1
|
Joris T, Jouant T, Jacques JR, Gouverneur L, Saintmard X, Vilanova Mañá L, Jamakhani M, Reichert M, Willems L. Reduction of antisense transcription affects bovine leukemia virus replication and oncogenesis. PLoS Pathog 2024; 20:e1012659. [PMID: 39509441 PMCID: PMC11575825 DOI: 10.1371/journal.ppat.1012659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/19/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
In sheep infected with bovine leukemia virus (BLV), transcription of structural, enzymatic, and accessory genes is silenced. However, the BLV provirus transcribes a series of non-coding RNAs that remain undetected by the host immune response. Specifically, three RNAs (AS1-L, AS1-S, and AS2) are consistently expressed from the antisense strand, originating from transcriptional initiation at the 3'-Long Terminal Repeat (LTR). To investigate the role of these non-coding RNAs in viral replication and pathogenesis, a reverse genetics approach was devised, capitalizing on a mechanistic disparity in transcription initiation between the 5' and 3' promoters. A two-nucleotide mutation (GG>TA) in the TFIIB-recognition element (BRE) impaired antisense transcription originating from the 3'-LTR. In the context of the provirus, this 2bp mutation significantly diminished the expression of antisense RNAs, while not notably affecting sense transcription. When inoculated to sheep, the mutated provirus was infectious but exhibited reduced replication levels, shedding light on the role of antisense transcription in vivo. In comparison to lymphoid organs in sheep infected with a wild-type (WT) provirus, the mutant demonstrated alterations in both the spatial distribution and rates of cell proliferation in the lymph nodes and the spleen. Analysis through RNA sequencing and RT-qPCR unveiled an upregulation of the Hmcn1/hemicentin-1 gene in B-lymphocytes from sheep infected with the mutated provirus. Further examination via confocal microscopy and immunohistochemistry revealed an increase in the amount of hemicentin-1 protein encoded by Hmcn1 in peripheral blood mononuclear cells (PBMCs) and lymphoid organs of sheep infected with the mutant. RNA interference targeting Hmcn1 expression impacted the migration of ovine kidney (OVK) cells in vitro. In contrast to the WT, the mutated provirus showed reduced oncogenicity when inoculated into sheep. Collectively, this study underscores the essential role of antisense transcription in BLV replication and pathogenicity. These findings may offer valuable insights into understanding the relevance of antisense transcription in the context of human T-cell leukemia virus (HTLV-1).
Collapse
Affiliation(s)
- Thomas Joris
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Thomas Jouant
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Jean-Rock Jacques
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Lorian Gouverneur
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Xavier Saintmard
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Lea Vilanova Mañá
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Majeed Jamakhani
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Michal Reichert
- Department of Pathological Anatomy, National Veterinary Research Institute, Puławy, Poland
| | - Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| |
Collapse
|
2
|
Pluta A, Taxis TM, van der Meer F, Shrestha S, Qualley D, Coussens P, Rola-Łuszczak M, Ryło A, Sakhawat A, Mamanova S, Kuźmak J. An immunoinformatics study reveals a new BoLA-DR-restricted CD4+ T cell epitopes on the Gag protein of bovine leukemia virus. Sci Rep 2023; 13:22356. [PMID: 38102157 PMCID: PMC10724172 DOI: 10.1038/s41598-023-48899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), which has been reported worldwide. The expression of viral structural proteins: surface glycoprotein (gp51) and three core proteins - p15 (matrix), p24 (capsid), and p12 (nucleocapsid) induce a strong humoral and cellular immune response at first step of infection. CD4+ T-cell activation is generally induced by bovine leukocyte antigen (BoLA) region- positive antigen-presenting cells (APC) after processing of an exogenous viral antigen. Limited data are available on the BLV epitopes from the core proteins recognized by CD4+ T-cells. Thus, immunoinformatic analysis of Gag sequences obtained from 125 BLV isolates from Poland, Canada, Pakistan, Kazakhstan, Moldova and United States was performed to identify the presence of BoLA-DRB3 restricted CD4+ T-cell epitopes. The 379 15-mer overlapping peptides spanning the entire Gag sequence were run in BoLA-DRB3 allele-binding regions using a BoLA-DRB- peptide binding affinity prediction algorithm. The analysis identified 22 CD4+ T-cell peptide epitopes of variable length ranging from 17 to 22 amino acids. The predicted epitopes interacted with 73 different BoLA-DRB3 alleles found in BLV-infected cattle. Importantly, two epitopes were found to be linked with high proviral load in PBMC. A majority of dominant and subdominant epitopes showed high conservation across different viral strains, and therefore could be attractive targets for vaccine development.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland.
