1
|
Yang M, Lin X, Segers F, Suganthan R, Hildrestrand GA, Rinholm JE, Aas PA, Sousa MML, Holm S, Bolstad N, Warren D, Berge RK, Johansen RF, Yndestad A, Kristiansen E, Klungland A, Luna L, Eide L, Halvorsen B, Aukrust P, Bjørås M. OXR1A, a Coactivator of PRMT5 Regulating Histone Arginine Methylation. Cell Rep 2021; 30:4165-4178.e7. [PMID: 32209476 DOI: 10.1016/j.celrep.2020.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A-/-) develop fatty liver. RNA sequencing of male Oxr1A-/- liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism. Indeed, Gh expression is reduced in male mice Oxr1A-/- pituitary gland and in rat Oxr1A-/- pituitary adenoma cell-line GH3. Oxr1A-/- male mice show reduced fasting-blood GH levels. Pull-down and proximity ligation assays reveal that OXR1A is associated with arginine methyl transferase PRMT5. OXR1A-depleted GH3 cells show reduced symmetrical dimethylation of histone H3 arginine 2 (H3R2me2s), a product of PRMT5 catalyzed methylation, and chromatin immunoprecipitation (ChIP) of H3R2me2s shows reduced Gh promoter enrichment. Finally, we demonstrate with purified proteins that OXR1A stimulates PRMT5/MEP50-catalyzed H3R2me2s. Our data suggest that OXR1A is a coactivator of PRMT5, regulating histone arginine methylation and thereby GH production within the pituitary gland.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Filip Segers
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway; Proteomics and Metabolomics Core Facility-PROMEC, Norwegian University of Science and Technology, the Central Norway Regional Health Authority, Trondheim, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - David Warren
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rune F Johansen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
2
|
Colombatti F, Mencia R, Garcia L, Mansilla N, Alemano S, Andrade AM, Gonzalez DH, Welchen E. The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3177-3195. [PMID: 30945737 DOI: 10.1093/jxb/erz147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This study demonstrates the existence of the oxidation resistance (OXR) protein family in plants. There are six OXR members in Arabidopsis that contain the highly conserved TLDc domain that is characteristic of this eukaryotic protein family. AtOXR2 is a mitochondrial protein able to alleviate the stress sensitivity of a yeast oxr1 mutant. It was induced by oxidative stress and its overexpression in Arabidopsis (oeOXR2) increased leaf ascorbate, photosynthesis, biomass, and seed production, as well as conferring tolerance to methyl viologen, antimycin A, and high light intensities. The oeOXR2 plants also showed higher ABA content, changes in ABA sensitivity, and modified expression of ABA- and stress-regulated genes. While the oxr2 mutants had a similar shoot phenotype to the wild-type, they exhibited increased sensitivity to stress. We propose that by influencing the levels of reactive oxygen species (ROS), AtOXR2 improves the efficiency of photosynthesis and elicits basal tolerance to environmental challenges that increase oxidative stress, allowing improved plant growth and biomass production.
Collapse
Affiliation(s)
- Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea M Andrade
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
3
|
Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome 2017; 28:395-406. [PMID: 28707022 PMCID: PMC5614904 DOI: 10.1007/s00335-017-9706-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) arises from an imbalance in the cellular redox state, which can lead to intracellular damage and ultimately cell death. OS occurs as a result of normal ageing, but it is also implicated as a common etiological factor in neurological disease; thus identifying novel proteins that modulate the OS response may facilitate the design of new therapeutic approaches applicable to many disorders. In this review, we describe the recent progress that has been made using a range of genetic approaches to understand a family of proteins that share the highly conserved TLDc domain. We highlight their shared ability to prevent OS-related cell death and their unique functional characteristics, as well as discussing their potential application as new neuroprotective factors. Furthermore, with an increasing number of pathogenic mutations leading to epilepsy and hearing loss being discovered in the TLDc protein TBC1D24, understanding the function of this family has important implications for a range of inherited neurological diseases.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
4
|
Liu KX, Edwards B, Lee S, Finelli MJ, Davies B, Davies KE, Oliver PL. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 2015; 138:1167-81. [PMID: 25753484 PMCID: PMC4407188 DOI: 10.1093/brain/awv039] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a key factor contributing to motor neuron injury in amyotrophic lateral sclerosis (ALS). Liu et al. show that overexpression of oxidation resistance 1 (Oxr1) in neurons reduces pathology and extends lifespan in an ALS mouse model. Manipulation of OXR1 levels may have therapeutic benefit in neurodegenerative disease. Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1G93A mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1G93A mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1G93A mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies.
