1
|
Maeda J, Shellenberger KD, Kurihara W, Haga T, Kato TA. Sulfoquinovosyl acylpropanediol (SQAP): Inhibition of poly(ADP-ribose) metabolism and enhanced cytotoxicity in homologous recombination repair-deficient Chinese hamster-derived cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503703. [PMID: 37973295 DOI: 10.1016/j.mrgentox.2023.503703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Sulfoquinovosyl acylpropanediol (SQAP; a synthetic derivative of the sulfoglycolipid natural product sulfoquinovosyl acylglycerol, SQAG), has anti-tumor and radiosensitizing activities in tumor xenograft mouse models. Here, we have studied the PARP inhibitory activity of SQAP and synthetic lethality in BRCA2-deficient cells. In initial screening studies with DNA repair-deficient Chinese hamster ovary cells, homologous recombination repair-deficient cell lines showed increased sensitivity to SQAP, compared to wild-type cells or other DNA repair-deficient mutants. Chinese hamster lung V79 cells and the derivative cell lines V-C8 (BRCA2-deficient) and V-C8 + BRCA2 gene corrections were used to test the role of BRCA2 in SQAP cytotoxicity. The findings were confirmed in studies of the human colon cancer cell lines DLD-1 and its BRCA2-knockout derivative. SQAP inhibited the enzymes poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG). SQAP pretreatment decreased H2O2induced poly(ADP-ribose) formation in V79 cells. SQAP caused DNA double-strand breaks and chromosome aberrations in V79 BRCA2-mutated cells but did not affect cells in the G2 phase. We have demonstrated that SQAP induces synthetic lethality in BRCA2-deficient Chinese hamster-derived cells via its effects on poly(ADP-ribose) metabolism, motivating further examination of its therapeutic potential, especially against tumors that are deficient in homologous recombination repair due to mutations in BRCA2 or other genes.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kaitlyn D Shellenberger
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Wataru Kurihara
- M.T.3 (Malignant Tumor Treatment Technologies) Inc, Tokyo, Japan
| | - Tomohiro Haga
- M.T.3 (Malignant Tumor Treatment Technologies) Inc, Tokyo, Japan; M.T.3USA, Denver, CO, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Zheng J, Hu X, Zeng Y, Zhang B, Sun Z, Liu X, Zheng W, Chai Y. Review of the advances in lipid anchors-based biosensors for the isolation and detection of exosomes. Anal Chim Acta 2023; 1263:341319. [PMID: 37225343 DOI: 10.1016/j.aca.2023.341319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Exosomes are nanoparticles with a bilayer lipid structure that carry cargo from their cells of origin. These vesicles are vital to disease diagnosis and therapeutics; however, conventional isolation and detection techniques are generally complicated, time-consuming, and costly, thus hampering the clinical applications of exosomes. Meanwhile, sandwich-structured immunoassays for exosome isolation and detection rely on the specific binding of membrane surface biomarkers, which may be limited by the type and amount of target protein present. Recently, lipid anchors inserted into the membranes of vesicles through hydrophobic interactions have been adopted as a new strategy for extracellular vesicle manipulation. By combining nonspecific and specific binding, the performance of biosensors can be improved variously. This review presents the reaction mechanisms and properties of lipid anchors/probes, as well as advances in the development of biosensors. The combination of signal amplification methods with lipid anchors is discussed in detail to provide insights into the design of convenient and sensitive detection techniques. Finally, the advantages, challenges, and future directions of lipid anchor-based exosome isolation and detection methods are highlighted from the perspectives of research, clinical use, and commercialization.
Collapse
Affiliation(s)
- Junyuan Zheng
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaoxiang Hu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Yuping Zeng
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Zhonghao Sun
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaowei Liu
- Department of Management, Shenzhen University, Shenzhen, 518055, China.