| | - Tasia Marie Taxis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sulav Shrestha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA, 30149, USA
| | - Paul Coussens
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Anna Ryło
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Ali Sakhawat
- Animal Quarantine Department, Ministry of National Food Security and Research, Peshawar, 25000, Pakistan
| | - Saltanat Mamanova
- Laboratory of Virology, Kazakh Scientific Research Veterinary Institute, LLP, 223 Raiymbek Avenue, 050000, Almaty, Republic of Kazakhstan
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| |
Collapse
|
3
|
Analysis of Nucleotide Sequence of Tax, miRNA and LTR of Bovine Leukemia Virus in Cattle with Different Levels of Persistent Lymphocytosis in Russia. Pathogens 2021; 10:pathogens10020246. [PMID: 33672613 PMCID: PMC7924208 DOI: 10.3390/pathogens10020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), a lymphoproliferative disease of the bovine species. In BLV-infected cells, the long terminal repeat (LTR), the viral Tax protein and viral miRNAs promote viral and cell proliferation as well as tumorigenesis. Although their respective roles are decisive in BLV biology, little is known about the genetic sequence variation of these parts of the BLV genome and their impact on disease outcome. Therefore, the objective of this study was to assess the relationship between disease progression and sequence variation of the BLV Tax, miRNA and LTR regions in infected animals displaying either low or high levels of persistent lymphocytosis (PL). A statistically significant association was observed between the A(+187)C polymorphism in the downstream activator sequence (DAS) region in LTR (p-value = 0.00737) and high lymphocytosis. Our study also showed that the mutation A(−4)G in the CAP site occurred in 70% of isolates with low PL and was not found in the high PL group. Conversely, the mutations G(−133)A/C in CRE2 (46.7%), C(+160)T in DAS (30%) and A(310)del in BLV-mir-B4-5p, A(357)G in BLV-mir-B4-3p, A(462)G in BLV-mir-B5-5p, and GA(497–498)AG in BLV-mir-B5-3p (26.5%) were often seen in isolates with high PL and did not occur in the low PL group. In conclusion, we found several significant polymorphisms among BLV genomic sequences in Russia that would explain a progression towards higher or lower lymphoproliferation. The data presented in this article enabled the classification between two different genotypes; however, clear association between genotypes and the PL development was not found.
Collapse
|
4
|
Benedictus L, Steinbach S, Holder T, Bakker D, Vrettou C, Morrison WI, Vordermeier M, Connelley T. Hydrophobic Mycobacterial Antigens Elicit Polyfunctional T Cells in Mycobacterium bovis Immunized Cattle: Association With Protection Against Challenge? Front Immunol 2020; 11:588180. [PMID: 33281817 PMCID: PMC7688591 DOI: 10.3389/fimmu.2020.588180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosis in vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted.
Collapse
Affiliation(s)
- Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Sabine Steinbach
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Thomas Holder
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, Netherlands
| | - Christina Vrettou
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - W Ivan Morrison
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Timothy Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
5
|
Norby B, Bartlett PC, Byrem TM, Erskine RJ. Effect of infection with bovine leukemia virus on milk production in Michigan dairy cows. J Dairy Sci 2015; 99:2043-2052. [PMID: 26723124 DOI: 10.3168/jds.2015-10089] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/07/2015] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine the association between individual cow-level milk production and bovine leukemia virus (BLV) infection as measured by milk BLV-ELISA. Dairy Herd Improvement technicians collected milk samples from 10 cows from each of first, second, third, and 4+ parity cows in 105 Holstein herds with ≥ 120 milking cows. Milk samples were tested for the presence of anti-BLV antibodies by ELISA. Additional data regarding the cows and the herds were collected by farm survey and Dairy Herd Improvement records. A set of mixed-effect models using all cows and only 2+ parity cows were used to investigate the association between BLV ELISA-corrected optical density and 305-d mature equivalents of individual cows. The BLV milk positivity was associated with decreased 305-d mature-equivalent yields, especially among the older cows. Additionally, increasing milk ELISA-corrected optical density was associated with increasing loss of milk production at the cow level. In summary, our results provide evidence that BLV infection is associated with decreased milk production in Michigan dairy cows.
Collapse
Affiliation(s)
- B Norby
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824.
| | - P C Bartlett
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - T M Byrem
- Antel BioSystems Inc., Lansing, MI 48909
| | - R J Erskine
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
6
|
Bovine leukemia virus: a major silent threat to proper immune responses in cattle. Vet Immunol Immunopathol 2014; 163:103-14. [PMID: 25554478 DOI: 10.1016/j.vetimm.2014.11.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/27/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
Bovine leukemia virus (BLV) infection is widespread in the US dairy industry and the majority of producers do not actively try to manage or reduce BLV incidence within their herds. However, BLV is estimated to cost the dairy industry hundreds of millions of dollars annually and this is likely a conservative estimate. BLV is not thought to cause animal distress or serious pathology unless infection progresses to leukemia or lymphoma. However, a wealth of research supports the notion that BLV infection causes widespread abnormal immune function. BLV infection can impact cells of both the innate and adaptive immune system and alter proper functioning of uninfected cells. Despite strong evidence of abnormal immune signaling and functioning, little research has investigated the large-scale effects of BLV infection on host immunity and resistance to other infectious diseases. This review focuses on mechanisms of immune suppression associated with BLV infection, specifically aberrant signaling, proliferation and apoptosis, and the implications of switching from BLV latency to activation. In addition, this review will highlight underdeveloped areas of research relating to BLV infection and how it causes immune suppression.