Collapse
Affiliation(s)
- Kevin X Liu
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Benjamin Edwards
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Sheena Lee
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Mattéa J Finelli
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Ben Davies
- 2 Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kay E Davies
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Peter L Oliver
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
5
|
Li Y, Li W, Liu C, Yan M, Raman I, Du Y, Fang X, Zhou XJ, Mohan C, Li QZ. Delivering Oxidation Resistance-1 (OXR1) to Mouse Kidney by Genetic Modified Mesenchymal Stem Cells Exhibited Enhanced Protection against Nephrotoxic Serum Induced Renal Injury and Lupus Nephritis. JOURNAL OF STEM CELL RESEARCH & THERAPY 2014; 4:231. [PMID: 25995969 PMCID: PMC4435960 DOI: 10.4172/2157-7633.1000231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To elucidate the role of oxidation resistance 1 (OXR1) gene. Oxidative stress plays a pivotal role in pathogenesis of immune-mediated nephritis. Recently we identified oxidation resistance 1 (OXR1) is conventionally expressed in eukaryotes and has an ability to prevent oxidative damage caused by various oxidative stresses. However the protective effect of OXR1 in immune-associated inflammatory response and oxidative damage is not clear and will be investigated in this study. METHODS We utilized mesenchymal stem cells (MSCs) as vehicles to carry OXR1 into the injured kidneys of nephritis model mice and investigated the influence of OXR1 on glomerulonephritis. Human OXR1 gene was integrated into genome of MSCs via lentiviral vector, and established hOXR1-MSC cell line which still maintains the differentiation property. 129/svj mice with anti-glomerular basement membrane (GBM) challenge and spontaneous lupus mice B6.Sle1.Sle2.Sle3 were injected with hOXR1-MSCs (i.v. injection) to evaluate the function of hOXR1. Immunohistochemistry was used to appraise the renal pathology and Tunel staining was applied to detect cell apoptosis. RESULTS Compared with control mice, hOXR1-MSCs administration showed significantly decreased blood urea nitrogen (BUN), proteinuria and ameliorated renal pathological damage. hOXR1-MSCs transplantation significantly reduced macrophage and T lymphocyte infiltration by inhibiting the expression of CCL2, CCL7, IL-1β, IL-6 and NFκB in mouse kidney. Moreover, hOXR1-MSCs prevented hydrogen peroxide (H2O2)-induced oxidative stress and its implantation reduced nitric oxide (NO) in mouse serum and urine to inhibit tubular cell apoptosis. CONCLUSION OXR1-MSCs transplantation may exert a certain protective effect on nephritis by suppressing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yajuan Li
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wei Li
- Key Laboratory of Medical Genetics, Wenzhou Medical University School of Laboratory Medicine & Life Science, Wenzhou, 325035, China
| | - Chu Liu
- Key Laboratory of Medical Genetics, Wenzhou Medical University School of Laboratory Medicine & Life Science, Wenzhou, 325035, China
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Indu Raman
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xiangdong Fang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xin J. Zhou
- Renal Path Diagnostics, Pathologist BioMedical Laboratories, Lewisville, TX, 75067, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Quan-Zhen Li
- Key Laboratory of Medical Genetics, Wenzhou Medical University School of Laboratory Medicine & Life Science, Wenzhou, 325035, China
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
6
|
Kobayashi N, Takahashi M, Kihara S, Niimi T, Yamashita O, Yaginuma T. Cloning of cDNA encoding a Bombyx mori homolog of human oxidation resistance 1 (OXR1) protein from diapause eggs, and analyses of its expression and function. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:58-68. [PMID: 25010546 DOI: 10.1016/j.jinsphys.2014.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/24/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
To better understand the molecular mechanisms of diapause initiation, we used the sensitive cDNA subtraction (selective amplification via biotin- and restriction-mediated enrichment) method and isolated a novel gene expressed abundantly in diapause eggs of the silkworm, Bombyx mori, which encodes a homolog of the human oxidation resistance 1 (OXR1) protein. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analyses confirmed that BmOXR1 mRNA and its 140-kDa protein were differentially expressed in diapause eggs compared to non-diapause eggs. OXR1 double-stranded RNA (dsRNA) was injected into diapause-destined eggs before the cellular blastoderm stage, and 4days later, when untreated eggs reached the diapause stage, the OXR1 protein disappeared; however, these eggs remained in diapause, suggesting that BmOXR1 is not essential for diapause initiation and/or maintenance. To further investigate the in vivo function of BmOXR1 apart from its role in diapause, we overexpressed BmOXR1 in Drosophila melanogaster. The fruit fly male adult life-span was significantly extended in the 50%-survival time when adults were reared on diets both with and without H2O2 solution under 25°C incubation. These results suggest that BmOXR1 functions in D. melanogaster via a possible antioxidant effect. As BmOXR1 was expressed mainly in the nuclei of D. melanogaster cells, the mechanism underlying its antioxidation effect appears to be different from that in humans where it is expressed mainly in the mitochondria. Taken together, these results suggest that BmOXR1 might serve as an antioxidant regulator during the early diapause stage.
