1
|
Snyers L, Laffer S, Löhnert R, Weipoltshammer K, Schöfer C. CX-5461 causes nucleolar compaction, alteration of peri- and intranucleolar chromatin arrangement, an increase in both heterochromatin and DNA damage response. Sci Rep 2022; 12:13972. [PMID: 35978024 PMCID: PMC9385865 DOI: 10.1038/s41598-022-17923-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we characterize the changes in nucleolar morphology and its dynamics induced by the recently introduced compound CX-5461, an inhibitor of ribosome synthesis. Time-lapse imaging, immunofluorescence and ultrastructural analysis revealed that exposure of cells to CX-5461 has a profound impact on their nucleolar morphology and function: nucleoli acquired a compact, spherical shape and display enlarged, ring-like masses of perinucleolar condensed chromatin. Tunnels consisting of chromatin developed as transient structures running through nucleoli. Nucleolar components involved in rRNA transcription, fibrillar centres and dense fibrillar component with their major constituents ribosomal DNA, RNA polymerase I and fibrillarin maintain their topological arrangement but become reduced in number and move towards the nucleolar periphery. Nucleolar changes are paralleled by an increased amount of the DNA damage response indicator γH2AX and DNA unwinding enzyme topoisomerase I in nucleoli and the perinucleolar area suggesting that CX-5461 induces torsional stress and DNA damage in rDNA. This is corroborated by the irreversibility of the observed altered nucleolar phenotypes. We demonstrate that incubation with CX-5461, apart from leading to specific morphological alterations, increases senescence and decreases cell replication. We discuss that these alterations differ from those observed with other drugs interfering with nucleolar functions.
Collapse
Affiliation(s)
- Luc Snyers
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Sylvia Laffer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Renate Löhnert
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Klara Weipoltshammer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
2
|
McSorley EM, van Wijngaarden E, Yeates AJ, Spence T, Mulhern MS, Harrington D, Thurston SW, Love T, Jusko TA, Allsopp PJ, Conway MC, Davidson PW, Myers GJ, Watson GE, Shamlaye CF, Strain JJ. Methylmercury and long chain polyunsaturated fatty acids are associated with immune dysregulation in young adults from the Seychelles child development study. ENVIRONMENTAL RESEARCH 2020; 183:109072. [PMID: 32007747 PMCID: PMC7213642 DOI: 10.1016/j.envres.2019.109072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to the environmental toxicant mercury (Hg) has been associated with immune dysregulation, including autoimmune disease, but few human studies have examined methylmercury (MeHg) exposure from fish consumption. OBJECTIVES We examined associations between MeHg exposure and biological markers of autoimmunity and inflammation while adjusting for long chain polyunsaturated fatty acids (LCPUFA). METHOD At age 19 years, hair total Hg (Y19Hg), LCPUFA status, a panel of 13 antinuclear antibodies (ANA), total serum immunoglobulins (Ig) IgG, IgA, and IgM and serum markers of inflammation (IL-1, IL-2, IL-6, IL-10, C-reactive protein (CRP), IFN-γ, TNF-α) were measured in the Seychelles Child Development Study (SCDS) Main Cohort (n = 497). Multivariable regression models investigated the association between Y19Hg and biomarkers, adjusting for prenatal total hair Hg (MatHg) and other relevant covariates, and with and without adjustment for LCPUFA. RESULTS With each 1 ppm increase in Y19Hg (mean 10.23 (SD 6.02) ppm) we observed a 4% increased odds in a positive Combined ANA following adjustment for the n6:n3 LCPUFA ratio (β = 0.036, 95%; CI: 0.001, 0.073). IgM was negatively associated with Y19Hg (β = -0.016, 95%CI: 0.016, -0.002) in models adjusted for n-3, n-6 LCPUFA and when separately adjusted for the n-6:n-3 LCPUFA ratio. No associations were observed with MatHg. Total n-3 LCPUFA status was associated with reduced odds of a positive anti-ribonuclear protein (RNP) A. The n-3 LCPUFA were negatively associated with IL-6, IL-10, CRP, IFN-γ, TNF-α and positively with TNF-α:IL-10. There were positive associations between the n-6:n-3 ratio and IL-6, IL-10, CRP, IFN-γ, TNF-α and a negative association with TNF-α:IL-10. DISCUSSION The Y19Hg exposure was associated with higher ANA and lower IgM albeit only following adjustment for the n-3 LCPUFA or the n-6:n-3 LCPUFA ratio. The clinical significance of these findings is unclear, but warrant follow up at an older age to determine any relationship to the onset of autoimmune disease.
