1
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
2
|
Hanley CJ, Waise S, Ellis MJ, Lopez MA, Pun WY, Taylor J, Parker R, Kimbley LM, Chee SJ, Shaw EC, West J, Alzetani A, Woo E, Ottensmeier CH, Rose-Zerilli MJJ, Thomas GJ. Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer. Nat Commun 2023; 14:387. [PMID: 36720863 PMCID: PMC9889778 DOI: 10.1038/s41467-023-35832-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Fibroblasts are poorly characterised cells that variably impact tumour progression. Here, we use single cell RNA-sequencing, multiplexed immunohistochemistry and digital cytometry (CIBERSORTx) to identify and characterise three major fibroblast subpopulations in human non-small cell lung cancer: adventitial, alveolar and myofibroblasts. Alveolar and adventitial fibroblasts (enriched in control tissue samples) localise to discrete spatial niches in histologically normal lung tissue and indicate improved overall survival rates when present in lung adenocarcinomas (LUAD). Trajectory inference identifies three phases of control tissue fibroblast activation, leading to myofibroblast enrichment in tumour samples: initial upregulation of inflammatory cytokines, followed by stress-response signalling and ultimately increased expression of fibrillar collagens. Myofibroblasts correlate with poor overall survival rates in LUAD, associated with loss of epithelial differentiation, TP53 mutations, proximal molecular subtypes and myeloid cell recruitment. In squamous carcinomas myofibroblasts were not prognostic despite being transcriptomically equivalent. These findings have important implications for developing fibroblast-targeting strategies for cancer therapy.
Collapse
Affiliation(s)
- Christopher J Hanley
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK.
- Cancer Research UK and NIHR Southampton Experimental Cancer Medicine Centre, Southampton, SO16 6YD, UK.
| | - Sara Waise
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J Ellis
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Maria A Lopez
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Wai Y Pun
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Julian Taylor
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Rachel Parker
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Lucy M Kimbley
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Serena J Chee
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Institute of Systems, Molecular and Integrative Biology (ISMIB) and Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, L69 7BE, UK
| | - Emily C Shaw
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Jonathan West
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Aiman Alzetani
- Department of Thoracic surgery, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Edwin Woo
- Department of Thoracic surgery, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Christian H Ottensmeier
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK and NIHR Southampton Experimental Cancer Medicine Centre, Southampton, SO16 6YD, UK
- Institute of Systems, Molecular and Integrative Biology (ISMIB) and Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, L69 7BE, UK
| | - Matthew J J Rose-Zerilli
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Gareth J Thomas
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK.
- Cancer Research UK and NIHR Southampton Experimental Cancer Medicine Centre, Southampton, SO16 6YD, UK.
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.
| |
Collapse
|
3
|
Ma ZH, Wang XM, Wu RH, Hao DL, Sun LC, Li P, Niu JQ. Serum metabolic profiling of targeted bile acids reveals potentially novel biomarkers for primary biliary cholangitis and autoimmune hepatitis. World J Gastroenterol 2022; 28:5764-5783. [PMID: 36338890 PMCID: PMC9627419 DOI: 10.3748/wjg.v28.i39.5764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) are two unexplained immune diseases. The golden standard for diagnosis of these diseases requires a liver biopsy. Liver biopsy is not widely accepted by patients because of its invasive nature, and atypical liver histology can confuse diagnosis. In view of the lack of effective diagnostic markers for PBC and AIH, combined with the increasingly mature metabolomics technologies, including full-contour metabolomics and target.
AIM To determine non-invasive, reliable, and sensitive biochemical markers for the differential diagnosis of PBC and AIH.
METHODS Serum samples from 54 patients with PBC, 26 patients with AIH and 30 healthy controls were analyzed by Ultra-high performance liquid chromatography-tandem mass spectrometry serum metabolomics. The metabolites and metabolic pathways were identified, and the metabolic changes, metabolic pathways and inter-group differences between PBC and AIH were analyzed. Fifteen kinds of target metabolites of bile acids (BAs) were quantitatively analyzed by SRM, and the differential metabolites related to the diagnosis of PBC were screened by receiver operating characteristic curve analysis.
RESULTS We found the changes in the levels of amino acids, BAs, organic acids, phospholipids, choline, sugar, and sugar alcohols in patients with PBC and AIH. Furthermore, the SRM assay of BAs revealed the increased levels of chenodeoxycholic acid, lithocholic acid (LCA), taurolithocholic acid (TLCA), and LCA + TLCA in the PBC group compared with those in the AIH group. The levels of BAs may be used as biomarkers to differentiate PBC from AIH diseases. The levels of glycochenodeoxycholic acid, glycochenodeoxycholic sulfate, and taurodeoxycholic acid were gradually elevated with the increase of Child-Pugh class, which was correlated with the severity of disease.
CONCLUSION The results demonstrated that the levels of BAs could serve as potential biomarkers for the early diagnosis and assessment of the severity of PBC and AIH.
Collapse
Affiliation(s)
- Zhen-Hua Ma
- Department of Infection and Hepatology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Xiao-Mei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Rui-Hong Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Da-Lin Hao
- Department of Infection and Hepatology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Li-Chao Sun
- Department of Infection and Hepatology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Pan Li
- Department of Pathology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Jun-Qi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
4
|
Garcia-Ruiz C, Conde de la Rosa L, Ribas V, Fernandez-Checa JC. MITOCHONDRIAL CHOLESTEROL AND CANCER. Semin Cancer Biol 2021; 73:76-85. [PMID: 32805396 PMCID: PMC7882000 DOI: 10.1016/j.semcancer.2020.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cholesterol is a crucial component of membrane bilayers that determines their physical and functional properties. Cells largely satisfy their need for cholesterol through the novo synthesis from acetyl-CoA and this demand is particularly critical for cancer cells to sustain dysregulated cell proliferation. However, the association between serum or tissue cholesterol levels and cancer development is not well established as epidemiologic data do not consistently support this link. While most preclinical studies focused on the role of total celular cholesterol, the specific contribution of the mitochondrial cholesterol pool to alterations in cancer cell biology has been less explored. Although low compared to other bilayers, the mitochondrial cholesterol content plays an important physiological function in the synthesis of steroid hormones in steroidogenic tissues or bile acids in the liver and controls mitochondrial function. In addition, mitochondrial cholesterol metabolism generates oxysterols, which in turn, regulate multiple pathways, including cholesterol and lipid metabolism as well as cell proliferation. In the present review, we summarize the regulation of mitochondrial cholesterol, including its role in mitochondrial routine performance, cell death and chemotherapy resistance, highlighting its potential contribution to cancer. Of particular relevance is hepatocellular carcinoma, whose incidence in Western countries had tripled in the past decades due to the obesity and type II diabetes epidemic. A better understanding of the role of mitochondrial cholesterol in cancer development may open up novel opportunities for cancer therapy.