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Akbari V, Abedi M, Yegdaneh A. Bioassay-guided isolation of glycolipids from the seaweed Gracilaria corticata. Res Pharm Sci 2021; 15:473-480. [PMID: 33628289 PMCID: PMC7879787 DOI: 10.4103/1735-5362.297850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background and purpose: In some countries, seaweeds are famous traditional food which contain different types of secondary metabolites. These marine organisms have several bioactive secondary metabolites. The aim of this study was to perform bioassay-guided isolation of glycolipids from a Persian Gulf seaweed Gracilaria corticata J.Agardh. Experimental approach: G. corticata was collected from the Persian Gulf. The plant was extracted by maceration with methanol-ethyl acetate solvent. The extract was partitioned by the Kupchan method to yield n-hexane, dichloromethane, butanol, and water partitions. The most active partition found in the cytotoxicity assay was further fractionated using medium pressure liquid chromatography and high-performance liquid chromatography (HPLC) methods to yield two pure compounds. The structures of the isolated compounds were elucidated using various spectroscopic methods. The cytotoxic activities of all fractions were also tested. Findings/Results: n-hexane and dichloromethane partitions exhibited higher and significant cytotoxicity against the HeLa cell line with IC50s of 117.41 and 291.38 μg/mL, respectively. The cytotoxic effects of nine fractions of the n-hexane partition against HeLa and HUVEC cells were also ranging from 96.33 to 243.56 μg/mL and 85.38 to 290.5 μg/mL, respectively. Two sulfoquinovosyldiacylglycerides were isolated and their structures were elucidated. Conclusion and implications: From the spectral characteristics, the isolated compound from the extract was confirmed to be α-D-glucopyranosyl-1,2-O-diacyl-glycerols with moderate cytotoxic activity.
Collapse
Affiliation(s)
- Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahshid Abedi
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
4
|
Ruike T, Kanai Y, Iwabata K, Matsumoto Y, Murata H, Ishima M, Ohta K, Oshige M, Katsura S, Kuramochi K, Kamisuki S, Sahara H, Miura M, Sugawara F, Sakaguchi K. Distribution and metabolism of 14C-sulfoquinovosylacylpropanediol ( 14C-SQAP) after a single intravenous administration in tumor-bearing mice. Xenobiotica 2018. [PMID: 29543539 DOI: 10.1080/00498254.2018.1448949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sulfoquinovosylacylpropanediol (SQAP) is a novel potent radiosensitizer that inhibits angiogenesis in vivo and results in increased oxigenation and reduced tumor volume. We investigated the distribution, metabolism, and excretion of SQAP in male KSN-nude mice transplanted with a human pulmonary carcinoma, Lu65. For the metabolism analysis, a 2 mg (2.98 MBq)/kg of [glucose-U-14C]-SQAP (CP-3839) was intravenously injected. The injected SQAP was decomposed into a stearic acid and a sulfoquinovosylpropanediol (SQP) in the body. The degradation was relatively slow in the carcinoma tissue.1,3-propanediol[1-14C]-SQAP (CP-3635) was administered through intravenous injection of a 1 mg (3.48 MBq)/kg dose followed by whole body autoradiography of the mice. The autoradiography analysis demonstrated that SQAP rapidly distributed throughout the whole body and then quickly decreased within 4 hours except the tumor and excretion organs such as liver, kidney. Retention of SQAP was longer in tumor parts than in other tissues, as indicated by higher levels of radioactivity at 4 hours. The radioactivity around the tumor had also completely disappeared within 72 hours.
Collapse
Affiliation(s)
- Tatsushi Ruike
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Yoshihiro Kanai
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Kazuki Iwabata
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Yuki Matsumoto
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Hiroshi Murata
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Masahiro Ishima
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Keisuke Ohta
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Masahiko Oshige
- b Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Gunma , Japan
| | - Shinji Katsura
- b Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Gunma , Japan
| | - Koji Kuramochi
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Shinji Kamisuki
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Hiroeki Sahara
- c Laboratory of Biology , Azabu University School of Veterinary Medicine , Chuou-ku, Sagamihara , Kanagawa , Japan
| | - Masahiko Miura
- d Oral Radiation Oncology, Department of Oral Restitution, Graduate School , Tokyo Medical and Dental University , Bunkyo-ku , Tokyo , Japan
| | - Fumio Sugawara
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| | - Kengo Sakaguchi
- a Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| |
Collapse
|
5
|
Manzo E, Fioretto L, Pagano D, Nuzzo G, Gallo C, De Palma R, Fontana A. Chemical Synthesis of Marine-Derived Sulfoglycolipids, a New Class of Molecular Adjuvants. Mar Drugs 2017; 15:md15090288. [PMID: 28930144 PMCID: PMC5618427 DOI: 10.3390/md15090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022] Open
Abstract
Vaccines play a primary role in the protection of human health by preventing infectious and chronic diseases. Recently we have reported 1,2-O-distearoyl-3-O-β-d-sulfoquinovosylglycerol (β-SQDG18), here named Sulfavant A (1), which shows promising properties as a new molecular adjuvant in in vitro and in vivo tests. In the present manuscript, we provide full details about a synthetic strategy for the preparation of 1, including a discussion of chemical determinants of the activity and the major technical hurdles we faced during the study. Synthesis of Sulfavant A (1) is achieved by a versatile procedure based on a trichloroacetimidate methodology and peracetate sugar precursors. The final design opens possibilities for the preparation of a series of interesting analogs for further pharmacological optimization and development, including derivatives containing different saturated and polyunsaturated fatty acids (e.g., 17 and 22).
