1
|
Matsumura T, Ohta Y, Taguchi A, Hiroshige S, Kajimura Y, Fukuda N, Yamamoto K, Nakabayashi H, Fujimoto R, Yanai A, Shinoda K, Watanabe K, Mizukami Y, Kanki K, Shiota G, Tanizawa Y. Liver-specific dysregulation of clock-controlled output signal impairs energy metabolism in liver and muscle. Biochem Biophys Res Commun 2021; 534:415-421. [PMID: 33256979 DOI: 10.1016/j.bbrc.2020.11.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The liver is the major organ maintaining metabolic homeostasis in animals during shifts between fed and fasted states. Circadian oscillations in peripheral tissues including the liver are connected with feeding-fasting cycles. We generated transgenic mice with hepatocyte specific E4BP4, D-box negative regulator, overexpression. Liver-specific E4BP4 overexpression was also achieved by adenoviral gene transfer. Interestingly, hepatic E4BP4 overexpression induced marked insulin resistance, that was rescued by DBP, a competing D-box positive regulator, overexpression. At basal conditions hepatocyte E4BP4 transgenic mice exhibited increased gluconeogenesis with reduced AKT phosphorylation in liver. In muscle, AKT phosphorylation was impaired after insulin stimulation. Such muscle insulin resistance was associated with elevated free fatty acid flux from the liver and reduced fatty acid utilization as an energy source during the inactive phase. E4BP4, one of the clock-controlled output genes, are key metabolic regulators in liver adjusting liver and muscle metabolism and insulin sensitivity in the feeding-fasting cycles. Its tuning is critical for preventing metabolic disorders.
Collapse
Affiliation(s)
- Takuro Matsumura
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan; Department of Diabetes Research, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Akihiko Taguchi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Syunsuke Hiroshige
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yasuko Kajimura
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Naofumi Fukuda
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kaoru Yamamoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroko Nakabayashi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ruriko Fujimoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenji Watanabe
- Center for Regenerative and Cell Therapy, Yamaguchi University, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoichi Mizukami
- Center for Regenerative and Cell Therapy, Yamaguchi University, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keita Kanki
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
2
|
Lee SA, Jiang H, Feranil JB, Brun PJ, Blaner WS. Adipocyte-specific expression of a retinoic acid receptor α dominant negative form causes glucose intolerance and hepatic steatosis in mice. Biochem Biophys Res Commun 2019; 514:1231-1237. [PMID: 31109648 DOI: 10.1016/j.bbrc.2019.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
Abstract
All-trans-retinoic acid (ATRA) has been well described as a positive regulator for early stage of adipocyte differentiation and lipid metabolism and also linked to an in vivo fat-lowering effect in mice. However, not all studies support this association. Our objective was to characterize the action of ATRA in mature adipocytes of mice by ablating RAR signaling through overexpression of a well-characterized dominant negative RARα mutant (RARdn) form specifically in adipocytes. Altered RAR signaling in adipocytes resulted in a significant decrease in ATRA levels in visceral and brown adipose tissues as well as liver tissue. This was linked to significant impairments in glucose clearance and elevated hepatic lipid accumulation for chow diet fed mice, indicating the development of metabolic disease, including hepatic steatosis. In addition, we found that adipose RARdn expression in mice fed a chow diet decreased thermogenesis. We conclude that altered RAR signaling and ATRA levels in adipocytes impacts glucose and lipid metabolism in mice.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Present Address: Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Jun B Feranil
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
3
|
Shimizu H, Tsubota T, Kanki K, Shiota G. All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression. J Cell Physiol 2017; 233:607-616. [PMID: 28322443 DOI: 10.1002/jcp.25921] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/16/2017] [Indexed: 01/13/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome-wide screening of RA-responsive genes by in silico analysis of RA-response elements, and identified 26 RA-responsive genes. We found that thioredoxin interacting protein (TXNIP), which inhibits antioxidant activity of thioredoxin (TRX), was downregulated by all-trans retinoic acid (ATRA). In the present study, we demonstrate that ATRA ameliorates activation of HSCs through TXNIP suppression. HSC activation was attenuated by TXNIP downregulation, whereas potentiated by TXNIP upregulation, indicating that TXNIP plays a crucial role in activation of HSCs. Notably, we showed that TXNIP-mediated HSC activation was suppressed by antioxidant N-acetylcysteine. In addition, ATRA treatment or downregulation of TXNIP clearly declined oxidative stress levels in activated HSCs. These data suggest that ATRA plays a key role in inhibition of HSC activation via suppressing TXNIP expression, which reduces oxidative stress levels.