Collapse
Affiliation(s)
- Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Multiple Roles of 25-Hydroxycholesterol in Lipid Metabolism, Antivirus Process, Inflammatory Response, and Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8893305. [PMID: 33274010 PMCID: PMC7695496 DOI: 10.1155/2020/8893305] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
As an essential lipid, cholesterol is of great value in keeping cell homeostasis, being the precursor of bile acid and steroid hormones, and stabilizing membrane lipid rafts. As a kind of cholesterol metabolite produced by enzymatic or radical process, oxysterols have drawn much attention in the last decades. Among which, the role of 25-hydroxycholesterol (25-HC) in cholesterol and bile acid metabolism, antivirus process, and inflammatory response has been largely disclosed. This review is aimed at revealing these functions and underlying mechanisms of 25-HC.
Collapse
|
6
|
Cheng Y, Zhao W, Zhang X, Sun L, Yang H, Wang Y, Cao Y, Chu Y, Liu G. Downregulation of microRNA-1 attenuates glucose-induced apoptosis by regulating the liver X receptor α in cardiomyocytes. Exp Ther Med 2018; 16:1814-1824. [PMID: 30186406 PMCID: PMC6122156 DOI: 10.3892/etm.2018.6388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by abnormal myocardial structure or performance. It has been suggested that microRNA-1 (miR-1) may be abnormally expressed in the hearts of patients with diabetes. In the present study, the role of miR-1 in glucose-induced apoptosis and its underlying mechanism of action was investigated in rat cardiomyocyte H9C2 cells. Cells were transfected with anti-miR-1 or miR-1-overexpression plasmids and the expression of miR-1 and liver X receptor α (LXRα) were determined by reverse transcription-quantitative polymerase chain reaction analysis. The proportion of apoptotic cells was determined using an Annexin-V-FITC apoptosis detection kit and the mitochondrial membrane potential (ΔΨ) was measured following staining with rhodamine 123. In addition, the expression of apoptosis-associated proteins was measured by western blot analysis. The results demonstrated that expression of miR-1 was significantly increased, whereas the expression of LXRα was significantly decreased in H9C2 cells following treatment with glucose. miR-1 knockdown significantly inhibited apoptosis, increased the ΔΨ and suppressed the cleavage of poly (adenosine diphosphate-ribose) polymerase, caspase-3 and caspase-9. It also significantly downregulated the expression of Bcl-2 and upregulated the expression of Bax. In addition, it was demonstrated that miR-1 regulates LXRα; transfection with anti-miR-1 significantly increased the expression of LXRα. Furthermore, treatment of cells with the LXR agonist GW3965 inhibited apoptosis in glucose-induced anti-miR-1 cells. These results suggest a novel function of miR-1: The regulation of cardiomyocyte apoptosis via LXRα, and provide novel insights into regarding the complex mechanisms involved in DCM.
Collapse
Affiliation(s)
- Yongxia Cheng
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wei Zhao
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaodong Zhang
- Department of Infectious Disease, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lixin Sun
- School of Adult Education, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Heran Yang
- Department of Laboratory Medicine, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ying Wang
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yong Cao
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanhui Chu
- Medical Pharmacology Research Center, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Guibo Liu
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
7
|
Beck A, Jordan LK, Herlitze S, Amtmann A, Christian J, Brogden G, Adamek M, Naim HY, Maria Becker A. Quantification of sterols from carp cell lines by using HPLC-MS. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander Beck
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Lisa Katharina Jordan
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Simon Herlitze
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Anette Amtmann
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Juergen Christian
- Bavarian Health and Food Safety Authority; Institute for Animal Health II; Erlangen Germany
| | - Graham Brogden
- Department of Physiological Chemistry; University of Veterinary Medicine; Hannover Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit; Institute of Parasitology; University of Veterinary Medicine; Hannover Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry; University of Veterinary Medicine; Hannover Germany
| | - Anna Maria Becker
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
8
|
Horvatits T, Drolz A, Roedl K, Rutter K, Ferlitsch A, Fauler G, Trauner M, Fuhrmann V. Serum bile acids as marker for acute decompensation and acute-on-chronic liver failure in patients with non-cholestatic cirrhosis. Liver Int 2017; 37:224-231. [PMID: 27416294 DOI: 10.1111/liv.13201] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/04/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Retention of bile acids (BAs) plays a central role in hepatic damage and disturbed BA signalling in liver disease. However, there is lack of data regarding the association of BAs with clinical complications, acute decompensation (AD) and acute-on-chronic liver failure (ACLF). Thus, we aimed to evaluate the impact of circulating serum BAs for complications in patients with cirrhosis. METHODS One hundred and forty-three patients with cirrhosis were included in this prospective cohort-type observational study. Total serum BAs and individual BA composition were assessed in all patients on admission via high-performance liquid chromatography. Clinical complications with respect to AD, ACLF and 1-year transplant-free survival were recorded. RESULTS Total BAs and individual serum BAs were significantly higher in patients with bacterial infection, AD and ACLF (P<.001) and correlated significantly with model of end-stage liver disease (MELD) and hepatic venous pressure gradient (P<.001). Total BAs predicted new onset of AD or ACLF during follow-up (OR 1.025, 95% CI: 1.012-1.038, P<.001). Best cut-off predicting new onset of AD/ACLF and survival during course of time was total BAs ≥36.9 μmol/L. CONCLUSIONS Serum total and individual BAs are associated with AD and ACLF in patients with cirrhosis. Assessment of total BAs could serve as additional marker for risk stratification in cirrhotic patients with respect to new onset of AD and ACLF.
