1
|
Fuchs RM, Reed JR, Connick JP, Paloncýová M, Šrejber M, Čechová P, Otyepka M, Eyer MK, Backes WL. Identification of the N-terminal residues responsible for the differential microdomain localization of CYP1A1 and CYP1A2. J Biol Chem 2024; 300:107891. [PMID: 39447873 PMCID: PMC11603000 DOI: 10.1016/j.jbc.2024.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The endoplasmic reticulum is organized into ordered regions enriched in cholesterol and sphingomyelin, and disordered microdomains characterized by more fluidity. Rabbit CYP1A1 and CYP1A2 localize into disordered and ordered microdomains, respectively. Previously, a CYP1A2 chimera containing the first 109 amino acids of CYP1A1 showed altered microdomain localization. The goal of this study was to identify specific residues responsible for CYP1A microdomain localization. Thus, CYP1A2 chimeras containing substitutions from homologous regions of CYP1A1 were expressed in HEK 293T/17 cells, and the localization was examined after solubilization with Brij 98. A CYP1A2 mutant with the three amino acids from CYP1A1 (VAG) at positions 27 to 29 of CYP1A2 was generated that showed a distribution pattern similar to those of CYP1A1/1A2 chimeras containing both the first 109 amino acids and the first 31 amino acids of CYP1A1 followed by remaining amino acids of CYP1A2. Similarly, the reciprocal substitution of three amino acids from CYP1A2 (AVR) into CYP1A1 resulted in a partial redistribution of the chimera into ordered microdomains. Molecular dynamic simulations indicate that the positive charges of the CYP1A1 and CYP1A2 linker regions between the N termini and catalytic domains resulted in different depths of immersion of the N termini in the membrane. The overlap of the distribution of positively charged residues in CYP1A2 (AVR) and negatively charged phospholipids was higher in the ordered than in the disordered microdomain. These findings identify three residues in the CYP1AN terminus as a novel microdomain-targeting motif of the P450s and provide a mechanistic explanation for the differential microdomain localization of CYP1A.
Collapse
Affiliation(s)
- Robert M Fuchs
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - James R Reed
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - J Patrick Connick
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Šrejber
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Petra Čechová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic; IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Marilyn K Eyer
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA.
| |
Collapse
|
2
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
3
|
Reed JR, Backes WL. The functional effects of physical interactions involving cytochromes P450: putative mechanisms of action and the extent of these effects in biological membranes. Drug Metab Rev 2017; 48:453-69. [PMID: 27500687 DOI: 10.1080/03602532.2016.1221961] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 represent a family of enzymes, which are responsible for the oxidative metabolism of a wide variety of xenobiotics. Although the mammalian P450s require interactions with their redox partners in order to function, more recently, P450 system proteins have been shown to exist as multi-protein complexes that include the formation of P450•P450 complexes. Evidence has shown that the metabolism of some substrates by a given P450 can be influenced by the specific interaction of the enzyme with other forms of P450. Detailed kinetic analysis of these reactions in vitro has shown that the P450-P450 interactions can alter metabolism by changing the ability of a P450 to bind to its cognate redox partner, NADPH-cytochrome P450 reductase; by altering substrate binding to the affected P450; and/or by changing the rate of a catalytic step of the reaction cycle. This review summarizes the known examples of P450-P450 interactions that have been shown in vitro to influence metabolism and categorizes them according to the mechanism(s) causing the effects. P450-P450 interactions have the potential to cause major changes in the metabolism and elimination of drugs in vivo. This review summarizes the evidence that the P450-P450 interactions influence metabolism in biological membranes and discusses the studies, which will provide further insight into the extent of these effects in the future.