Collapse
Affiliation(s)
- Hiroki Shimizu
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Toshiaki Tsubota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Keita Kanki
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
4
|
Brun PJ, Grijalva A, Rausch R, Watson E, Yuen JJ, Das BC, Shudo K, Kagechika H, Leibel RL, Blaner WS. Retinoic acid receptor signaling is required to maintain glucose-stimulated insulin secretion and β-cell mass. FASEB J 2015; 29. [PMID: 25389133 PMCID: PMC4314234 DOI: 10.1096/fj.14-256743 10.1096/fj.14-256743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Retinoic acid signaling is required for maintaining a range of cellular processes, including cell differentiation, proliferation, and apoptosis. We investigated the actions of all-trans-retinoic acid (atRA) signaling in pancreatic β-cells of adult mice. atRA signaling was ablated in β-cells by overexpressing a dominant-negative retinoic acid receptor (RAR)-α mutant (RARdn) using an inducible Cre-Lox system under the control of the pancreas duodenal homeobox gene promoter. Our studies establish that hypomorphism for RAR in β-cells leads to an age-dependent decrease in plasma insulin in the fed state and in response to a glucose challenge. Glucose-stimulated insulin secretion was also impaired in islets isolated from mice expressing RARdn. Among genes that are atRA responsive, Glut2 and Gck mRNA levels were decreased in isolated islets from RARdn-expressing mice. Histologic analyses of RARdn-expressing pancreata revealed a decrease in β-cell mass and insulin per β-cell 1 mo after induction of the RARdn. Our results indicate that atRA signaling mediated by RARs is required in the adult pancreas for maintaining both β-cell function and mass, and provide insights into molecular mechanisms underlying these actions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - William S. Blaner
- Correspondence: Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY 10032, USA. E-mail:
| |
Collapse
|
5
|
Brun PJ, Grijalva A, Rausch R, Watson E, Yuen JJ, Das BC, Shudo K, Kagechika H, Leibel RL, Blaner WS. Retinoic acid receptor signaling is required to maintain glucose-stimulated insulin secretion and β-cell mass. FASEB J 2014; 29:671-83. [PMID: 25389133 DOI: 10.1096/fj.14-256743] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinoic acid signaling is required for maintaining a range of cellular processes, including cell differentiation, proliferation, and apoptosis. We investigated the actions of all-trans-retinoic acid (atRA) signaling in pancreatic β-cells of adult mice. atRA signaling was ablated in β-cells by overexpressing a dominant-negative retinoic acid receptor (RAR)-α mutant (RARdn) using an inducible Cre-Lox system under the control of the pancreas duodenal homeobox gene promoter. Our studies establish that hypomorphism for RAR in β-cells leads to an age-dependent decrease in plasma insulin in the fed state and in response to a glucose challenge. Glucose-stimulated insulin secretion was also impaired in islets isolated from mice expressing RARdn. Among genes that are atRA responsive, Glut2 and Gck mRNA levels were decreased in isolated islets from RARdn-expressing mice. Histologic analyses of RARdn-expressing pancreata revealed a decrease in β-cell mass and insulin per β-cell 1 mo after induction of the RARdn. Our results indicate that atRA signaling mediated by RARs is required in the adult pancreas for maintaining both β-cell function and mass, and provide insights into molecular mechanisms underlying these actions.