Collapse
Affiliation(s)
- Thomas Horvatits
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Drolz
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Roedl
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karoline Rutter
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arnulf Ferlitsch
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Valentin Fuhrmann
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
|
10
|
|
11
|
Leoni V, Strittmatter L, Zorzi G, Zibordi F, Dusi S, Garavaglia B, Venco P, Caccia C, Souza AL, Deik A, Clish CB, Rimoldi M, Ciusani E, Bertini E, Nardocci N, Mootha VK, Tiranti V. Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol Genet Metab 2012; 105:463-71. [PMID: 22221393 PMCID: PMC3487396 DOI: 10.1016/j.ymgme.2011.12.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, inborn error of metabolism characterized by iron accumulation in the basal ganglia and by the presence of dystonia, dysarthria, and retinal degeneration. Mutations in pantothenate kinase 2 (PANK2), the rate-limiting enzyme in mitochondrial coenzyme A biosynthesis, represent the most common genetic cause of this disorder. How mutations in this core metabolic enzyme give rise to such a broad clinical spectrum of pathology remains a mystery. To systematically explore its pathogenesis, we performed global metabolic profiling on plasma from a cohort of 14 genetically defined patients and 18 controls. Notably, lactate is elevated in PKAN patients, suggesting dysfunctional mitochondrial metabolism. As predicted, but never previously reported, pantothenate levels are higher in patients with premature stop mutations in PANK2. Global metabolic profiling and follow-up studies in patient-derived fibroblasts also reveal defects in bile acid conjugation and lipid metabolism, pathways that require coenzyme A. These findings raise a novel therapeutic hypothesis, namely, that dietary fats and bile acid supplements may hold potential as disease-modifying interventions. Our study illustrates the value of metabolic profiling as a tool for systematically exploring the biochemical basis of inherited metabolic diseases.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | - Laura Strittmatter
- Departments of Systems Biology and Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | | | | | - Sabrina Dusi
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
| | - Barbara Garavaglia
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
| | - Paola Venco
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
| | - Claudio Caccia
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | | | - Amy Deik
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Clary B Clish
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Marco Rimoldi
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | - Enrico Bertini
- Unit of Molecular Medicine, Department of Neurosciences, Bambino Gesù Pediatric Research Hospital, Rome, Italy
| | | | - Vamsi K Mootha
- Departments of Systems Biology and Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
- Correspondence to: Valeria Tiranti, Unit of Molecular Neurogenetics, IRCCS Foundation Neurological Institute “C. Besta”, Via Temolo, 4, 20126 Milan, Italy, Phone +390223942633, Fax +390223942619,
| |
Collapse
|
12
|
Bertolotti M, Crosignani A, Del Puppo M. The use of stable and radioactive sterol tracers as a tool to investigate cholesterol degradation to bile acids in humans in vivo. Molecules 2012; 17:1939-68. [PMID: 22343367 PMCID: PMC6268360 DOI: 10.3390/molecules17021939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 12/17/2022] Open
Abstract
Alterations of cholesterol homeostasis represent important risk factors for atherosclerosis and cardiovascular disease. Different clinical-experimental approaches have been devised to study the metabolism of cholesterol and particularly the synthesis of bile acids, its main catabolic products. Most evidence in humans has derived from studies utilizing the administration of labeled sterols; these have several advantages over in vitro assay of enzyme activity and expression, requiring an invasive procedure such as a liver biopsy, or the determination of fecal sterols, which is cumbersome and not commonly available. Pioneering evidence with administration of radioactive sterol derivatives has allowed to characterize the alterations of cholesterol metabolism and degradation in different situations, including spontaneous disease conditions, aging, and drug treatment. Along with the classical isotope dilution methodology, other approaches were proposed, among which isotope release following radioactive substrate administration. More recently, stable isotope studies have allowed to overcome radioactivity exposure. Isotope enrichment studies during tracer infusion has allowed to characterize changes in the degradation of cholesterol via the "classical" and the "alternative" pathways of bile acid synthesis. Evidence brought by tracer studies in vivo, summarized here, provides an exceptional tool for the investigation of sterol metabolism, and integrate the studies in vitro on human tissue.
Collapse
Affiliation(s)
- Marco Bertolotti
- Divisone di Geriatria, Dipartimento di Medicina, Endocrinologia, Metabolismo e Geriatria, Università degli Studi di Modena e Reggio Emilia, Nuovo Ospedale Civile, Via Giardini 1355, Modena 41126, Italy.
| | | | | |
Collapse
|
13
|
Cianciola NL, Carlin CR, Kelley TJ. Molecular pathways for intracellular cholesterol accumulation: common pathogenic mechanisms in Niemann-Pick disease Type C and cystic fibrosis. Arch Biochem Biophys 2011; 515:54-63. [PMID: 21924233 PMCID: PMC3192251 DOI: 10.1016/j.abb.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
Abstract
It has been less than two decades since the underlying genetic defects in Niemann-Pick disease Type C were first identified. These defects impair function of two proteins with a direct role in lipid trafficking, resulting in deposition of free cholesterol within late endosomal compartments and a multitude of effects on cell function and clinical manifestations. The rapid pace of research in this area has vastly improved our overall understanding of intracellular cholesterol homeostasis. Excessive cholesterol buildup has also been implicated in clinical manifestations associated with a number of genetically unrelated diseases including cystic fibrosis. Applying knowledge about anomalous cell signaling behavior in cystic fibrosis opens prospects for identifying similar previously unrecognized disease pathways in Niemann-Pick disease Type C. Recognition that Niemann-Pick disease Type C and cystic fibrosis both impair cholesterol regulatory pathways also provides a rationale for identifying common therapeutic targets.