Collapse
Affiliation(s)
- James R Reed
- a Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Wayne L Backes
- a Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
4
|
Reed JR, Backes WL. Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Front Pharmacol 2017; 8:28. [PMID: 28194112 PMCID: PMC5276844 DOI: 10.3389/fphar.2017.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 enzymes, which catalyze oxygenation reactions of both exogenous and endogenous chemicals, are membrane bound proteins that require interaction with their redox partners in order to function. Those responsible for drug and foreign compound metabolism are localized primarily in the endoplasmic reticulum of liver, lung, intestine, and other tissues. More recently, the potential for P450 enzymes to exist as supramolecular complexes has been shown by the demonstration of both homomeric and heteromeric complexes. The P450 units in these complexes are heterogeneous with respect to their distribution and function, and the interaction of different P450s can influence P450-specific metabolism. The goal of this review is to examine the evidence supporting the existence of physical complexes among P450 enzymes. Additionally, the review examines the crystal lattices of different P450 enzymes derived from X-ray diffraction data to make assumptions regarding possible quaternary structures in membranes and in turn, to predict how the quaternary structures could influence metabolism and explain the functional effects of specific P450-P450 interactions.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans LA, USA
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans LA, USA
| |
Collapse
|
5
|
Davydov DR. Molecular organization of the microsomal oxidative system: a new connotation for an old term. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2016. [DOI: 10.1134/s1990750816010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Davydov DR. [Molecular organization of the microsomal oxidative system: a new connotation for an old term]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:176-87. [PMID: 25978385 DOI: 10.18097/pbmc20156102176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The central role that cytochromes P450 play in the metabolism of drugs and other xenobiotics makes these enzymes a major subject for studies of drug disposition, adverse drug effects and drug-drug interactions. Although there has been tremendous success in delineating P450 mechanisms, the concept of the drug-metabolizing ensemble as a functionally integrated system remains undeveloped. However, eukaryotic cells typically possess a multitude of different P450 enzymes that are co-localized in the membrane of endoplasmic reticulum (ER) and interact with each other with the formation of dynamic heteromeric complexes (mixed oligomers). Appreciation of the importance of developing an integral, systems approach to the ensemble of cytochromes P450 as an integral system inspired growing interest of researchers to the molecular organization of microsomal monooxygenase, which remained in the focus of research of academician Archakov for over 40 years. Fundamental studies carried out under his guidance have an important impact on our current concepts in this area. Further exploration of the molecular organization of the system of microsomal monooxygenase as an integral multienzyme and multifunctional system will have an essential impact on our understanding of the key factors that determine the changes in human drug metabolism and other P450-related functions in development, aging, and disease, as well as under influence of drugs, food ingredients, and environmental contaminants.
Collapse
Affiliation(s)
- D R Davydov
- Institute of Biomedical Chemistry, Moscow, Russia; Department of Chemistry, Washington State University, Washington, USA
| |
Collapse
|
7
|
Davydov DR, Davydova NY, Sineva EV, Halpert JR. Interactions among cytochromes P450 in microsomal membranes: oligomerization of cytochromes P450 3A4, 3A5, and 2E1 and its functional consequences. J Biol Chem 2015; 290:3850-64. [PMID: 25533469 PMCID: PMC4319048 DOI: 10.1074/jbc.m114.615443] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219-230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species.
Collapse
Affiliation(s)
- Dmitri R Davydov
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093 and the V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaya Str., Moscow 119832, Russia
| | - Nadezhda Y Davydova
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093 and
| | - Elena V Sineva
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093 and
| | - James R Halpert
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093 and
| |
Collapse
|
8
|
Reed JR, Cawley GF, Backes WL. Interactions between cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) lead to alterations in toluene disposition and P450 uncoupling. Biochemistry 2013; 52:4003-13. [PMID: 23675771 DOI: 10.1021/bi400422a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The goal of this study was to characterize the effects of CYP1A2·CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2·CYP2B4 complex in which the CYP1A2 moiety has a higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450·P450 interaction increased the rate of the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450·P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450·P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformational change in CYP1A2 that makes its metabolism more efficient.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
9
|
Abstract
INTRODUCTION There is increasing evidence of physical interactions (association) among cytochromes P450 in the membranes of the endoplasmic reticulum. Functional consequences of these interactions are often underestimated. AREAS COVERED This article provides a comprehensive overview of available experimental material regarding P450-P450 interactions. Special emphasis is given to the interactions between different P450 species and to the functional consequences of homo- and heterooligomerization. EXPERT OPINION Recent advances provide conclusive evidence for a substantial degree of P450 oligomerization in membranes. Interactions between different P450 species resulting in the formation of mixed oligomers with altered activity and substrate specificity have been demonstrated clearly. There are important indications that oligomerization impedes electron flow to a fraction of the P450 population, which renders some P450 species nonfunctional. Functional consequences of P450-P450 interactions make the integrated properties of the microsomal monooxygenase remarkably different from a simple summation of the properties of the individual P450 species. This complexity compromises the predictive power of the current in vitro models of drug metabolism and warrants an urgent need for development of new model systems that consider the interactions of multiple P450 species.