Collapse
Affiliation(s)
- Emeir M McSorley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom.
| | | | - Alison J Yeates
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Toni Spence
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Maria S Mulhern
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Donald Harrington
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Sally W Thurston
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Tanzy Love
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Todd A Jusko
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Philip J Allsopp
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Marie C Conway
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Philip W Davidson
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Gary J Myers
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | - Gene E Watson
- The School of Medicine and Dentistry, University of Rochester, NY, United States
| | | | - J J Strain
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Arefieva AS, Kamaeva AG, Krasilshchikova MS. Low doses of mercuric chloride cause the main features of anti-nucleolar autoimmunity in female outbred CFW mice. Toxicol Ind Health 2015; 32:1663-74. [PMID: 25765285 DOI: 10.1177/0748233715573691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The growth of the influence of anthropogenic factors aimed on the improvement of human life has its side effect, for example, living organisms receive increasing exposure to toxic mercuric compounds. Experimental data show that mercury (Hg) salts are able to induce systemic autoimmunity in rodents. This Hg-induced autoimmune process (HgIA) is characterized by T cell-dependent polyclonal activation of B lymphocytes, increased level of serum immunoglobulin G1 (IgG1) and immunoglobulin E (IgE), production of antinucleolar autoantibodies (ANoA), and immune complex deposition in multiple organs. HgIA in mice is used as a model of human systemic autoimmune disorders. However, the dose of mercuric chloride (HgCl2) usually used in laboratory mice to induce HgIA is above the allowable limit for everyday levels of Hg exposure in humans. So, we decided to determine the lowest dose of HgCl2 that is able to trigger autoimmunity in outbred Carworth Farms Swiss Webster (CFW) mice not genetically prone to HgIA development. The lowest dose (50 µg/kg body weight (b.w.)/week) was chosen to match the World Health Organization provisional weekly tolerable intake of total Hg for humans. We also tested HgCl2 at 500 and 1500 µg/kg b.w./week (6.5- and 2-fold less than usually used for induction of HgIA in mice). We found that even the lowest dose of Hg resulted in a statistically significant increase in serum level of IgG1 after 8 weeks of treatment. HgCl2 in doses 500 and 1500 µg/kg b.w./week resulted in a significant increase in serum level of IgG1 after 4 weeks of treatment, followed by ANoA production. Sera of HgCl2-treated mice stained the regions in which the major autoantigen in HgIA, fibrillarin, was revealed. These results suggest that low doses of Hg are able to induce the main features of HgIA in genetically heterozygous mice, and that humans chronically exposed to low doses of Hg may be at risk of autoimmunity induction regardless of their genetic background.
Collapse
Affiliation(s)
- Alla S Arefieva
- Laboratory of Structural Biochemistry, M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Alfia G Kamaeva
- Group of Experimental Biology, M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Marina S Krasilshchikova
- Group of Experimental Biology, M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. BIOCHEMISTRY (MOSCOW) 2013; 78:638-50. [DOI: 10.1134/s0006297913060096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O, Pulfer A, Dekiwadia C, Maeser P, Flueck C, Witmer K, Brancucci NMB, Niederwieser I, Jenoe P, Ralph SA, Voss TS. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol 2012. [PMID: 23181666 PMCID: PMC4053738 DOI: 10.1186/gb-2012-13-11-r108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.
Collapse
|
6
|
Pollard KM, Hultman P, Toomey CB, Cauvi DM, Kono DH, Konoc DH. β2-microglobulin is required for the full expression of xenobiotic-induced systemic autoimmunity. J Immunotoxicol 2011; 8:228-37. [PMID: 21793797 DOI: 10.3109/1547691x.2011.583614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mercury exposure in both humans and mice is associated with features of systemic autoimmunity. Murine HgCl₂-induced autoimmunity (mHgIA) requires MHC Class II, CD4⁺ T-cells, co-stimulatory molecules, and interferon-γ (IFN-γ), similar to spontaneous models of systemic lupus erythematosus (SLE). β₂-microglobulin (B2m) is required for functional MHC Class I molecules and the neonatal F(c) receptor (F(c)Rn). Deficiency of B2m in lupus-prone strains is consistently associated with reduced IgG levels, but with variable effects on other manifestations. Herein, we examined the role of B2m in mHgIA and show that in the absence of B2m, mercury-exposed mice failed to exhibit hypergammaglobulinemia, had reduced anti-nucleolar autoantibodies (ANoA), and had a lower incidence of immune complex deposits in splenic blood vessels, whereas IgG anti-chromatin autoantibodies and renal immune deposits were largely unaffected. Subclass analysis of the IgG anti-chromatin, however, revealed a significant reduction in the IgG₁ subtype. Examination of IFNγ, IL-4, and IL-2 in exposed skin, draining lymph nodes, and spleen following mercury exposure showed reduced IL-4 in the spleen and skin in B2m-deficient mice, consistent with the lower IgG₁ anti-chromatin levels, and reduced IFNγ expression in the skin. These findings demonstrate how a single genetic alteration can partially but significantly modify the clinical manifestations of systemic autoimmunity induced by exposure to xenobiotics.