Collapse
Affiliation(s)
- Nicholas L. Cianciola
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
- Case Western Reserve University Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Thomas J. Kelley
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| |
Collapse
|
14
|
Kayser H, Eilinger P, Piechon P, Wagner T. C-26 vs. C-27 hydroxylation of insect steroid hormones: regioselectivity of a microsomal cytochrome P450 from a hormone-resistant cell line. Arch Biochem Biophys 2011; 513:27-35. [PMID: 21763268 DOI: 10.1016/j.abb.2011.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
Hydroxylation of steroids at one of the side chain terminal methyl groups, commonly linked to C-26, represents an important regulatory step established in many phyla. Discrimination between the two sites, C-26 and C-27, requires knowing the stereochemistry of the products. 26-Hydroxylation of the insect steroid hormone 20-hydroxyecdysone by a microsomal cytochrome P450 was previously found to be responsible for hormonal resistance in a Chironomus cell line mainly producing the (25S)-epimer of 20,26-dihydroxyecdysone. Here, we studied the 25-desoxy analog of 20-hydroxyecdysone, ponasterone A, to elucidate the stereochemistry of the expected 26-hydroxy product, inokosterone, which occurs as C-25 epimers in nature. We identified the predominant metabolite as the C-25 R epimer of inokosterone on comparison by RP-HPLC with the (25R)- and (25S)-epimers the stereochemistry of which was confirmed by X-ray crystallography. (25R)-inokosterone was further oxidized to the 26-aldehyde identified by mass spectroscopy, borohydride reduction and metabolic transformation to 26-carboxylic acid. The (25S)-epimers of inokosterone and its aldehyde were minor products. With 20-hydroxyecdysone as substrate, we newly identified the (25R)-epimer of 20,26-dihydroxyecdysone as a minor product. In conclusion, the present stereochemical studies revealed high regioselectivity of the Chironomus enzyme to hydroxylate both steroids at the same methyl group, denoted C-27.
Collapse
Affiliation(s)
- Hartmut Kayser
- Institute of General Zoology and Endocrinology, University of Ulm, Germany.
| | | | | | | |
Collapse
|
15
|
Oxysterols in bile acid metabolism. Clin Chim Acta 2011; 412:2037-45. [PMID: 21855537 DOI: 10.1016/j.cca.2011.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022]
Abstract
Increasing body of evidence is available indicating that oxysterols are more much than intermediates of metabolic pathways. Oxysterols play a role in the regulation of cholesterol synthesis, transport and efflux. A scavenger effect of cholesterol 27-hydroxylase on elevated serum cholesterol levels is well demonstrated. Bile acid synthesis occurs through two main pathways, the classic and the alternative ones. Since plasma concentrations of 27-hydroxycholesterol were clearly shown to reflect its production rate the alternative pathway of bile acid synthesis can be easily explored. Conversely this was not true for 7α-hydroxycholesterol and also the direct evaluation of the classic pathway by kinetic studies is more difficult since the rate of plasma appearance during continuous infusion of deuterated isotopomers may not exactly measure its production rate. Hepatic cholesterol 7alpha-hydroxylase activity is absent during fetal life in humans and upregulates after birth. Both the classic and alternative pathways become mature after the age of 4 years. It has been clearly demonstrated that in patients with liver disease the classic pathway is impaired while the alternative one is preserved. Conversely, in obese patients, preliminary data suggest an increase of the production rate of 27-hydroxycholesterol, a possible mechanism to counteract the increase of atherosclerotic risk.
Collapse
|
16
|
Vejux A, Samadi M, Lizard G. Contribution of cholesterol and oxysterols in the physiopathology of cataract: implication for the development of pharmacological treatments. J Ophthalmol 2011; 2011:471947. [PMID: 21577274 PMCID: PMC3090752 DOI: 10.1155/2011/471947] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 12/22/2022] Open
Abstract
The development of cataract is associated with some lipid changes in human lens fibers, especially with increased accumulation and redistribution of cholesterol inside these cells. Some direct and indirect lines of evidence, also suggest an involvement of cholesterol oxide derivatives (also named oxysterols) in the development of cataract. Oxysterol formation can result either from nonenzymatic or enzymatic processes, and some oxysterols can induce a wide range of cytotoxic effects (overproduction of reactive oxygen species (ROS); phospholipidosis) which might contribute to the initiation and progression of cataract. Thus, the conception of molecules capable of regulating cholesterol homeostasia and oxysterol levels in human lens fibers can have some interests and constitute an alternative to surgery at least at early stages of the disease.