Collapse
Affiliation(s)
- Emiliano Manzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, IT-80078 Pozzuoli, 80078 Napoli, Italy.
| | - Laura Fioretto
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, IT-80078 Pozzuoli, 80078 Napoli, Italy.
| | - Dario Pagano
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, IT-80078 Pozzuoli, 80078 Napoli, Italy.
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, IT-80078 Pozzuoli, 80078 Napoli, Italy.
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, IT-80078 Pozzuoli, 80078 Napoli, Italy.
| | - Raffaele De Palma
- Department of Internal and Experimental Clinic, Clinical Immunology and Allergology, University of Campania, c/o II Policlinico (Bd. 3), Via S.Pansini 5, 80131 Napoli, Italy.
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, IT-80078 Pozzuoli, 80078 Napoli, Italy.
| |
Collapse
|
6
|
Tanaka T, Sawamoto Y, Aoki S. Concise and Versatile Synthesis of Sulfoquinovosyl Acyl Glycerol Derivatives for Biological Applications. Chem Pharm Bull (Tokyo) 2017; 65:566-572. [PMID: 28566649 DOI: 10.1248/cpb.c17-00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfoquinovosyl acylpropanediol (SQAP), a chemically modified analogue of sulfoquinovosyl acylglycerol (SQAG) that occurs in sea algae, has been reported to show a variety of biological activities, including accumulation in tumor cells and the inhibition of tumor cell growth. We report herein on a new concise and versatile synthesis of SQAP itself and derivatives bearing iodoaryl groups and boronclusters. This method should be useful for the design and synthesis of SQAG/SQAP derivatives for diagnosis and the treatment of cancer and related diseases.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Division of Medical-Science-Engineering Cooperation, Research Institute for Science and Technology, Tokyo University of Science.,Imaging Frontier Center, Resarch Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
7
|
Manzo E, Tramice A, Pagano D, Trincone A, Fontana A. Chemo-enzymatic preparation of α-6-sulfoquinovosyl-1,2-O-diacylglycerols. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Takakusagi Y, Takakusagi K, Ida N, Takami M, Matsumoto Y, Kusayanagi T, Nakabayashi T, Aoki S, Murata H, Ohta K, Sugawara F, Sakaguchi K. Binding region and interaction properties of sulfoquinovosylacylglycerol (SQAG) with human vascular endothelial growth factor 165 revealed by biosensor-based assays. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00180a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Gerber S, Wulf M, Milkereit G, Vill V, Howe J, Roessle M, Garidel P, Gutsmann T, Brandenburg K. Phase diagrams of monoacylated amide-linked disaccharide glycolipids. Chem Phys Lipids 2009; 158:118-30. [DOI: 10.1016/j.chemphyslip.2009.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/27/2022]
|
10
|
|
11
|
Nakamura Y, Tanaka F, Haraguchi N, Mimori K, Matsumoto T, Inoue H, Yanaga K, Mori M. Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 2007; 97:543-9. [PMID: 17653072 PMCID: PMC2360338 DOI: 10.1038/sj.bjc.6603905] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitotic centromere-associated kinesin (MCAK) is a microtubule (MT) depolymerase necessary for ensuring proper kinetochore MT attachment during spindle formation. To determine MCAK expression status and its clinicopathological significance, real-time reverse transcriptase–polymerase chain reaction was used in 65 cases of gastric cancer. MCAK gene expression in cancer tissue was significantly higher than expression in non-malignant tissue (P<0.05). Elevated MCAK expression was significantly associated with lymphatic invasion (P=0.01) and lymph node metastasis (P=0.04). Furthermore, patients with high MCAK expression had a significantly poorer survival rate than those with low MCAK expression (P=0.008). Immunohistochemical study revealed that expression of MCAK was primarily observed in cancer cells. Additionally, a gastric cancer cell line (AZ521) that stably expressed MCAK was established and used to investigate the biological effects of the MCAK gene. In vitro results showed that cells transfected with MCAK had a high rate of proliferation (P<0.001) and increased migratory ability (P<0.001) compared to mock-transfected cells. This study demonstrated that elevated expression of MCAK may be associated with lymphatic invasion, lymph node metastasis, and poor prognosis. These characteristics may be due in part to the increased proliferative and migratory ability of cells expressing MCAK.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - F Tanaka