Collapse
Affiliation(s)
- Kenneth M Pollard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Lemay V, Hossain A, Osheim YN, Beyer AL, Dragon F. Identification of novel proteins associated with yeast snR30 small nucleolar RNA. Nucleic Acids Res 2011; 39:9659-70. [PMID: 21893585 PMCID: PMC3239182 DOI: 10.1093/nar/gkr659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly.
Collapse
Affiliation(s)
- Vincent Lemay
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Québec, H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
8
|
Milligan-Myhre KC, Rooney PJ, Knoll LJ. Examination of a virulence mutant uncovers the ribosome biogenesis regulatory protein of Toxoplasma gondii. J Parasitol 2011; 97:1173-7. [PMID: 21736491 DOI: 10.1645/ge-2741.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Several insertional mutants identified in a screen for Toxoplasma gondii that were defective in establishing a chronic infection had a common site of plasmid insertion. This insertion site was determined to be 43 bp upstream of the transcription initiation site of a gene whose predicted product has homology to ribosome biogenesis regulatory protein Rrs1p, an essential protein required for ribosome biogenesis in Saccharomyces cerevisiae. Northern blot analysis of this locus, termed TgRRS1 , showed that in the C3 mutant, the full-length transcript is down-regulated and at least 1 new smaller transcript is present. Restoration of the intact predicted promoter and locus to TgRRS1 insertional mutant strain C3 did not restore brain cyst formation to the levels of the parent strain. Epitope-tagged TgRRS1 was found to localize to the parasite nucleolus, in an area corresponding to the granular component region. TgRRS1 can serve as a marker for the sub-nucleolar granular component region of T. gondii.
Collapse
|
9
|
Abstract
Susceptibility to most autoimmune diseases is dependent on polygenic inheritance, environmental factors, and poorly defined stochastic events. One of the significant challenges facing autoimmune disease research is in identifying the specific events that trigger loss of tolerance and autoimmunity. Although many intrinsic factors, including age, sex, and genetics, contribute to autoimmunity, extrinsic factors such as drugs, chemicals, microbes, or other environmental factors can also act as important initiators. This review explores how certain extrinsic factors, namely, drugs and chemicals, can promote the development of autoimmunity, focusing on a few better characterized agents that, in most instances, have been shown to produce autoimmune manifestations in human populations. Mechanisms of autoimmune disease induction are discussed in terms of research obtained using specific animal models. Although a number of different pathways have been delineated for drug/chemical-induced autoimmunity, some similarities do exist, and a working model is proposed.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | |
Collapse
|
10
|
Abstract
The heavy metal mercury is ubiquitously distributed in the environment resulting in permanent low-level exposure in human populations. Mercury can be encountered in three main chemical forms (elemental, inorganic, and organic) which can affect the immune system in different ways. In this review, we describe the effects of these various forms of mercury exposure on immune cells in humans and animals. In genetically susceptible mice or rats, subtoxic doses of mercury induce the production of highly specific autoantibodies as well as a generalized activation of the immune system. We review studies performed in this model and discuss their implications for the role of environmental chemicals in human autoimmunity.
Collapse
Affiliation(s)
- Jaya Vas
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
11
|
Cvacková Z, Albring KF, Koberna K, Ligasová A, Huber O, Raska I, Stanek D. Pontin is localized in nucleolar fibrillar centers. Chromosoma 2008; 117:487-97. [PMID: 18548265 DOI: 10.1007/s00412-008-0170-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 11/26/2022]
Abstract
Pontin is a multifunctional protein having roles in various cellular processes including regulation of gene expression. Here, we addressed Pontin intracellular localization using two different monoclonal antibodies directed against different Pontin epitopes. For the first time, Pontin was directly visualized in nucleoli where it co-localizes with Upstream Binding Factor and RNA polymerase I. Nucleolar localization of Pontin was confirmed by its detection in nucleolar extracts and by electron microscopy, which revealed Pontin accumulation specifically in the nucleolar fibrillar centers. Pontin localization in the nucleolus was dynamic and Pontin accumulated in large nucleolar dots mainly during S-phase. Pontin concentration in the large nucleolar dots correlated with reduced transcriptional activity of nucleoli. In addition, Pontin was found to associate with RNA polymerase I and to interact in a complex with c-Myc with rDNA sequences indicating that Pontin is involved in the c-Myc-dependent regulation of rRNA synthesis.
