGF), which might initiate glomerular dysfunction, on arachidonic acid release and cytosolic phospholipase A(2) (cPLA(2)) activation in rat mesangial cells. H(2)O(2)-induced release of arachidonic acid was enhanced by PDGF, which by itself had little effect on the release, and the enhancement was completely inhibited by a cPLA(2) inhibitor. The phosphorylation of cPLA(2), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein (MAP) kinase was upregulated by H(2)O(2) or PDGF alone and except for ERK was enhanced further by the two in combination. The release of arachidonic acid induced by PDGF together with H(2)O(2) was inhibited partially by an inhibitor of ERK or p38 MAP kinase and completely when the two inhibitors were combined; the inhibitory pattern was similar to that for the phosphorylation of cPLA(2). These results suggest that the ERK and p38 MAP kinase pathways are involved in the increase in cPLA(2) activation and arachidonic acid release induced by PDGF together with H(2)O(2).
Collapse
Affiliation(s)
- Misako Hayama
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|
14
|
Martínez J, Moreno JJ. Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species. Arch Biochem Biophys 2001; 392:257-62. [PMID: 11488600 DOI: 10.1006/abbi.2001.2439] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that reactive oxygen species (ROS) enhance arachidonic acid (AA) release and the subsequent AA metabolism in macrophages. The purpose of this study was determined the implication of phospholipases A2 (PLA2s) in these events. Our results show that oxidative stress induced by exogenous adding of hydrogen peroxide or superoxide anion in macrophage RAW 264.7 and mouse peritoneal macrophage cultures caused a marked enhancement of calcium-independent PLA2 (iPLA2) activity,whereas the increment of secreted PLA2 (sPLA2) and calcium-dependent cytosolic PLA2 (cPLA2) activities were slight. This increase of iPLA2 activity by ROS was rapid and dose-dependent. ROS also induced a significant [3H] arachidonic acid (AA) release. The iPLA2 selective inhibitor, bromoenol lactone, almost completely suppressed the mobilization of [3H]AA induced by ROS whereas antisense oligonucleotide against cPLA2 did not have any appreciable effect. Thus, our data show that iPLA2 activity is involved in the mechanism by which ROS increases the availability of free AA in macrophages RAW 264.7. Moreover, the protein kinase C (PKC) inhibitor, calphostin C, and calcium chelators had no effect on the [3H]AA release induced by ROS, suggesting this is a regulatory role of iPLA2.
Collapse
Affiliation(s)
- J Martínez
- Department of Physiology, Faculty of Pharmacy, Barcelona University, Avda. Joan XXIII s/n, Barcelona, E-08028, Spain
| | | |
Collapse
|