1
|
Panunzi LG, Agüero F. A genome-wide analysis of genetic diversity in Trypanosoma cruzi intergenic regions. PLoS Negl Trop Dis 2014; 8:e2839. [PMID: 24784238 PMCID: PMC4006747 DOI: 10.1371/journal.pntd.0002839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/20/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is the causal agent of Chagas Disease. Recently, the genomes of representative strains from two major evolutionary lineages were sequenced, allowing the construction of a detailed genetic diversity map for this important parasite. However this map is focused on coding regions of the genome, leaving a vast space of regulatory regions uncharacterized in terms of their evolutionary conservation and/or divergence. METHODOLOGY Using data from the hybrid CL Brener and Sylvio X10 genomes (from the TcVI and TcI Discrete Typing Units, respectively), we identified intergenic regions that share a common evolutionary ancestry, and are present in both CL Brener haplotypes (TcII-like and TcIII-like) and in the TcI genome; as well as intergenic regions that were conserved in only two of the three genomes/haplotypes analyzed. The genetic diversity in these regions was characterized in terms of the accumulation of indels and nucleotide changes. PRINCIPAL FINDINGS Based on this analysis we have identified i) a core of highly conserved intergenic regions, which remained essentially unchanged in independently evolving lineages; ii) intergenic regions that show high diversity in spite of still retaining their corresponding upstream and downstream coding sequences; iii) a number of defined sequence motifs that are shared by a number of unrelated intergenic regions. A fraction of indels explains the diversification of some intergenic regions by the expansion/contraction of microsatellite-like repeats.
Collapse
Affiliation(s)
- Leonardo G. Panunzi
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
- * E-mail: ;
| |
Collapse
|
2
|
De Gaudenzi JG, Carmona SJ, Agüero F, Frasch AC. Genome-wide analysis of 3'-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes. PeerJ 2013; 1:e118. [PMID: 23904995 PMCID: PMC3728762 DOI: 10.7717/peerj.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding functionally interrelated proteins together with the trans-acting factors that coordinately modulate their expression is termed a post-transcriptional regulon, due to their partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements in the noncoding regions of genes, and mediates the synchronized control of their fate. These recognition motifs are often characterized by conserved sequences and/or RNA structures, and it is likely that various classes of cis-elements remain undiscovered. Current evidence suggests that RNA regulons govern gene expression in trypanosomes, unicellular parasites which mainly use post-transcriptional mechanisms to control protein synthesis. In this study, we used motif discovery tools to test whether groups of functionally related trypanosomatid genes contain a common cis-regulatory element. We obtained conserved structured RNA motifs statistically enriched in the noncoding region of 38 out of 53 groups of metabolically related transcripts in comparison with a random control. These motifs have a hairpin loop structure, a preferred sense orientation and are located in close proximity to the open reading frames. We found that 15 out of these 38 groups represent unique motifs in which most 3'-UTR signature elements were group-specific. Two extensively studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation with clusters of developmentally co-expressed genes and six RNA elements were enriched in gene clusters affected after hyperosmotic stress. Here we report a systematic genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and describe an organized network of several coordinately regulated cohorts of mRNAs in T. cruzi. Moreover, we found that structured RNA elements are also conserved in other human pathogens. These results support a model of regulation of gene expression by multiple post-transcriptional regulons in trypanosomes.