Collapse
Affiliation(s)
- Noriko Kobayashi
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Masaki Takahashi
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Shouhei Kihara
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Teruyuki Niimi
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Okitsugu Yamashita
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Toshinobu Yaginuma
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
7
|
Murphy KC, Volkert MR. Structural/functional analysis of the human OXR1 protein: identification of exon 8 as the anti-oxidant encoding function. BMC Mol Biol 2012; 13:26. [PMID: 22873401 PMCID: PMC3462732 DOI: 10.1186/1471-2199-13-26] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 07/24/2012] [Indexed: 12/27/2022] Open
Abstract
Background The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. Results In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G→T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. Conclusion The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12–16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
8
|
Wang Z, Berkey CD, Watnick PI. The Drosophila protein mustard tailors the innate immune response activated by the immune deficiency pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:3993-4000. [PMID: 22427641 PMCID: PMC3324637 DOI: 10.4049/jimmunol.1103301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we describe a Drosophila melanogaster transposon insertion mutant with tolerance to Vibrio cholerae infection and markedly decreased transcription of diptericin as well as other genes regulated by the immune deficiency innate immunity signaling pathway. We present genetic evidence that this insertion affects a locus previously implicated in pupal eclosion. This genetic locus, which we have named mustard (mtd), contains a LysM domain, often involved in carbohydrate recognition, and a TLDc domain of unknown function. More than 20 Mtd isoforms containing one or both of these conserved domains are predicted. We establish that the mutant phenotype represents a gain of function and can be replicated by increased expression of a short, nuclearly localized Mtd isoform comprised almost entirely of the TLDc domain. We show that this Mtd isoform does not block Relish cleavage or translocation into the nucleus. Lastly, we present evidence suggesting that the eclosion defect previously attributed to the Mtd locus may be the result of the unopposed action of the NF-κB homolog, Relish. Mtd homologs have been implicated in resistance to oxidative stress. However, to our knowledge this is the first evidence that Mtd or its homologs alter the output of an innate immunity signaling cascade from within the nucleus.
Collapse
Affiliation(s)
- Zhipeng Wang
- Division of Infectious Diseases, Children’s Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, U.S.A
| | - Cristin D. Berkey
- Division of Infectious Diseases, Children’s Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, U.S.A
| | - Paula I. Watnick
- Division of Infectious Diseases, Children’s Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, U.S.A
| |
Collapse
|
9
|
Oliver PL, Finelli MJ, Edwards B, Bitoun E, Butts DL, Becker EBE, Cheeseman MT, Davies B, Davies KE. Oxr1 is essential for protection against oxidative stress-induced neurodegeneration. PLoS Genet 2011; 7:e1002338. [PMID: 22028674 PMCID: PMC3197693 DOI: 10.1371/journal.pgen.1002338] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/24/2011] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease.
Collapse
Affiliation(s)
- Peter L. Oliver
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mattéa J. Finelli
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Bitoun
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Darcy L. Butts
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B. E. Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Ben Davies
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Falace A, Filipello F, La Padula V, Vanni N, Madia F, De Pietri Tonelli D, de Falco FA, Striano P, Dagna Bricarelli F, Minetti C, Benfenati F, Fassio A, Zara F. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet 2010; 87:365-70. [PMID: 20727515 PMCID: PMC2933335 DOI: 10.1016/j.ajhg.2010.07.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 12/28/2022] Open
Abstract
Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders.