Collapse
Affiliation(s)
- Pierre-Jacques Brun
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ambar Grijalva
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Richard Rausch
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Elizabeth Watson
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jason J Yuen
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bhaskar C Das
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Shudo
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rudolph L Leibel
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - William S Blaner
- Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Watanabe Y, Tsuchiya H, Sakabe T, Matsuoka S, Akechi Y, Fujimoto Y, Yamane K, Ikeda R, Nishio R, Terabayashi K, Ishii K, Gonda K, Matsumi Y, Ashla AA, Okamoto H, Takubo K, Tomita A, Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N, Shiota G. CD437 induces apoptosis in ovarian adenocarcinoma cells via ER stress signaling. Biochem Biophys Res Commun 2008; 366:840-7. [DOI: 10.1016/j.bbrc.2007.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/16/2022]
|
7
|
Abstract
Retinoic acid (RA) appears to play an important role in the pathophysiology of liver disease. However, this role remains to be clarified in detail. To explore the role of RA in the liver, transgenic mice that express RA receptor (RAR) alpha-dominant negative form in hepatocytes under the control of albumin promoter and enhancer, were developed. At 4 months of age the RAR alpha- dominant negative form transgenic mice developed microvesicular steatosis and spotty focal necrosis. The enzymes that are involved in mitochondrial beta-oxidation of fatty acids, including very-long-acyl-CoA dehydrogenase, long-acyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase, were downregulated; in contrast, the enzymes that are involved in peroxisomal beta-oxidation, including acyl-CoA oxidase and bifunctional enzyme, were upregulated. Expression of cytochrome p4,504a10, cytochrome p4,504a12, and cytochrome p4,504a14 was increased, suggesting that omega-oxidation of fatty acids in microsomes was accelerated. In addition, formation of H(2)O(2) and 8-hydroxy-2'-deoxyguanosine was increased. After 12 months of age, these mice developed hepatocellular carcinomaand adenoma of the liver. The incidence of tumor formation increased with age. Expression of beta-catenin and cyclin D1 was enhanced and the TCF-4/beta-catenin complex was increased, whereas the RARalpha/beta-catenin complex was decreased. Feeding on a high-RA diet reversed histological and biochemical abnormalities and inhibited the occurrence of liver tumors. These results suggest that hepatic loss of RA function leads to the development of steatohepatitis and liver tumors. In conclusion, RA plays an important role in preventing hepatocarcinogenesis in association with fatty acid metabolism and Wnt signaling.
Collapse
Affiliation(s)
- Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and, Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan.
| |
Collapse
|
8
|
Sakabe T, Tsuchiya H, Endo M, Tomita A, Ishii K, Gonda K, Murai R, Takubo K, Hoshikawa Y, Kurimasa A, Ishibashi N, Yanagida S, Shiota G. An antioxidant effect by acyclic retinoid suppresses liver tumor in mice. Biochem Pharmacol 2007; 73:1405-11. [PMID: 17261273 DOI: 10.1016/j.bcp.2006.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/13/2006] [Accepted: 12/13/2006] [Indexed: 11/18/2022]
Abstract
The mechanisms of prevention of the development of liver cancer by NIK-333, an acyclic retinoid (ACR), were investigated. The transgenic mice expressing the dominant negative form of retinoic acid receptor alpha (RARE mice), that produce reactive oxygen species and lead to development of liver tumor were used. The effect of NIK-333 on hepatocarcinogenesis in RARE mice was studied. The RARE mice were examined after feeding 0.03% and 0.06% NIK-333 diets at 12 months of age. In the mice fed 0.06% NIK-333 diet, tumor incidence was greatly suppressed, compared to that of wild type mice (0/9 versus 5/9, P<0.05), but not in the mice fed 0.03% NIK-333 diet. In addition, expression of cytochrome p450 4a14 and acyl-CoA oxidase was normalized, and the percentages of positive cells for 8-hydroxy-2'-deoxyguanosine, 4-hydroxy-2-nonenal and proliferating cell nuclear antigen were decreased. Furthermore, expression of beta-catenin and cyclin D1 was also depressed. These data suggest that NIK-333 suppressed liver tumor in association with repression of oxidative stress.