Collapse
Affiliation(s)
- Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
3
|
Pastro L, Smircich P, Pérez-Díaz L, Duhagon MA, Garat B. Implication of CA repeated tracts on post-transcriptional regulation in Trypanosoma cruzi. Exp Parasitol 2013; 134:511-8. [PMID: 23631879 DOI: 10.1016/j.exppara.2013.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 04/13/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
In Trypanosoma cruzi gene expression regulation mainly relays on post-transcriptional events. Nevertheless, little is known about the signals which control mRNA abundance and functionality. We have previously found that CA repeated tracts (polyCA) are abundant in the vicinity of open reading frames and constitute specific targets for single stranded binding proteins from T. cruzi epimastigote. Given the reported examples of the involvement of polyCA motifs in gene expression regulation, we decided to further study their role in T. cruzi. Using an in silico genome-wide analysis, we identify the genes that contain polyCA within their predicted UTRs. We found that about 10% of T. cruzi genes carry polyCA therein. Strikingly, they are frequently concurrent with GT repeated tracts (polyGT), favoring the formation of a secondary structure exhibiting the complementary polydinucleotides in a double stranded helix. This feature is found in the species-specific family of genes coding for mucine associated proteins (MASPs) and other genes. For those polyCA-containing UTRs that lack polyGT, the polyCA is mainly predicted to adopt a single stranded structure. We further analyzed the functional role of such element using a reporter approach in T. cruzi. We found out that the insertion of polyCA at the 3' UTR of a reporter gene in the pTEX vector modulates its expression along the parasite's life cycle. While no significant change of the mRNA steady state of the reporter gene could be detected at the trypomastigote stage, significant increase in the epimastigote and reduction in the amastigote stage were observed. Altogether, these results suggest the involvement of polyCA as a signal in gene expression regulation in T. cruzi.
Collapse
Affiliation(s)
- Lucía Pastro
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, 11400 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
4
|
Guerra-Slompo EP, Probst CM, Pavoni DP, Goldenberg S, Krieger MA, Dallagiovanna B. Molecular characterization of the Trypanosoma cruzi specific RNA binding protein TcRBP40 and its associated mRNAs. Biochem Biophys Res Commun 2012; 420:302-7. [PMID: 22425988 DOI: 10.1016/j.bbrc.2012.02.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/29/2012] [Indexed: 01/25/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected disorder that affects millions of people in the Americas. T. cruzi relies mostly upon post-transcriptional regulation to control stage specific gene expression. RNA binding proteins (RBPs) associate with functionally related mRNAs forming ribonucleoprotein complexes that define post-transcriptional operons. The RNA Recognition Motif (RRM) is the most common and ancient family of RBPs. This family of RBPs has been identified in trypanosomatid parasites and only a few of them have been functionally characterized. We describe here the functional characterization of TcRBP40, a T. cruzi specific RBP, and its associated mRNAs. We used a modified version of the recombinant RIP-Chip assay to identify the mRNAs with which it associates and in vivo TAP-tag assays to confirm these results. TcRBP40 binds to an AG-rich sequence in the 3'UTR of the associated mRNAs, which were found to encode mainly putative transmembrane proteins. TcRBP40 is differentially expressed in metacyclogenesis. Surprisingly, in epimastigotes, it is dispersed in the cytoplasm but is concentrated in the reservosomes, a T. cruzi specific organelle, which suggests a putative new function for this parasite organelle.
Collapse
Affiliation(s)
- Eloise P Guerra-Slompo
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader 3775, 81350-010 CIC Curitiba, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Comparative genomic analysis of dinucleotide repeats in Tritryps. Gene 2011; 487:29-37. [PMID: 21824509 DOI: 10.1016/j.gene.2011.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 12/29/2022]
Abstract
The protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryps), are evolutionarily ancient eukaryotes which cause worldwide human parasitosis. They present unique biological features. Indeed, canonical DNA/RNA cis-acting elements remain mostly elusive. Repetitive sequences, originally considered as selfish DNA, have been lately recognized as potentially important functional sequence elements in cell biology. In particular, the dinucleotide patterns have been related to genome compartmentalization, gene evolution and gene expression regulation. Thus, we perform a comparative analysis of the occurrence, length and location of dinucleotide repeats (DRs) in the Tritryp genomes and their putative associations with known biological processes. We observe that most types of DRs are more abundant than would be expected by chance. Complementary DRs usually display asymmetrical strand distribution, favoring TT and GT repeats in the coding strands. In addition, we find that GT repeats are among the longest DRs in the three genomes. We also show that specific DRs are non-uniformly distributed along the polycistronic unit, decreasing toward its boundaries. Distinctive non-uniform density patterns were also found in the intergenic regions, with predominance at the vicinity of the ORFs. These findings further support that DRs may control genome structure and gene expression.