Collapse
Affiliation(s)
- Dmitri R Davydov
- University of California - San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Sun L, Wang Z, Jiang H, Tan X, Huang Z. Novel Conformational Transitions of Human Cytochrome P450 2C8 during Thermal and Acid-induced Unfolding. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Yang Y, Li C, Li W, Yi Z. Synthesis, Crystal Structure, Luminescence and Thermal Stability of a New Coordination Polymer Constructed by Europium(III) and 2,4-Dichlorophenoxyacetate. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Reed JR, Eyer M, Backes WL. Functional interactions between cytochromes P450 1A2 and 2B4 require both enzymes to reside in the same phospholipid vesicle: evidence for physical complex formation. J Biol Chem 2010; 285:8942-52. [PMID: 20071338 DOI: 10.1074/jbc.m109.076885] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450.P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR.CYP1A2, 2) CPR.CYP2B4, 3) a mixture of CPR.CYP1A2 vesicles with CPR.CYP2B4 vesicles, and 4) CPR.CYP1A2.CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology, Stanley S Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
13
|
Davydov DR, Sineva EV, Sistla S, Davydova NY, Frank DJ, Sligar SG, Halpert JR. Electron transfer in the complex of membrane-bound human cytochrome P450 3A4 with the flavin domain of P450BM-3: the effect of oligomerization of the heme protein and intermittent modulation of the spin equilibrium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:378-90. [PMID: 20026040 DOI: 10.1016/j.bbabio.2009.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/05/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
We studied the kinetics of NADPH-dependent reduction of human CYP3A4 incorporated into Nanodiscs (CYP3A4-ND) and proteoliposomes in order to probe the effect of P450 oligomerization on its reduction. The flavin domain of cytochrome P450-BM3 (BMR) was used as a model electron donor partner. Unlike CYP3A4 oligomers, where only 50% of the enzyme was shown to be reducible by BMR, CYP3A4-ND could be reduced almost completely. High reducibility was also observed in proteoliposomes with a high lipid-to-protein ratio (L/P=910), where the oligomerization equilibrium is displaced towards monomers. In contrast, the reducibililty in proteoliposomes with L/P=76 did not exceed 55+/-6%. The effect of the surface density of CYP3A4 in proteoliposomes on the oligomerization equilibrium was confirmed with a FRET-based assay employing a cysteine-depleted mutant labeled on Cys-468 with BODIPY iodoacetamide. These results confirm a pivotal role of CYP3A4 oligomerization in its functional heterogeneity. Furthermore, the investigation of the initial phase of the kinetics of CYP3A4 reduction showed that the addition of NADPH causes a rapid low-to-high-spin transition in the CYP3A4-BMR complex, which is followed by a partial slower reversal. This observation reveals a mechanism whereby the CYP3A4 spin equilibrium is modulated by the redox state of the bound flavoprotein.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Talakad JC, Wilderman PR, Davydov DR, Kumar S, Halpert JR. Rational engineering of cytochromes P450 2B6 and 2B11 for enhanced stability: Insights into structural importance of residue 334. Arch Biochem Biophys 2009; 494:151-8. [PMID: 19944064 DOI: 10.1016/j.abb.2009.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022]
Abstract
Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques.