Collapse
Affiliation(s)
- Antonio Falace
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Fabia Filipello
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
| | - Veronica La Padula
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | - Nicola Vanni
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Francesca Madia
- Laboratory of Genetics, E.O. Ospedali Galliera, Genoa, 16128, Italy
| | - Davide De Pietri Tonelli
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | | | - Pasquale Striano
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | | | - Carlo Minetti
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
| | - Federico Zara
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| |
Collapse
|
11
|
Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, Barillas-Mury C. The Anopheles gambiae oxidation resistance 1 (OXR1) gene regulates expression of enzymes that detoxify reactive oxygen species. PLoS One 2010; 5:e11168. [PMID: 20567517 PMCID: PMC2887368 DOI: 10.1371/journal.pone.0011168] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/13/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. METHODOLOGY/PRINCIPAL FINDINGS OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT) and glutathione peroxidase (Gpx) expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK) gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. CONCLUSION The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS) in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection.
Collapse
Affiliation(s)
- Giovanna Jaramillo-Gutierrez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sanjeev Kumar
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
12
|
Abstract
In order to develop a more complete understanding of the genes required for resistance to oxidative DNA damage, we devised methods to identify genes that can prevent or repair oxidative DNA damage. These methods use the oxidative mutator phenotype of a repair deficient E. coli strain to measure the antimutator effect resulting from the expression of human cDNAs. The method can be adapted to characterize the function, and to determine the active site domains, of putative antimutator genes. Since bacteria do not contain subcellular compartments, genes that function in mitochondria, the cytoplasm, or the nucleus can be identified. Methods to determine the localization of genes in their normal host organism are also described.
Collapse
|
13
|
Shkolnik K, Ben-Dor S, Galiani D, Hourvitz A, Dekel N. Molecular characterization and bioinformatics analysis of Ncoa7B, a novel ovulation-associated and reproduction system-specific Ncoa7 isoform. Reproduction 2008; 135:321-33. [PMID: 18299425 DOI: 10.1530/rep-07-0402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present work, we employed bioinformatics search tools to select ovulation-associated cDNA clones with a preference for those representing putative novel genes. Detailed characterization of one of these transcripts, 6C3, by real-time PCR and RACE analyses led to identification of a novel ovulation-associated gene, designated Ncoa7B. This gene was found to exhibit a significant homology to the Ncoa7 gene that encodes a conserved tissue-specific nuclear receptor coactivator. Unlike Ncoa7, Ncoa7B possesses a unique and highly conserved exon at the 5' end and encodes a protein with a unique N-terminal sequence. Extensive bioinformatics analysis has revealed that Ncoa7B has one identifiable domain, TLDc, which has recently been suggested to be involved in protection from oxidative DNA damage. An alignment of TLDc domain containing proteins was performed, and the closest relative identified was OXR1, which also has a corresponding, highly related short isoform, with just a TLDc domain. Moreover, Ncoa7B expression, as seen to date, seems to be restricted to mammals, while other TLDc family members have no such restriction. Multiple tissue analysis revealed that unlike Ncoa7, which was abundant in a variety of tissues with the highest expression in the brain, Ncoa7B mRNA expression is restricted to the reproductive system organs, particularly the uterus and the ovary. The ovarian expression of Ncoa7B was stimulated by human chorionic gonadotropin. Additionally, using real-time PCR, we demonstrated the involvement of multiple signaling pathways for Ncoa7B expression on preovulatory follicles.