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - N Haraguchi
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - K Mimori
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - T Matsumoto
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - H Inoue
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - K Yanaga
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - M Mori
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
- E-mail:
| |
Collapse
|
12
|
Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN. The thermotropic phase behaviour and phase structure of a homologous series of racemic β-d-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Chem Phys Lipids 2007; 148:26-50. [PMID: 17524381 DOI: 10.1016/j.chemphyslip.2007.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/10/2007] [Indexed: 11/16/2022]
Abstract
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Kasai N, Mizushina Y, Murata H, Yamazaki T, Ohkubo T, Sakaguchi K, Sugawara F. Sulfoquinovosylmonoacylglycerol inhibitory mode analysis of rat DNA polymerase beta. FEBS J 2005; 272:4349-61. [PMID: 16128805 DOI: 10.1111/j.1742-4658.2005.04848.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously reported that sulfoquinovosylmonoacylglycerol (SQMG) is a potent inhibitor of mammalian DNA polymerases. DNA polymerase beta (pol beta) is one of the most important enzymes protecting the cell against DNA damage by base excision repair. In this study, we characterized the inhibitory action of SQMG against rat pol beta. SQMG competed with both the substrate and the template-primer for binding to pol beta. A gel mobility shift assay and a polymerase activity assay showed that SQMG competed with DNA for a binding site on the N-terminal 8-kDa domain of pol beta, subsequently inhibiting its catalytic activity. Fragments of SQMG such as sulfoquinovosylglycerol (SQG) and fatty acid (myristoleic acid, MA) weakly inhibited pol beta activity and the inhibitory effect of a mixture of SQG and MA was stronger than that of SQG or MA. To characterize this inhibition more precisely, we attempted to identify the interaction interface between SQMG and the 8-kDa domain by NMR chemical shift mapping. Firstly, we determined the binding site on a fragment of SQMG, the SQG moiety. We observed chemical shift changes primarily at two sites, the residues comprising the C-terminus of helix-1 and the N-terminus of helix-2, and residues in helix-4. Finally, based on our present results and our previously reported study of the interaction interface of fatty acids, we constructed two three-dimensional models of a complex between the 8-kDa domain and SQMG and evaluated them by the mutational analysis. The models show a SQMG interaction interface that is consistent with the data.
Collapse
Affiliation(s)
- Nobuyuki Kasai
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Oshige M, Takenouchi M, Kato Y, Kamisuki S, Takeuchi T, Kuramochi K, Shiina I, Suenaga Y, Kawakita YI, Kuroda K, Sato N, Kobayashi S, Sugawara F, Sakaguchi K. Taxol derivatives are selective inhibitors of DNA polymerase alpha. Bioorg Med Chem 2004; 12:2597-601. [PMID: 15110841 DOI: 10.1016/j.bmc.2004.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 03/10/2004] [Accepted: 03/11/2004] [Indexed: 11/25/2022]
Abstract
During screening for mammalian DNA polymerase inhibitors, we found and succeeded in isolating a potent inhibitor from a higher plant, Taxus cuspidate. The compound was unexpectedly determined to be taxinine, an intermediate of paclitaxel (taxol) metabolism. Taxinine was found to selectively inhibit DNA polymerase alpha (pol.alpha) and beta (pol.beta). We therefore, tested taxol and other derivatives and found that taxol itself had no such inhibitory effect, and only taxinine could inhibit both pol.alpha and beta. The other compounds used, one derivative, cephalomannine, and five intermediates synthesized chemically inhibited only the pol.alpha activity in vitro. None of the compounds, including taxinine, influenced the activities of the other DNA polymerases, which are reportedly targeted by many pol.beta inhibitors. With both pol.alpha and beta, all of the compounds tested noncompetitively inhibited with respect to both the DNA template-primer and the dNTP substrate.