Collapse
Affiliation(s)
- Jyothi C Talakad
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0703, USA.
| | | | | | | | | |
Collapse
|
15
|
Davydov DR, Halpert JR. Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 2008; 4:1523-35. [PMID: 19040328 PMCID: PMC2651226 DOI: 10.1517/17425250802500028] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
According to the initial hypothesis on the mechanisms of cooperativity in drug-metabolizing cytochromes P450, a loose fit of a single substrate molecule in the P450 active site results in a requirement for the binding of multiple ligand molecules for efficient catalysis. Although simultaneous occupancy of the active site by multiple ligands is now well established, there is increasing evidence that the mechanistic basis of cooperativity also involves an important ligand-induced conformational transition. Moreover, recent studies demonstrate that the conformational heterogeneity of the enzyme is stabilized by ligand-dependent interactions of several P450 molecules. Application of the concept of an oligomeric allosteric enzyme to microsomal cytochromes P450 in combination with a general paradigm of multiple ligand occupancy of the active site provides an excellent explanation for complex manifestations of the atypical kinetic behavior of the enzyme.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 9209, USA.
| | | |
Collapse
|
16
|
Davydov DR, Davydova NY, Halpert JR. Allosteric transitions in cytochrome P450eryF explored with pressure-perturbation spectroscopy, lifetime FRET, and a novel fluorescent substrate, Fluorol-7GA. Biochemistry 2008; 47:11348-59. [PMID: 18831537 PMCID: PMC2662524 DOI: 10.1021/bi8011803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To establish a direct method for monitoring substrate binding in cytochrome P450eryF applicable at elevated hydrostatic pressures, we introduce a laser dye Fluorol-7GA (F7GA) as a novel fluorescent ligand. The high intensity of fluorescence and the reasonable resolution of the excitation band from the absorbance bands of P450 allowed us to establish highly sensitive binding assays compatible with pressure perturbation. The interactions of F7GA with P450eryF cause an ample spin shift revealing cooperative binding ( S50 = 8.2 +/- 1.3 microM; n = 2.3 +/- 0.1). Fluorescence resonance energy transfer (FRET) experiments suggest the presence of at least two substrate binding sites with apparent K D values in the ranges of 0.1-0.3 and 6-9 microM. Similar to that observed earlier with CYP3A4, increasing hydrostatic pressure does not cause either a complete dissociation of the substrate complexes or a displacement of the spin equilibrium toward the low-spin state. Rather, increased pressure enhances the cooperativity of the F7GA-induced spin shift, so that the Hill coefficient approaches 3 at 2 kbar. Lifetime FRET experiments revealed an important increase in the affinity of the enzyme for F7GA at elevated pressures, suggesting that the binding of the ligand induces a conformational transition associated with an important increase in the level of protein hydration. This transition largely attenuates the solvent accessibility of the heme pocket and causes an unusual stability of the high-spin, substrate-bound enzyme at elevated pressures.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0703, USA.
| | | | | |
Collapse
|
17
|
Fernando H, Halpert JR, Davydov DR. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein. Arch Biochem Biophys 2008; 471:20-31. [PMID: 18086551 PMCID: PMC2346489 DOI: 10.1016/j.abb.2007.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/10/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022]
Abstract
We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (K(D)=0.48 microM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or alpha-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| | - James R. Halpert
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| | - Dmitri R. Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| |
Collapse
|
18
|
Davydov DR, Baas BJ, Sligar SG, Halpert JR. Allosteric mechanisms in cytochrome P450 3A4 studied by high-pressure spectroscopy: pivotal role of substrate-induced changes in the accessibility and degree of hydration of the heme pocket. Biochemistry 2007; 46:7852-64. [PMID: 17555301 PMCID: PMC2527461 DOI: 10.1021/bi602400y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric mechanisms in human cytochrome P450 3A4 (CYP3A4) in oligomers in solution or monomeric enzyme incorporated into Nanodiscs (CYP3A4ND) were studied by high-pressure spectroscopy. The allosteric substrates 1-pyrenebutanol (1-PB) and testosterone were compared with bromocriptine (BCT), which shows no cooperativity. In both CYP3A4 in solution and CYP3A4ND, we