Collapse
Affiliation(s)
- Anne Vejux
- Inserm-CIT 808, CHU de Besançon, 25030 Besançon, France
- Equipe Biochimie Métabolique et Nutritionnelle Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer), Faculté des Sciences Gabriel, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Mohammad Samadi
- LCME/Département de Chimie, Université Paul Verlaine-Metz, 57012 Metz, France
| | - Gérard Lizard
- Equipe Biochimie Métabolique et Nutritionnelle Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer), Faculté des Sciences Gabriel, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
17
|
25-Hydroxycholesterol exerts both a cox-2-dependent transient proliferative effect and cox-2-independent cytotoxic effect on bovine endothelial cells in a time- and cell-type-dependent manner. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:24. [PMID: 21070649 PMCID: PMC2991284 DOI: 10.1186/2040-2384-2-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/11/2010] [Indexed: 11/15/2022]
Abstract
Background 25-hydroxycholesterol (25-OHC) is a product of oxidation of dietary cholesterol present in human plasma. 25-OHC and other oxidized forms of cholesterol are implicated in modulating inflammatory responses involved in development of atherosclerosis and colon carcinogenesis. Methods Primary lymphatic, venous and arterial endothelial cells isolated from bovine mesentery (bmLEC, bmVEC, bmAEC) were treated with 25-OHC and tested for several different cellular parameters. Results We found 25-OHC to be a potent inducer of cyclooxygenase-2 (Cox-2, prostaglandin G-H synthase-2) expression in bovine mesenteric lymphatic, venous, and arterial endothelial cells. The induction of Cox-2 expression in endothelial cells by 25-OHC led to an initial increase in cellular proliferation that was inhibited by the Cox-2 selective inhibitor celecoxib (Celebrex). Prolonged exposure to 25-OHC was cytotoxic. Furthermore, endothelial cells induced to express Cox-2 by 25-OHC were more sensitive to the effects of the Cox-2 selective inhibitor celecoxib (Celebrex). These results suggest that some effects of 25-OHC on cells may be dependent on Cox-2 enzymatic activity. Conclusions Cox-2 dependent elevating effects of 25-OHC on endothelial cell proliferation was transient. Prolonged exposure to 25-OHC caused cell death and enhanced celecoxib-induced cell death in a cell-type dependent manner. The lack of uniform response by the three endothelial cell types examined suggests that our model system of primary cultures of bmLECs, bmVECs, and bmAECs may aid the evaluation of celecoxib in inhibiting proliferation of different types of tumour-associated endothelial cells.
Collapse
|
18
|
Abstract
Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties.
Collapse
|
19
|
Ghribi O. Potential mechanisms linking cholesterol to Alzheimer's disease-like pathology in rabbit brain, hippocampal organotypic slices, and skeletal muscle. J Alzheimers Dis 2008; 15:673-84. [PMID: 19096164 PMCID: PMC2805037 DOI: 10.3233/jad-2008-15412] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epidemiological, animal, and cellular studies suggest that abnormalities in cholesterol metabolism are important in the pathogenesis of Alzheimer's disease (AD), potentially by increasing amyloid-beta (Abeta) peptide levels. Accumulation of Abeta in the brain is suggested to play a key role in the neurodegenerative processes by triggering the hyperphosphorylation of tau and the neuronal death that develop in the course of AD. However, the mechanisms by which cholesterol increases Abeta levels are still ill-defined. Previous and ongoing work from our laboratory indicates that hypercholesterolemia leads to the increased neuronal content of cholesterol and increased levels and processing of the amyloid-beta protein precursor (AbetaPP). We also have found that the oxidized cholesterol metabolite, 27-hydroxycholesterol, increases Abeta levels in both organotypic hippocampal slices and in neuronal preparations cultured from adult rabbits. This cholesterol metabolite is predominantly formed in the circulation and, in contrast to cholesterol, has the ability to cross into the brain. These results may indicate that 27-hydroxycholesterol is the link between circulating cholesterol and AD-like pathology in the brain. We also have found pathological hallmarks in the skeletal muscle of cholesterol-fed rabbits that are suggestive of inclusion body myositis, a disease that shares some pathological similarities with AD.
Collapse
Affiliation(s)
- Othman Ghribi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, ND 58202, USA.
| |
Collapse
|
20
|
Li X, Pandak WM, Erickson SK, Ma Y, Yin L, Hylemon P, Ren S. Biosynthesis of the regulatory oxysterol, 5-cholesten-3beta,25-diol 3-sulfate, in hepatocytes. J Lipid Res 2007; 48:2587-96. [PMID: 17890683 DOI: 10.1194/jlr.m700301-jlr200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular cholesterol homeostasis is maintained through coordinated regulation of cholesterol synthesis, degradation, and secretion. Nuclear receptors for oxygenated cholesterol derivatives (oxysterols) are known to play key roles in the regulation of cholesterol homeostasis. We recently identified a sulfated oxysterol, 5-cholesten-3beta,25-diol 3-sulfate (25HC3S), that is localized to liver nuclei. The present study reports a biosynthetic pathway for 25HC3S in hepatocytes. Assays using mitochondria isolated from rats and sterol 27-hydroxylase (Cyp27A1) gene knockout mice indicated that 25-hydroxycholesterol (25HC) is synthesized by CYP27A1. Incubation of cholesterol or 25HC with mitochondrial and cytosolic fractions in the presence of 3'-phosphoadenosyl 5'-phosphosulfate resulted in the synthesis of 25HC3S. Real-time RT-PCR and Western blot analysis showed the presence of insulin-regulated hydroxycholesterol sulfotransferase 2B1b (SULT2B1b) in hepatocytes. 25HC3S, but not 25HC, decreased SULT2B1b mRNA and protein levels. Specific small interfering RNA decreased SULT2B1b mRNA, protein, and activity levels. These findings demonstrate that mitochondria synthesize 25HC, which is subsequently 3beta-sulfated to form 25HC3S.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Medicine Veterans Affairs McGuire Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Antonchick AV, Zhabinskii VN, Khripach VA. Oxysterols: Genesis and basic functions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007. [DOI: 10.1134/s1068162007030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, Häussinger D, Kubitz R. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 2007; 45:695-704. [PMID: 17326144 DOI: 10.1002/hep.21458] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Sinusoidal endothelial cells (SEC) constitute a permeable barrier between hepatocytes and blood. SEC are exposed to high concentrations of bile salts from the enterohepatic circulation. Whether SEC are responsive to bile salts is unknown. TGR5, a G-protein-coupled bile acid receptor, which triggers cAMP formation, has been discovered recently in macrophages. In this study, rat TGR5 was cloned and antibodies directed against the C-terminus of rat TGR5 were developed, which detected TGR5 as a glycoprotein in transfected HepG2-cells. Apart from Kupffer cells, TGR5 was detected in SEC of rat liver. SEC expressed TGR5 over the entire acinus, whereas endothelial cells of the portal or central veins were not immunoreactive toward TGR5 antibodies. In isolated SEC, TGR5 mRNA and protein were detected by reverse transcription (RT) PCR, immunofluorescence microscopy, and Western blot analysis. Bile salts increased cAMP in isolated SEC and induced mRNA expression of endothelial NO synthase (eNOS), a known cAMP-dependent gene. In addition, bile acids activated eNOS by phosphorylation of eNOS at amino acid position 1177. In line with eNOS activation, bile acids induced NO production in liver slices. This is the first report on the expression of TGR5 in SEC. CONCLUSION The data suggest that SEC are directly responsive toward specific bile salts. Regulation of eNOS in SEC by TGR5 connects bile salts with hepatic hemodynamics. This is of particular importance in cholestatic livers when bile salt concentrations are increased.