Collapse
Affiliation(s)
- Tomohiko Sakabe
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yanagitani A, Yamada S, Yasui S, Shimomura T, Murai R, Murawaki Y, Hashiguchi K, Kanbe T, Saeki T, Ichiba M, Tanabe Y, Yoshida Y, Morino SI, Kurimasa A, Usuda N, Yamazaki H, Kunisada T, Ito H, Murawaki Y, Shiota G. Retinoic acid receptor alpha dominant negative form causes steatohepatitis and liver tumors in transgenic mice. Hepatology 2004; 40:366-75. [PMID: 15368441 DOI: 10.1002/hep.20335] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although attention has focused on the chemopreventive action of retinoic acid (RA) in hepatocarcinogenesis, the functional role of RA in the liver has yet to be clarified. To explore the role of RA in the liver, we developed transgenic mice expressing RA receptor (RAR) alpha- dominant negative form in hepatocytes using albumin promoter and enhancer. At 4 months of age, the RAR alpha- dominant negative form transgenic mice developed microvesicular steatosis and spotty focal necrosis. Mitochondrial beta-oxidation activity of fatty acids and expression of its related enzymes, including VLCAD, LCAD, and HCD, were down-regulated; on the other hand, peroxisomal beta-oxidation and its related enzymes, including AOX and BFE, were up-regulated. Expression of cytochrome p4504a10, cytochrome p4504a12, and cytochrome p4504a14 was increased, suggesting that omega-oxidation of fatty acids in microsomes was accelerated. In addition, formation of H2O2 and 8-hydroxy-2'-deoxyguanosine was increased. After 12 months of age, these mice developed hepatocellular carcinoma and adenoma of the liver. The incidence of tumor formation increased with age. Expression of beta-catenin and cyclin D1 was enhanced and the TCF-4/beta-catenin complex was increased, whereas the RAR alpha/ beta-catenin complex was decreased. Feeding on a high-RA diet reversed histological and biochemical abnormalities and inhibited the occurrence of liver tumors. These results suggest that hepatic loss of RA function leads to the development of steatohepatitis and liver tumors. In conclusion, RA plays an important role in preventing hepatocarcinogenesis in association with fatty acid metabolism and Wnt signaling.
Collapse
Affiliation(s)
- Atsushi Yanagitani
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alisi A, Leoni S, Piacentani A, Conti Devirgiliis L. Retinoic acid modulates the cell-cycle in fetal rat hepatocytes and HepG2 cells by regulating cyclin-cdk activities. Liver Int 2003; 23:179-86. [PMID: 12955881 DOI: 10.1034/j.1600-0676.2003.00829.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinoic acid (RA), the most biologically active metabolite of vitamin A, is known to modulate cell proliferation, apoptosis and differentiation, with different effects depending on the cellular context. Retinoic acid can exert its effects by directly or indirectly influencing the expression of genes involved in the control of cell proliferation. In the present report we investigate the possible correlation between the antiproliferative, differentiative and apoptotic effects previously observed on rat hepatocytes and HepG2 cells, with a possible modulation of cell-cycle regulators. We demonstrate that RA induces growth arrest and differentiation in HepG2 cells by influencing the activities of cyclin-cdk complexes involved in the regulation of G1/S transition and S-phase progression, in particular by modifying the binding of these complexes to p21 and p27 inhibitors. In fetal cells, however, the induction of apoptosis and differentiation by RA was obtained via inhibition of cyclin D1-cdk4 activity, as result of an increased binding to the p16 inhibitor. Retinoic acid also modulates c-myc and Bcl-2 expression. In conclusion, our data suggest that RA could be useful to regulate the reversion of transformed phenotype and could also be utilized as a chemiopreventive agent in cells of hepatic origin.
Collapse
Affiliation(s)
- A Alisi
- Department of Cellular and Developmental Biology, University La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|