observed a complete pressure-induced high-to-low spin shift at pressures of <3 kbar either in the substrate-free enzyme or in the presence of BCT. In addition, both substrate-free and BCT-bound enzyme revealed a pressure-dependent equilibrium between two states with different barotropic parameters designated R for relaxed and P for pressure-promoted conformations. This pressure-induced conformational transition was also observed in the studies with 1-PB and testosterone. In CYP3A4 oligomers, the transition was accompanied by an important increase in homotropic cooperativity with both substrates. Surprisingly, at high concentrations of allosteric substrates, the amplitude of the spin shift in both CYP3A4 in solution and Nanodiscs was very low, demonstrating that hydrostatic pressure induces neither substrate dissociation nor an increase in the heme pocket hydration in the complexes of the pressure-promoted conformation of CYP3A4 with 1-PB or testosterone. These findings suggest that the mechanisms of interactions of CYP3A4 with 1-PB and testosterone involve an effector-induced transition that displaces a system of conformational equilibria in the enzyme toward the state(s) with decreased solvent accessibility of the active site so that the flux of water into the heme pocket is impeded and the high-spin state of the heme iron is stabilized.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|
19
|
Fernando H, Davydov DR, Chin CC, Halpert JR. Role of subunit interactions in P450 oligomers in the loss of homotropic cooperativity in the cytochrome P450 3A4 mutant L211F/D214E/F304W. Arch Biochem Biophys 2007; 460:129-40. [PMID: 17274942 PMCID: PMC2040109 DOI: 10.1016/j.abb.2006.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
The contribution of conformational heterogeneity to cooperativity in cytochrome P450 3A4 was investigated using the mutant L211F/D214E/F304W. Initial spectral studies revealed a loss of cooperativity of the 1-pyrenebutanol (1-PB) induced spin shift (S(50)=5.4 microM, n=1.0) but retained cooperativity of alpha-naphthoflavone binding. Continuous variation (Job's titration) experiments showed the existence of two pools of enzyme with different 1-PB binding characteristics. Monitoring of 1-PB binding by fluorescence resonance energy transfer from the substrate to the heme confirmed that the high-affinity site (K(D)=0.3 microM) is retained in at least some fraction of the enzyme, although cooperativity is masked. Removal of apoprotein on a second column increased the high-spin content and restored cooperativity of 1-PB binding and of progesterone and testosterone 6beta-hydroxylation. The loss of cooperativity in the mutant is, therefore, mediated by the interaction of holo- and apo-P450 in mixed oligomers.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - Dmitri R. Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - Christopher C. Chin
- Sealy Center for Structural Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - James R. Halpert
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| |
Collapse
|
20
|
Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P. What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta Gen Subj 2007; 1770:376-89. [PMID: 17069978 DOI: 10.1016/j.bbagen.2006.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/04/2006] [Accepted: 09/21/2006] [Indexed: 11/17/2022]
Abstract
Sufficient structural information on mammalian cytochromes P450 has now been published (including seventeen X-ray structures of these enzymes by June 2006) to allow characteristic features of these enzymes to be identified, including: (i) the presence of a common fold, typical of all P450s, (ii) similarities in the positioning of the heme cofactor, (iii) the spatial arrangement of certain structural elements, and (iv) the access/egress paths for substrates and products, (v) probably common orientation in the membrane, (vi) characteristic properties of the active sites with networks of water molecules, (vii) mode of interaction with redox partners and (viii) a certain degree of flexibility of the structure and active site determining the ease with which the enzyme may bind the substrates. As well as facilitating the identification of common features, comparison of the available structures allows differences among the structures to be identified, including variations in: (i) preferred access/egress paths to/from the active site, (ii) the active site volume and (iii) flexible regions. The availability of crystal structures provides opportunities for molecular dynamic simulations, providing data that are apparently complementary to experimental findings but also allow the dynamic behavior of access/egress paths and other dynamic features of the enzymes to be explored.