Collapse
|
7
|
Mohammadabadi M, Soflaei M, Mostafavi H, Honarmand M. Using PCR for early diagnosis of bovine leukemia virus infection in some native cattle. GENETICS AND MOLECULAR RESEARCH 2011; 10:2658-63. [DOI: 10.4238/2011.october.27.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
9
|
Affiliation(s)
- N. F. Starodub
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
| | - V. M. Starodub
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
| |
Collapse
|
10
|
Basu I, Ferens WA, Stone DM, Hovde CJ. Antiviral activity of shiga toxin requires enzymatic activity and is associated with increased permeability of the target cells. Infect Immun 2003; 71:327-34. [PMID: 12496182 PMCID: PMC143405 DOI: 10.1128/iai.71.1.327-334.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study expanded our earlier finding that Shiga toxin type 1 (Stx1) has activity against bovine leukemia virus (BLV) (W. A. Ferens and C. J. Hovde, Infect. Immun. 68:4462-4469, 2000). The Stx molecular motifs required for antiviral activity were identified, and a mechanism of Stx action on virally infected cells is suggested. Using inhibition of BLV-dependent spontaneous lymphocyte proliferation as a measure of antiviral activity, we showed that Stx2 had antiviral activity similar to that of Stx1. Enzymatic and antiviral activities of three StxA1 chain mutants deficient in enzymatic activity or aspects of receptor-mediated cytotoxicity were compared. Using protein synthesis inhibition to measure enzymatic activity, the mutant E167D was 300-fold less catalytically active than wild-type StxA1, was minimally active in antiviral assays, and did not inhibit synthesis of viral proteins. Two StxA1 mutants, A231D-G234E and StxA(1)1 (enzymatically active but unable to kill cells via the classical receptor-mediated route), had undiminished antiviral activity. Although binding of radiolabeled StxA1 to bovine blood cells or to free virus was not detected, flow cytometric analysis showed that the number of BLV-expressing cells were specifically reduced in cultures treated with Stx. These unique and rare lymphocytes were highly permeable to 40- and 70-kDa fluorescent dextrans, indicating that direct absorption of toxins by virus-expressing cells is a potential mechanism of target cell intoxication. These results support the hypothesis that Stx-producing Escherichia coli colonization of the gastrointestinal tract may benefit ruminant hosts by the ability of Stxs to exert antiviral activity.
Collapse
Affiliation(s)
- Indira Basu
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | |
Collapse
|
11
|
Amills M, Ramiya V, Norimine J, Olmstead CA, Lewin HA. Reduced IL-2 and IL-4 mRNA expression in CD4+ T cells from bovine leukemia virus-infected cows with persistent lymphocytosis. Virology 2002; 304:1-9. [PMID: 12490398 DOI: 10.1006/viro.2002.1651] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of T-helper (Th) responses in the subclinical progression of bovine leukemia virus (BLV) infection was explored by determining the contribution of CD4+ T cells to the expression of mRNAs encoding interferon-gamma (IFN-gamma), interleukin-2 (IL-2), interleukin-4 (IL-4), and interleukin-10 (IL-10) in BLV-infected cattle. Relative levels of mRNA encoding IFN-gamma, IL-2, IL-4, and IL-10 were measured in fresh and concanavalin A (Con A) activated peripheral blood mononuclear cells (PBMCs) and purified CD4+ T cells from cows seronegative to BLV (BLV-), seropositive without persistent lymphocytosis (BLV+PL-), and seropositive with PL (BLV+PL+) using a semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) assay. The expressions of IFN-gamma, IL-2, and IL-4 mRNAs were significantly reduced in the PBMCs from BLV+PL+ cows as compared to BLV- cows. Reduced levels of IL-2 and IL-4 mRNAs were detected in fresh CD4+ T cells from BLV+PL+ cows. In contrast, Con A stimulated PBMCs and CD4+ T cells did not differ significantly in expression of IFN-gamma, IL-2, IL-10, or IL-4 mRNAs among the BLV infection groups. Using flow-sorted CD4+ T cells and semiquantitative RT-PCR the frequencies of CD4+ T cells transcribing IFN-gamma, IL-2, IL-4, and IL-10 mRNAs in the peripheral blood of BLV-, BLV+PL-, and BLV+PL+ cows were determined. There were no significant differences in the frequencies of CD4+ T cells expressing these cytokine mRNAs among animals in the different BLV infection categories. Thus, the observed differences in IL-2 and IL-4 mRNAs in CD4+ T cells were due to changes in steady-state mRNA levels expressed by individual cells and not to changes in the frequency of cells transcribing IL-2 and IL-4 mRNAs. These results demonstrate that the progression of BLV infection to PL is associated with reduced expression of classical Th1 and Th2 cytokines by CD4+ T cells, thus suggesting aberrant Th regulation in subclinically infected animals.
Collapse
Affiliation(s)
- Marcel Amills
- Departments of Animal Sciences, Laboratory of Immunogenetics, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | | | | | | | | |
Collapse
|