Collapse
|
6
|
Duhagon MA, Pastro L, Sotelo-Silveira JR, Pérez-Díaz L, Maugeri D, Nardelli SC, Schenkman S, Williams N, Dallagiovanna B, Garat B. The Trypanosoma cruzi nucleic acid binding protein Tc38 presents changes in the intramitochondrial distribution during the cell cycle. BMC Microbiol 2009; 9:34. [PMID: 19210781 PMCID: PMC2654453 DOI: 10.1186/1471-2180-9-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 02/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tc38 of Trypanosoma cruzi has been isolated as a single stranded DNA binding protein with high specificity for the poly [dT-dG] sequence. It is present only in Kinetoplastidae protozoa and its sequence lacks homology to known functional domains. Tc38 orthologues present in Trypanosoma brucei and Leishmania were proposed to participate in quite different cellular processes. To further understand the function of this protein in Trypanosoma cruzi, we examined its in vitro binding to biologically relevant [dT-dG] enriched sequences, its expression and subcellular localization during the cell cycle and through the parasite life stages. RESULTS By using specific antibodies, we found that Tc38 protein from epimastigote extracts participates in complexes with the poly [dT-dG] probe as well as with the universal minicircle sequence (UMS), a related repeated sequence found in maxicircle DNA, and the telomeric repeat. However, we found that Tc38 predominantly localizes into the mitochondrion. Though Tc38 is constitutively expressed through non-replicating and replicating life stages of T. cruzi, its subcellular localization in the unique parasite mitochondrion changes according to the cell cycle stage. In epimastigotes, Tc38 is found only in association with kDNA in G1 phase. From the S to G2 phase the protein localizes in two defined and connected spots flanking the kDNA. These spots disappear in late G2 turning into a diffuse dotted signal which extends beyond the kinetoplast. This later pattern is more evident in mitosis and cytokinesis. Finally, late in cytokinesis Tc38 reacquires its association with the kinetoplast. In non-replicating parasite stages such as trypomastigotes, the protein is found only surrounding the entire kinetoplast structure. CONCLUSIONS The dynamics of Tc38 subcellular localization observed during the cell cycle and life stages support a major role for Tc38 related to kDNA replication and maintenance.
Collapse
Affiliation(s)
- María A Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jackson AP, Vaughan S, Gull K. Evolution of tubulin gene arrays in Trypanosomatid parasites: genomic restructuring in Leishmania. BMC Genomics 2006; 7:261. [PMID: 17044946 PMCID: PMC1621084 DOI: 10.1186/1471-2164-7-261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/18/2006] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND alpha- and beta-tubulin are fundamental components of the eukaryotic cytoskeleton and cell division machinery. While overall tubulin expression is carefully controlled, most eukaryotes express multiple tubulin genes in specific regulatory or developmental contexts. The genomes of the human parasites Trypanosoma brucei and Leishmania major reveal that these unicellular kinetoplastids possess arrays of tandem-duplicated tubulin genes, but with differences in organisation. While L. major possesses monotypic alpha and beta arrays in trans, an array of alternating alpha- and beta tubulin genes occurs in T. brucei. Polycistronic transcription in these organisms makes the chromosomal arrangement of tubulin genes important with respect to gene expression. RESULTS We investigated the genomic architecture of tubulin tandem arrays among these parasites, establishing which character state is derived, and the timing of character transition. Tubulin loci in T. brucei and L. major were compared to examine the relationship between the two character states. Intergenic regions between tubulin genes were sequenced from several trypanosomatids and related, non-parasitic bodonids to identify the ancestral state. Evidence of alternating arrays was found among non-parasitic kinetoplastids and all Trypanosoma spp.; monotypic arrays were confirmed in all Leishmania spp. and close relatives. CONCLUSION Alternating and monotypic tubulin arrays were found to be mutually exclusive through comparison of genome sequences. The presence of alternating gene arrays in non-parasitic kinetoplastids confirmed that separate, monotypic arrays are the derived state and evolved through genomic restructuring in the lineage leading to Leishmania. This fundamental reorganisation accounted for the dissimilar genomic architectures of T. brucei and L. major tubulin repertoires.