Collapse
Affiliation(s)
- Michal Otyepka
- Department of Physical Chemistry, Faculty of Sciences, Palacky University, Svobody 26, 771 46 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
21
|
Davydov DR, Fernando H, Baas BJ, Sligar SG, Halpert JR. Kinetics of dithionite-dependent reduction of cytochrome P450 3A4: heterogeneity of the enzyme caused by its oligomerization. Biochemistry 2006; 44:13902-13. [PMID: 16229479 PMCID: PMC1343486 DOI: 10.1021/bi0509346] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To explore the basis of apparent conformational heterogeneity of cytochrome P450 3A4 (CYP3A4), the kinetics of dithionite-dependent reduction was studied in solution, in proteoliposomes, and in Nanodiscs. In CYP3A4 oligomers in solution the kinetics obeys a three-exponential equation with similar amplitudes of each of the phases. Addition of substrate (bromocriptine) displaces the phase distribution toward the slow phase at the expense of the fast one, while the middle phase remains unaffected. The fraction reduced in the fast phase, either with or without substrate, is represented by the low-spin heme protein only, while the slow-reducible fraction is enriched in the high-spin CYP3A4. Upon monomerization by 0.15% Emulgen-913, or by incorporation into Nanodiscs or into large proteoliposomes with a high lipid-to-protein (L/P) ratio (726:1 mol/mol), the kinetics observed in the absence of substrate becomes very rapid and virtually monoexponential. In Nanodiscs and in lipid-rich liposomes bromocriptine decreases the rate of reduction via appearance of the second (slow) phase, the amplitude of which reaches 100% at saturating bromocriptine. In contrast, in P450-rich liposomes (L/P = 112 mol/mol), where the surface molar density of the enzyme is comparable to that observed in liver microsomes, CYP3A4 behaves similarly to that observed in solution. These results suggest that in CYP3A4 oligomers in solution and in the membrane the enzyme is distributed between two persistent conformers with different accessibility of the heme for the reductant (SO*-(2) anion monomer). One of the apparent conformers exists in a substrate-dependent equilibrium between two states with different rate constants of reduction by dithionite, while the second conformer shows no response to substrate binding.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, 301 University Boulevard, Galveston, Texas 77555, USA.
| | | | | | | | | |
Collapse
|
22
|
Davydov DR, Halpert JR, Renaud JP, Hui Bon Hoa G. Conformational heterogeneity of cytochrome P450 3A4 revealed by high pressure spectroscopy. Biochem Biophys Res Commun 2004; 312:121-30. [PMID: 14630029 DOI: 10.1016/j.bbrc.2003.09.247] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | |
Collapse
|
23
|
Backes WL, Kelley RW. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharmacol Ther 2003; 98:221-33. [PMID: 12725870 DOI: 10.1016/s0163-7258(03)00031-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microsomal P450-mediated monooxygenase activity supported by NADPH requires an interaction between flavoprotein NADPH-cytochrome P450 reductase and cytochrome P450. These proteins have been identified as the simplest system (with the inclusion of a phospholipid (PL) component) that possesses monooxygenase function; however, little is known about the organization of these proteins in the microsomal membrane. Although reductase and P450 are known to form a 1:1 functional complex, there exists a 10- to 20-fold excess of P450 over the reductase. This raises several questions including "How are the enzymes of the P450 system organized in the microsomal membrane?" and "Can one P450 enzyme affect the functional characteristics of another P450?" This review summarizes evidence supporting the potential for enzymes involved in the P450 system to interact, focusing on the interactions between reductase and P450 and interactions between multiple P450 enzymes. Studies on the aggregation characteristics of P450 as well as on rotational diffusion are detailed, with a special emphasis on the potential for P450 enzymes to produce oligomeric complexes and to suggest the environment in which P450 exists in the endoplasmic reticulum. Finally, more recent studies describing the potential for multiple P450s to exist as complexes and their effect on P450 function are presented, including studies using reconstituted systems as well as systems where two P450s are coexpressed in the presence of reductase. An understanding of the interactions among reductase and multiple P450s is important for predicting conditions where the drug disposition may be altered by the direct effects of P450-P450 complex formation. Furthermore, the potential for one P450 enzyme to affect the behavior of another P450 may be extremely important for drug screening and development, requiring metabolic screening of a drug with reconstituted systems containing multiple P450s rather than simpler systems containing only a single form.