Collapse
Affiliation(s)
- Verena Keitel
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jiang X, Ory DS, Han X. Characterization of oxysterols by electrospray ionization tandem mass spectrometry after one-step derivatization with dimethylglycine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:141-52. [PMID: 17154356 PMCID: PMC2151840 DOI: 10.1002/rcm.2820] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report a novel approach to derivatize the primary, secondary, and tertiary hydroxy group(s) of oxysterols with N,N-dimethylglycine (DMG) in the presence of both 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and 4-(N,N-dimethylamino)pyridine to yield their corresponding mono- or di-DMG esters. Eight oxysterols including 7-oxocholesterol, 5alpha,6alpha- and 5beta,6beta-epoxycholesterols, as well as 7alpha-, 7beta-, 24(S)-, 25-, and 27-hydroxycholesterols, were studied. Electrospray ionization tandem mass spectrometric characterization of these singly or doubly protonated derivatives demonstrates the presence of an informative fragmentation pattern for each oxysterol derivative. Potential dissociation pathways for the production of these unique fragmentation patterns are proposed and discussed. Collectively, these informative and unique fragmentation patterns allow rapid and direct discrimination of the identities of 7alpha-, 7beta-, 24(S)-, 25-, and 27-hydroxycholesterol isomers, as well as 5alpha,6alpha- and 5beta,6beta-epoxycholesterol isomers, thereby potentially providing a foundation for quantitative analysis of oxysterols in biological samples in combination with a chromatographic separation.
Collapse
Affiliation(s)
- Xuntian Jiang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S. Ory
- The Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- *Correspondence to: X. Han, Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Box 8020, 660 South Euclid Avenue, St. Louis, MO 63110, USA., E-mail:
| |
Collapse
|
24
|
Ma SL, Tang NLS, Lam LCW, Chiu HFK. Polymorphisms of the cholesterol 24-hydroxylase (CYP46A1) gene and the risk of Alzheimer's disease in a Chinese population. Int Psychogeriatr 2006; 18:37-45. [PMID: 16734927 DOI: 10.1017/s1041610205003108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/08/2005] [Indexed: 11/06/2022]
Abstract
BACKGROUND An increasing number of studies have suggested a link between cholesterol metabolism and Alzheimer's disease (AD), which may be mediated by its effect on amyloid processing. Intracranial cholesterol is primarily eliminated into the bloodstream through conversion into 24-hydroxycholesterol by the enzyme cholesterol 24-hydroxylase (encoded by the CYP46A1 gene). CYP46A1 is an essential gene modulating cholesterol metabolism in the brain. METHOD To investigate whether polymorphisms in the CYP46A1 gene modulate the risk of AD, we studied four common polymorphisms (IVS1-192, IVS2-150, IVS3-128 and IVS4-122) in 182 Chinese AD patients and 179 age-matched healthy Chinese subjects. RESULTS AND CONCLUSION We found that the IVS3-128 polymorphism was associated with the risk of AD (p < 0.05). Subjects homozygous for the C alleles were protected from AD with an adjusted odds ratio (OR) of 1.53 [95% confidence interval (95% CI) 0.98-2.37, p = 0.047]. However, another minor allele, IVS1-192 C, was more prevalent in the AD group and was associated with an increased risk. Haplotype analysis revealed that two of the eight common haplotypes formed by the four polymorphisms were rarely found in the AD group, suggesting a protective effect of these two haplotypes (GTCA and CCTA). The results supported the involvement of the CYP46A1 gene and cholesterol metabolism in the pathogenesis of AD.
Collapse
Affiliation(s)
- Suk Ling Ma
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | |
Collapse
|
25
|
Guan JZ, Tamasawa N, Murakami H, Matsui J, Yamato K, Suda T. Clofibrate, a peroxisome-proliferator, enhances reverse cholesterol transport through cytochrome P450 activation and oxysterol generation. TOHOKU J EXP MED 2004; 201:251-9. [PMID: 14690017 DOI: 10.1620/tjem.201.251] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fibrates are widely used hypolipidemic agents that activate the peroxisome proliferator-activated receptor a (PPARalpha) and regulate the expression of many genes involved in lipid metabolism. We studied the mechanism of the effect of clofibrate on cholesterol homeostasis. Rats were fed with chow containing clofibrate, cytochrome P-450 inhibitor ketoconazole, or clofibrate plus ketoconazole. Control rats were fed only with normal chow. The levels of six oxysterols in liver microsome were determined. The levels of mRNAs for liver X receptor alpha (LXRalpha), ATP-binding cassette A1 (ABCA1), PPARalpha and cholesterol 7alpha-hydroxylase (CYP7A) in the liver were analyzed by northern blotting. Clofibrate administration decreased plasma levels of total cholesterol and triglyceride and increased high-density lipoprotein-cholesterol (HDL-C). Clofibrate increased the levels of liver microsomal oxysterols including 25- and 27-hydroxycholesterol, which are potent activators of LXRalpha. Clofibrate also enhanced the expression of mRNAs for PPARalpha, LXRalpha, and ABCA1. Simultaneous administration of ketoconazole suppressed the effects of clofibrate on plasma lipids, hepatic oxysterol levels, and the expression of the genes. Clofibrate increases cytochrome P450 content and the resulting oxysterol generation may partly mediate the clofibrate-induced up-regulattion of LXRa and ABCA1, which are related to reverse cholesterol transport.