Collapse
Affiliation(s)
- Andrew P Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Sue Vaughan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
8
|
Jackson AP, Vaughan S, Gull K. Comparative genomics and concerted evolution of beta-tubulin paralogs in Leishmania spp. BMC Genomics 2006; 7:137. [PMID: 16756660 PMCID: PMC1533823 DOI: 10.1186/1471-2164-7-137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/06/2006] [Indexed: 11/11/2022] Open
Abstract
Background Tubulin isotypes and expression patterns are highly regulated in diverse organisms. The genome sequence of the protozoan parasite Leishmania major contains three distinct β-tubulin loci. To investigate the diversity of β-tubulin genes, we have compared the published genome sequence to draft genome sequences of two further species L. infantum and L. braziliensis. Untranscribed regions and coding sequences for each isoform were compared within and between species in relation to the known diversity of β-tubulin transcripts in Leishmania spp. Results All three β-tubulin loci were present in L. infantum and L. braziliensis, showing conserved synteny with the L. major sequence, hence confirming that these loci are paralogous. Flanking regions suggested that the chromosome 21 locus is an amastigote-specific isoform and more closely related (either structurally or functionally) to the chromosome 33 'array' locus than the chromosome 8 locus. A phylogenetic network of all isoforms indicated that paralogs from L. braziliensis and L. mexicana were monophyletic, rather than clustering by locus. Conclusion L. braziliensis and L. mexicana sequences appeared more similar to each other than each did to its closest relative in another species; this indicates that these sequences have evolved convergently in each species, perhaps through ectopic gene conversion; a process not yet evident among the more recently derived L. major and L. infantum isoforms. The distinctive non-coding regions of each β-tubulin locus showed that it is the regulatory regions of these loci that have evolved most during the diversification of these genes in Leishmania, while the coding regions have been conserved and concerted. The various loci in Leishmania satisfy a need for innovative expression of β-tubulin, rather than elaboration of its structural role.
Collapse
Affiliation(s)
- Andrew P Jackson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford. OX1 3RE, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire. CB10 1SA, UK
| | - Sue Vaughan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford. OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford. OX1 3RE, UK
| |
Collapse
|
9
|
Dallagiovanna B, Pérez L, Sotelo-Silveira J, Smircich P, Duhagon MA, Garat B. Trypanosoma cruzi: molecular characterization of TcPUF6, a Pumilio protein. Exp Parasitol 2005; 109:260-4. [PMID: 15755425 DOI: 10.1016/j.exppara.2005.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
In trypanosomes regulation of gene expression occurs mainly at the post-transcriptional level. Pumilio proteins are RNA-binding proteins that modulate gene expression in lower and higher eukaryotes. Here we present the characterization of TcPUF6, a member of the Pumilio family in Trypanosoma cruzi. TcPUF6 is expressed in the different life cycle forms of the parasite showing no clear stage specific regulation and it is localized to multiple discrete foci in the cytoplasm of epimastigotes. The recombinant TcPUF6 fusion protein specifically binds to the Drosophila hunchback NRE (nanos response element). TcPUF6 conserves functional properties that characterize the Pumilio family throughout evolution.
Collapse
Affiliation(s)
- Bruno Dallagiovanna
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
10
|
Nilsson D, Andersson B. Strand asymmetry patterns in trypanosomatid parasites. Exp Parasitol 2005; 109:143-9. [PMID: 15713445 DOI: 10.1016/j.exppara.2004.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 12/01/2004] [Accepted: 12/01/2004] [Indexed: 11/28/2022]
Abstract
The genome organization of kinetoplastid parasites is unusual, with chromosomes containing several long regions of polycistronically transcribed genes. The regions where the direction of transcription switches have been hypothesized to contain origins of replication and possibly also centromers and promoters. We report that overall strand asymmetry patterns can be observed in Trypanosoma cruzi and Trypanosoma brucei with optima on strand-switch regions. The base skews of T. cruzi and T. brucei divergent strand-switches show patterns analogous to those for bacterial origins of replication, but they differ from those of Leishmania major. Bias in codon usage and the trypanosomatid unidirectional gene clusters predict most of this skew, but fail to properly explain the same trend in intergenic regions, as does the current knowledge of regulatory sequences.