Collapse
Affiliation(s)
- Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
24
|
Bancel F, Hoa GHB, Anzenbacher P, Balny C, Lange R. High pressure: a new tool to study P450 structure and function. Methods Enzymol 2003; 357:145-57. [PMID: 12424906 DOI: 10.1016/s0076-6879(02)57674-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Frédéric Bancel
- French National Institute for Health and Medical Research U 128, IFR 24, F-34293 Montpellier, France
| | | | | | | | | |
Collapse
|
25
|
Jung C. Cytochrome P-450-CO and substrates: lessons from ligand binding under high pressure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:309-28. [PMID: 11983405 DOI: 10.1016/s0167-4838(01)00353-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An overview of the application of high-pressure studies on the carbon monoxide complex of cytochrome P-450 is given. Different approaches to characterize ligand binding steps, the conformational states and substates and the compressibility of the ligand-bound complex are reviewed. A particular focus is the effect of substrates on these properties. It is shown that substrate mobility, compressibility and water accessibility are interrelated and may have functional meaning.
Collapse
Affiliation(s)
- Christiane Jung
- Max-Delbrück-Center for Molecular Medicine, Protein Dynamics Laboratory, Berlin, Germany.
| |
Collapse
|
26
|
Hui Bon Hoa G, McLean MA, Sligar SG. High pressure, a tool for exploring heme protein active sites. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:297-308. [PMID: 11983404 DOI: 10.1016/s0167-4838(01)00352-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
High pressure is an interesting and suitable parameter in the study of the dynamics and stability of proteins. The effects of pressure on proteins delineates its volumic (deltaV degrees ) and energetic (deltaG degrees ) parameters. An enormous amount of effort has been invested by several laboratories in developing basic theory and high pressure techniques that allow the determination of barotropic parameters. Cytochrome P450s, one of the largest super families of heme proteins, are good models for high pressure studies. Two distinct pressure-induced spin transitions of the heme iron in the active site and a P450 to P420 inactivation process have been characterized. The obtained reaction volumes of these two processes for a series of analog-bound cytochrome P450s are compared. We have shown that both the spin volume and the inactivation volume are dependent on the substrate analogs which are known to modulate the polarity and hydration of the heme pocket. Several linear correlations were found between these reaction volumes and the physico-chemical properties of the heme protein such as the polarity-induced exposure of tyrosines, the hydration of the cytochrome CYP101 heme pocket, and the mobility and binding of the substrates indicate that they constitute the main contribution to the complex thermodynamic reaction volume parameters. This interpretation allows us to conclude that cytochrome CYP101, CYP2B4 and CYP102 possess a similar mechanism of substrate binding. Interestingly the barotropic behaviors of monomeric cytochrome P450s are quite different from those of oligomeric and hetorooligomeric cytochrome P450s. The interactions of heterooligomeric subunits influence the stability of individual cytochrome P450s and the asymmetric organization of subunits which can control and modulate the activity and the recognition with NADPH-cytochrome P450 reductase.
Collapse
|
27
|
Hlavica P, Lewis DF. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4817-32. [PMID: 11559350 DOI: 10.1046/j.1432-1327.2001.02412.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of monooxygenase activity is shown to occur with diverse cytochrome P450 isoforms and is characterized by kinetic patterns deviating from the Michaelis-Menten model. Homotropic and heterotropic phenomena are encountered in both substrate activation and productive coupling of the electron donors NADPH-cytochrome P450 reductase and cytochrome b5, and the lipid environment of the system also appears to play a role as an effector. Circumstantial analysis reveals the components of the electron transfer chain to be mutually beneficial in interactions with each other depending on the substrate used and type of cytochrome P450 operative. It is noteworthy that association of diatomic gaseous ligands may be amenable to allosteric regulation as well. Thus, dioxygen binding to cytochrome P450 displays nonhyperbolic kinetic profiles in the presence of certain substrates; the latter, together with redox proteins such as cytochrome b5, can exert efficient control of the abortive breakdown of the oxyferrous intermediates formed. Similarly, substrates may modulate the structural features of the access channel for solutes such as carbon monoxide in specific cytochrome P450 isozymes to either facilitate or impair ligand diffusion to the heme iron. The in vivo importance of allosteric regulation of enzyme activity is discussed in detail.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| | | |
Collapse
|