Collapse
Affiliation(s)
- Jing-Zhi Guan
- Third Department of Internal Medicine, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Brown J, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, Yager D, Crowley J, Sambamurti K, Rahman MM, Reiss AB, Eckman CB, Wolozin B. Differential expression of cholesterol hydroxylases in Alzheimer's disease. J Biol Chem 2004; 279:34674-81. [PMID: 15148325 DOI: 10.1074/jbc.m402324200] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol is eliminated from neurons by oxidization, which generates oxysterols. Cholesterol oxidation is mediated by the enzymes cholesterol 24-hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1). Immunocytochemical studies show that CYP46A1 and CYP27A1 are expressed in neurons and some astrocytes in the normal brain, and CYP27A1 is present in oligodendrocytes. In Alzheimer's disease (AD), CYP46A1 shows prominent expression in astrocytes and around amyloid plaques, whereas CYP27A1 expression decreases in neurons and is not apparent around amyloid plaques but increases in oligodendrocytes. Although previous studies have examined the effects of synthetic oxysterols on the processing of amyloid precursor protein (APP), the actions of the naturally occurring oxysterols have yet to be examined. To understand the role of cholesterol oxidation in AD, we compared the effects of 24(S)- and 27-hydroxycholesterol on the processing of APP and analyzed the cell-specific expression patterns of the two cholesterol hydroxylases in the human brain. Both oxysterols inhibited production of Abeta in neurons, but 24(S)-hydroxycholesterol was approximately 1000-fold more potent than 27-hydroxycholesterol. The IC(50) of 24(S)-hydroxycholesterol for inhibiting Abeta secretion was approximately 1 nm. Both oxysterols induced ABCA1 expression with IC(50) values similar to that for inhibition of A beta secretion, suggesting the involvement of liver X receptor. Oxysterols also inhibited protein kinase C activity and APP secretion following stimulation of protein kinase C. The selective expression of CYP46A1 around neuritic plaques and the potent inhibition of APP processing in neurons by 24(S)-hydroxycholesterol suggests that CYP46A1 affects the pathophysiology of AD and provides insight into how polymorphisms in the CYP46A1 gene might influence the pathophysiology of this prevalent disease.
Collapse
Affiliation(s)
- James Brown
- Departments of Pharmacology and Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Souidi M, Dubrac S, Parquet M, Milliat F, Férézou J, Sérougne C, Loison C, Riottot M, Boudem N, Bécue T, Lutton C. Effects of dietary 27-hydroxycholesterol on cholesterol metabolism and bile acid biosynthesis in the hamster. Can J Physiol Pharmacol 2003; 81:854-63. [PMID: 14614521 DOI: 10.1139/y03-079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
27-hydroxycholesterol (27OH-Chol) is an important endogenous oxysterol resulting from the action of sterol 27-hydroxylase (CYP27A1) on cholesterol in the liver and numerous extrahepatic tissues. It may act as a modulator of cholesterol and bile acid metabolism. The effects of 27OH-Chol on the main enzymes and receptors of cholesterol metabolism were investigated by feeding male hamsters a diet supplemented with 27OH-Chol (0.1% w/w) for 1 week. Intestinal scavenger class B, type I (SR-BI) protein level was decreased (65%), but hepatic expression was increased (+34%). Liver 3β-hydroxy-3β-methyl glutaryl coenzyme A reductase (58%), cholesterol 7α-hydroxylase (54%), oxysterol 7α-hydroxylase (44%), and sterol 12α-hydroxylase (70%) activities were all decreased. Bile acid composition was changed (fourfold increase in the chenodeoxycholic/cholic acid ratio). This study demonstrates that dietary 27OH-Chol modulates major enzymes of cholesterol metabolism and alters the biliary bile acid profile, making it more hydrophobic, at least at this level of intake. Its effects on SR-BI protein levels are organ dependent. The properties of 27OH-Chol or its metabolites on cholesterol metabolism probably result from the activation of specific transcription factors. Key words: cholesterol 7α-hydroxylase (CYP7A1), sterol 12α-hydroxylase (CYP8B1), sterol 27-hydroxylase (CYP27A1), 3β-hydroxy-3β-methyl glutaryl coenzyme A reductase (HMGCoAR), scavenger receptor class B type I (SR-BI).
Collapse
Affiliation(s)
- Maâmar Souidi
- Laboratory of Physiology and Nutrition, Bâtiment 447, Université Paris-Sud, 91405 Orsay CEDEX, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Petkam R, Renaud RL, Leatherland JF. The role of CYP 1A1 in the in vitro metabolism of pregnenolone by the liver of rainbow trout embryos. Comp Biochem Physiol C Toxicol Pharmacol 2003; 135C:277-84. [PMID: 12927902 DOI: 10.1016/s1532-0456(03)00113-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The in vitro metabolism of pregnenolone (P5) was investigated using whole liver preparations taken from rainbow trout (Oncorhynchus mykiss) embryos sampled between 55 and 61 days post-fertilization. The intent of the study was to use HPLC techniques to separate and identify the metabolites of hepatic P5 metabolism and identify the enzyme(s) involved. The major metabolite of [3H]P5 catabolism was [3H]7alpha-hydroxypregnenolone ([3H]7alphaOHP5), and the enzyme involved was hypothesized to be a cytochrome P450 (CYP) isozyme. To test that hypothesis, whole liver preparations from embryos were pre-treated with selected CYP inhibitors prior to incubation with [3H]P5 and post-mitochondrial supernatant (PMS) fractions of embryo livers were pre-treated with specific antibodies raised against rainbow trout CYP 1A1 prior to incubation with radiolabelled steroid precursor. Three of the four inhibitors used (Miconazole, Clotimazole, Ketokonazole) and the CYP 1A1 antibodies totally blocked the conversion of [3H]P(5) to [3H]7alphaOHP5, and the fourth, Metyrapone, partially blocked the conversion. These results suggest that CYP 1A1 is the major enzyme involved in hepatic catabolism of P5 by rainbow trout embryos.