Collapse
Affiliation(s)
- Daniel Nilsson
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzeliusv. 35, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
11
|
Duhagon MA, Dallagiovanna B, Ciganda M, Ruyechan W, Williams N, Garat B. A novel type of single-stranded nucleic acid binding protein recognizing a highly frequent motif in the intergenic regions of Trypanosoma cruzi. Biochem Biophys Res Commun 2003; 309:183-8. [PMID: 12943680 DOI: 10.1016/s0006-291x(03)01561-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regulation of gene expression in trypanosomatids is not yet well understood. Genes are organized in long polycistronic transcriptional units separated by intergenic regions that may contain the signaling information for nucleic acid processing. Poly-dinucleotides are frequent in these regions and have been proposed to be involved in regulation of gene expression. Previously, we have reported that [dT-dG] are highly frequent, asymmetrically strand distributed, and constitute targets for specific protein binding [Biochem. Biophys. Res. Commun. 287 (2001) 98]. Here, we present the purification and characterization of a new type of single stranded nucleic acid binding protein (Tc38) that recognizes specifically the motif poly[dT-dG] in this parasite. The protein has a deduced molecular weight of 38kDa and its salient characteristics include an isoelectric point of 9.34, a high frequency of Ser, Leu, and di-amino acids. Neither compositional nor architectural conserved domains could be detected in database searches. Recombinant Tc38 was expressed as a GST fusion protein, purified, and used to analyze target specificity by electrophoretic mobility shift assays. The unusual characteristics of the protein together with the peculiar features of the specific nucleic acid target suggest the existence of a novel event that may be involved in the mechanisms of gene expression in trypanosomatids.
Collapse
Affiliation(s)
- María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
12
|
Bartholomeu DC, Silva RA, Galvão LMC, el-Sayed NMA, Donelson JE, Teixeira SMR. Trypanosoma cruzi: RNA structure and post-transcriptional control of tubulin gene expression. Exp Parasitol 2002; 102:123-33. [PMID: 12856307 DOI: 10.1016/s0014-4894(03)00034-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Changes in tubulin expression are among the biochemical and morphological adaptations that occur during the life cycle of Trypanosomatids. To investigate the mechanism responsible for the differential accumulation of tubulin mRNAs in Trypanosoma cruzi, we determine the sequences of alpha- and beta-tubulin transcripts and analyzed their expression during the life cycle of the parasite. Two beta-tubulin mRNAs of 1.9 and 2.3 kb were found to differ mainly by an additional 369 nucleotides at the end of the 3' untranslated region (UTR). Although their transcription rates are similar in epimastigotes and amastigotes, alpha- and beta-tubulin transcripts are 3- to 6-fold more abundant in epimastigotes than in trypomastigotes and amastigotes. Accordingly, the half-lives of alpha- and beta-tubulin mRNAs are significantly higher in epimastigotes than in amastigotes. Transient transfection experiments indicated that positive regulatory elements occur in the 3' UTR plus downstream intergenic region of the alpha-tubulin gene and that both positive and negative elements occur in the equivalent regions of the beta-tubulin gene.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Protozoan/chemistry
- DNA, Protozoan/isolation & purification
- Gene Expression Regulation/physiology
- Half-Life
- Life Cycle Stages
- Molecular Sequence Data
- RNA Processing, Post-Transcriptional/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Transcription, Genetic
- Transfection
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/growth & development
- Tubulin/biosynthesis
- Tubulin/chemistry
- Tubulin/genetics
Collapse
Affiliation(s)
- Daniella C Bartholomeu
- Departamento de Bioquímica e Imunologia, ICB, da Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-010, Brazil
| | | | | | | | | | | |
Collapse
|