Collapse
Affiliation(s)
- Ketty Shkolnik
- Department of, Biological Regulation, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
14
|
The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins. BMC Cell Biol 2007; 8:13. [PMID: 17391516 PMCID: PMC1847813 DOI: 10.1186/1471-2121-8-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 03/28/2007] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The NCOA7 gene product is an estrogen receptor associated protein that is highly similar to the human OXR1 gene product, which functions in oxidation resistance. OXR genes are conserved among all sequenced eukaryotes from yeast to humans. In this study we examine if NCOA7 has an oxidation resistance function similar to that demonstrated for OXR1. We also examine NCOA7 expression in response to oxidative stress and its subcellular localization in human cells, comparing these properties with those of OXR1. RESULTS We find that NCOA7, like OXR1 can suppress the oxidative mutator phenotype when expressed in an E. coli strain that exhibits an oxidation specific mutator phenotype. Moreover, NCOA7's oxidation resistance function requires expression of only its carboxyl-terminal domain and is similar in this regard to OXR1. We find that, in human cells, NCOA7 is constitutively expressed and is not induced by oxidative stress and appears to localize to the nucleus following estradiol stimulation. These properties of NCOA7 are in striking contrast to those of OXR1, which is induced by oxidative stress, localizes to mitochondria, and appears to be excluded, or largely absent from nuclei. CONCLUSION NCOA7 most likely arose from duplication. Like its homologue, OXR1, it is capable of reducing the DNA damaging effects of reactive oxygen species when expressed in bacteria, indicating the protein has an activity that can contribute to oxidation resistance. Unlike OXR1, it appears to localize to nuclei and interacts with the estrogen receptor. This raises the possibility that NCOA7 encodes the nuclear counterpart of the mitochondrial OXR1 protein and in mammalian cells it may reduce the oxidative by-products of estrogen metabolite-mediated DNA damage.
Collapse
|
15
|
Elliott NA, Volkert MR. Stress induction and mitochondrial localization of Oxr1 proteins in yeast and humans. Mol Cell Biol 2004; 24:3180-7. [PMID: 15060142 PMCID: PMC381681 DOI: 10.1128/mcb.24.8.3180-3187.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) are critical molecules produced as a consequence of aerobic respiration. It is essential for cells to control the production and activity of such molecules in order to protect the genome and regulate cellular processes such as stress response and apoptosis. Mitochondria are the major source of ROS within the cell, and as a result, numerous proteins have evolved to prevent or repair oxidative damage in this organelle. The recently discovered OXR1 gene family represents a set of conserved eukaryotic genes. Previous studies of the yeast OXR1 gene indicate that it functions to protect cells from oxidative damage. In this report, we show that human and yeast OXR1 genes are induced by heat and oxidative stress and that their proteins localize to the mitochondria and function to protect against oxidative damage. We also demonstrate that mitochondrial localization is required for Oxr1 protein to prevent oxidative damage.
Collapse
Affiliation(s)
- Nathan A Elliott
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
16
|
Leung AKL, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2004; 376:553-69. [PMID: 14531731 PMCID: PMC1223824 DOI: 10.1042/bj20031169] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/08/2003] [Indexed: 02/02/2023]
Abstract
The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.
Collapse
Affiliation(s)
- Anthony K L Leung
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, UK.
| | | | | | | |
Collapse
|
17
|
Shao W, Halachmi S, Brown M. ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol Cell Biol 2002; 22:3358-72. [PMID: 11971969 PMCID: PMC133794 DOI: 10.1128/mcb.22.10.3358-3372.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2001] [Revised: 01/10/2002] [Accepted: 02/07/2002] [Indexed: 11/20/2022] Open
Abstract
We report here the identification and characterization of a novel nuclear receptor coactivator, ERAP140. ERAP140 was isolated in a screen for ER alpha-interacting proteins using the ER alpha ligand binding domain as a probe. The ERAP140 protein shares no sequence and has little structural homology with other nuclear receptor cofactors. However, homologues of ERAP140 have been identified in mouse, Drosophila, and Caenorhabditis elegans. The expression of ERAP140 is cell and tissue type specific and is most abundant in the brain, where its expression is restricted to neurons. In addition to interacting with ER alpha, ERAP140 also binds ER beta, TR beta, PPAR gamma, and RAR alpha. ERAP140 interacts with ER alpha via a noncanonical interaction motif. The ER alpha-ERAP140 association can be competed by coactivator NR boxes, indicating ERAP140 binds ER alpha on a surface similar to that of other coactivators. ERAP140 can enhance the transcriptional activities of nuclear receptors with which it interacts. In vivo, ERAP140 is recruited by estrogen-bound ER alpha to the promoter region of endogenous ER alpha target genes. Furthermore, the E(2)-induced recruitment of ERAP140 to the promoter follows a cyclic pattern similar to that of other coactivators. Our results suggest that ERAP140 represents a distinct class of nuclear receptor coactivators that mediates receptor signaling in specific target tissues.
Collapse
Affiliation(s)
- Wenlin Shao
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Olson MOJ, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 219:199-266. [PMID: 12211630 PMCID: PMC7133188 DOI: 10.1016/s0074-7696(02)19014-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.
Collapse
Affiliation(s)
- Mark O J Olson
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|