Collapse
Affiliation(s)
- Masahiko Oshige
- Frontier Research Center for Genome & Drug Discovery, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Thermotropic and lyotropic phase properties of glycolipid diastereomers: role of headgroup and interfacial interactions in determining phase behaviour. Curr Opin Colloid Interface Sci 2004. [DOI: 10.1016/j.cocis.2004.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
The inhibitory action of pyrrolidine alkaloid, 1,4-dideoxy-1,4-imino-D-ribitol, on eukaryotic DNA polymerases. Biochem Biophys Res Commun 2003; 304:78-85. [PMID: 12705887 DOI: 10.1016/s0006-291x(03)00540-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pyrrolidine alkaloids mimicking the structures of pentose with nitrogen in the ring are known to be inhibitors of glycosidases. We report here that a compound belonging to this category is an inhibitor of eukaryotic DNA polymerases. Among the eight naturally occurring pyrrolidine alkaloids we tested, only one compound, 1,4-dideoxy-1,4-imino-D-ribitol (DRB), which was purified from the mulberry tree (Morus alba), strongly inhibited the activities of eukaryotic DNA polymerases with IC50 values of 21-35 microM, and had almost no effect on the activities of prokaryotic DNA polymerases, nor DNA metabolic enzymes such as human immunodeficiency virus type 1 reverse transcriptase, T7 RNA polymerase, and bovine deoxyribonuclease I. Kinetic studies showed that inhibition of both DNA polymerases alpha and beta by DRB was competitive with respect to dNTP substrate. Whereas DNA polymerase alpha inhibition was noncompetitive with the template-primer, the inhibition of DNA polymerase beta was found to be competitive with the template-primer. The K(i) values of DNA polymerases alpha and beta for the template-primer were smaller than those for dNTP substrate. Therefore, the affinity of DRB was suggested to be higher at the template-primer binding site than at the dNTP substrate-binding site, although DRB is an analogue of deoxyribose consisting of dNTP. Computational analyses of the eight pyrrolidine alkaloids revealed a remarkable difference in the distribution of positive and negative electrostatic charges on the surface of molecules. The relationship between the structure of DRB and the inhibition of eukaryotic DNA polymerases is discussed.
Collapse
|
17
|
Synthesis of new C-sulfosugars and C-sulfoalditols: Amadori rearrangement of 6-C-sulfo-d-fucose. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Bergé JP, Debiton E, Dumay J, Durand P, Barthomeuf C. In vitro anti-inflammatory and anti-proliferative activity of sulfolipids from the red alga Porphyridium cruentum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:6227-6232. [PMID: 12358507 DOI: 10.1021/jf020290y] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A sulfoglycolipidic fraction (SF) isolated from the red microalga Porphyridium cruentum was analyzed for fatty acid composition and assayed for ability to inhibit, in vitro, the generation of superoxide anion in primed leucocytes and the proliferation of a panel of human cancer cell-lines. Results demonstrated that SF contained large amounts of palmitic acid (26.1%), arachidonic acid (C20: 4 omega-6, 36.8%), and eicopentaenoic (C20:5 omega-3, 16.6%) acids, and noticeable amounts of 16:1n-9 fatty acid (10.5%). It strongly inhibited both the production of superoxide anion generated by peritoneal leukocytes primed with phorbol myristate acetate (IC(50): 29.5 microg/mL), and the growth of human colon adenocarcinoma DLD-1 and to a lesser extent of human breast adenocarcinoma MCF-7, human prostate adenocarcinoma PC-3, and human malignant melanoma M4 Beu cell-lines, and therefore might have a chemopreventive or chemotherapeutic potential, or both. It was found markedly more cytotoxic than sulfoquinovosyldiacylglycerols from plant used as a standard (STD), due to a stronger ability to inhibit DNA alpha-polymerase (IC(50): 378 microg/mL, vs 1784 microg/mL for STD). After a 48-h continuous treatment, IC(50) values for growth inhibition were in the range of 20-46 microg/mL instead of 94 to >250 microg/mL for STD, and those for inhibition of metabolic activity were in the range of 34-87 microg/mL instead of >250 microg/mL for STD. The higher anti-proliferative effect was observed on colon adenocarcinoma DLD-1 cells, and the weaker effect was observed on breast adenocarcinoma MCF-7.
Collapse
Affiliation(s)
- J P Bergé
- Laboratoire de Biochimie et Molécules Marines, Département Valorisation des Produits, IFREMER Centre de Nantes, BP 21105, 44311 Nantes Cedex 03, France
| | | | | | | | | |
Collapse
|