Collapse
Affiliation(s)
- R Petkam
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | |
Collapse
|
29
|
Malerød L, Sporstøl M, Juvet LK, Mousavi A, Gjøen T, Berg T. Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptor gamma and hepatocyte nuclear factor 4alpha. Biochem Biophys Res Commun 2003; 305:557-565. [PMID: 12763030 DOI: 10.1016/s0006-291x(03)00819-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Excessive cellular cholesterol is transported to the liver by a pathway called 'reverse cholesterol transport.' Scavenger receptor class B, type I (SR-BI) mediates cholesterol uptake in the liver. Polyunsaturated fatty acids, known to activate peroxisome proliferator-activated receptor (PPAR), have been reported to increase hepatic cholesterol uptake. We found in the present study that PPARgamma induces expression of SR-BI in rat hepatocytes, liver endothelial cells, and Kupffer cells. In contrast, PPARalpha increased SR-BI levels only in hepatocytes and liver endothelial cells. PPARgamma/RXR binds to a response element between -459 and -472 bp in the human SR-BI promoter. Furthermore, hepatocyte nuclear factor 4alpha (HNF4alpha) was found to enhance PPARgamma-mediated SR-BI transcription. Thiazolidinedione (TZD)-activated PPARgamma/RXR increased hepatic SR-BI levels, which may lead to increased hepatic cholesterol uptake and less accumulation of lipids in peripheral tissues. The present results are in agreement with previous reports, indicating that specific PPARgamma-agonists (such as TZDs) protect against atherosclerosis.
Collapse
Affiliation(s)
- Lene Malerød
- Division of Molecular Cell Biology, Institute of Biology, University of Oslo, P.O. Box 1050, Blindern, Oslo 0316, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
In the adult, several endogenous compounds, such as bile acids and biliary pigments, as well as many xenobiotics are mainly biotransformed and eliminated by the hepatobiliary system. However, because this function is immature in the foetus, this role is carried out by the placenta during the intrauterine life. This review describes current knowledge of the trophoblastic machinery responsible for this function, which includes transport and metabolic processes, similar in part to those existing in the mature liver. Because many of the studies reviewed here were conducted on human or rat near-term placentae, two aspects should be borne in mind: (i) although both types of placenta are haemochorial, profound species-specific differences at the structural, molecular and functional levels do exist, and (ii) the placenta is an organ undergoing continuous developmental changes, including its hepatobiliary-like excretory function.
Collapse
Affiliation(s)
- J J G Marin
- Department of Physiology, University of Salamanca, Spain.
| | | | | |
Collapse
|
31
|
Ren S, Marques D, Redford K, Hylemon PB, Gil G, Vlahcevic ZR, Pandak WM. Regulation of oxysterol 7alpha-hydroxylase (CYP7B1) in the rat. Metabolism 2003; 52:636-42. [PMID: 12759897 DOI: 10.1053/meta.2003.50106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cholesterol metabolized to 7alpha-hydroxylated bile acids is a principle pathway of cholesterol degradation. Cholesterol 7alpha-hydroxylase (CYP7A1) is the initial and rate-determining enzyme in the "classic pathway" of bile acid synthesis. An "alternative" pathway of bile acid synthesis begins with 27-hydroxylation of cholesterol by 27-hydroxylase (CYP27), followed by 7alpha-hydroxylation by oxysterol 7alpha-hydroxylase (CYP7B1). The aim of the current study was to investigate the regulation of CYP7B1 by bile acids, cholesterol, and thyroid hormone in a previously well-studied in vivo model of bile acid synthesis, and to compare its regulation to that of CYP7A1. Three study groups were examined. In the first, male Sprague-Dawley rats with intact enterohepatic circulations were fed normal chow (controls), cholestyramine (CT), cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), or cholesterol (Chol). In the second group, taurocholate (TCA) was continuously intraduodenally infused for 48 hours to chronic biliary diverted rats. In a third set of studies, squalestatin, an inhibitor of cholesterol synthesis, was intravenously infused for 48 hours. In a fourth set of studies, the diurnal variation in CYP7B1 was compared to that of CYP7A1. At the end of each study livers were harvested, and CYP7B1 and CYP7A1 activities and mRNA levels were determined. Complete biliary diversion significantly increased the specific activity (SA) of both CYP7B1 ( upward arrow 212%; P <.002) and CYP7A1 ( upward arrow 212%; P <.007). Intraduodenal infusion of TCA to rats with biliary diversion decreased SA of both CYP7B1 ( downward arrow 29%; P <.001) and CYP7A1 ( downward arrow 46%; P <.01). The addition of CA, CDCA, or DCA to rat chow led to downregulation of CYP7B1 SAs by 42% (P <.003), 51% (P <.009), and 47% (P <.003), and CYP7A1 SAs by 32% +/- 6% (P <.003), 73% +/- 9% (P <.002), and 60% +/- 13% (P <.004), respectively. CT feeding upregulated both CYP7B1 ( upward arrow 136%; P <.004) and CYP7A1 ( upward arrow 216%; P <.001) SAs. While Chol feeding significantly upregulated CYP7A1 SA, no significant increase in CYP7B1 SA was found. Conversely, as previously shown in vitro, inhibition of cholesterol synthesis significantly suppressed both CYP7A1 and CYP7B1 activity and mRNA levels. Both CYP7B1 and CYP7A1 underwent diurnal variation, with peak and trough values for CYP7B1 lagging approximately 6 hours behind CYP7A1. We conclude that, in the rat, like CYP7A1, CYP7B1 demonstrates diurnal rhythm and is regulated by bile acids and cholesterol.
Collapse
Affiliation(s)
- Shunlin Ren
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA 23249, USA
| | | | | | | | | | | | | |
Collapse
|