Collapse
Affiliation(s)
- Zuzana Cvacková
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
12
|
Cooper LT, Rader V, Ralston NVC. The roles of selenium and mercury in the pathogenesis of viral cardiomyopathy. ACTA ACUST UNITED AC 2007; 13:193-9. [PMID: 17673870 DOI: 10.1111/j.1527-5299.2007.06410.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Research on the pathogenesis of nonischemic dilated cardiomyopathy (DCM) has largely been focused on the role of viral pathogens and altered immunity. Trace elements have only rarely been considered; however, clinical observations that trace elements influence cardiovascular disease have been made in populations with extreme dietary deficiency or occupational exposure. Recently, animal models of DCM have been used to explore interactions among trace elements, viral pathogens, and the immune system. Discovery of interactions of trace elements with causes for DCM has heightened awareness of potential contributions of environmental variables to DCM pathogenesis. This article reviews the present knowledge regarding trace elements, in particular selenium and mercury, in the pathogenesis of viral and immune-mediated DCM. Based on recent studies, the authors propose a novel paradigm for the pathogenesis of viral DCM that incorporates trace element imbalance and its interactions with the cellular physiology of viral-induced cardiomyocyte dysfunction.
Collapse
Affiliation(s)
- Leslie T Cooper
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
13
|
Hultman P, Taylor A, Yang JM, Pollard KM. The effect of xenobiotic exposure on spontaneous autoimmunity in (SWR x SJL)F1 hybrid mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:505-23. [PMID: 16574626 DOI: 10.1080/15287390500354904] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
F1 hybrids of SWR (H-2(q)) and SJL (H-2(s)) mice spontaneously develop a lupuslike condition in an age-dependent manner, and these two H-2 haplotypes also confer susceptibility to induction of systemic autoimmunity by heavy metals such as mercury, silver, and gold with anti-fibrillarin antibodies (AFA) as marker. The aim of this study was to determine how the mixing of two susceptible genomes might influence expression of idiopathic and induced autoimmunity over a period of 14 mo of exposure to mercury and silver. Spontaneous autoimmunity first appeared as antinuclear antibodies (ANA) in females at 10 wk of age and in males at 10 mo of age, and was followed by development of anti-chromatin antibodies. Antibodies to double-stranded DNA developed in 60% of males and 20% of females. Thirty percent of males and 10% of females developed a coarsely speckled ANA pattern associated with high titers of anti-Sm antibodies. Glomerular immune complex (IC) deposits and a proliferative glomerulonephritis were seen at 17 mo of age. The F1 hybrids treated with metals showed no exaggeration of spontaneous autoimmunity. However, the metals suppressed the spontaneous development of anti-Sm and antichromatin antibodies. The metal-induced AFA, linked to the H-2(s) and H-2(q) haplotype, reached a maximum after 3-4 mo of treatment and then declined; 33% of the silver-treated hybrids finally became AFA-negative, despite continuous treatment. The decline in ANoA during metal treatment is contrary to the situation in metal-treated SJL mice. This indicates that dominant SWR background genes suppressed induction of certain autoimmune traits in the (SWR x SJL)F1 hybrid mice.
Collapse
Affiliation(s)
- P Hultman
- Department of Molecular and Clinical Medicine, Division of Molecular and Immunological Pathology (AIR), Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
14
|
Rowley B, Monestier M. Mechanisms of heavy metal-induced autoimmunity. Mol Immunol 2005; 42:833-8. [PMID: 15829271 DOI: 10.1016/j.molimm.2004.07.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 07/07/2004] [Indexed: 11/24/2022]
Abstract
Chemical exposure can trigger or accelerate the development of autoimmune manifestations. Although heavy metals are elementary chemical structures, they can have profound and complex effects on the immune system. In genetically susceptible mice or rats, administration of subtoxic doses of mercury induces both the production of highly specific autoantibodies and a polyclonal activation of the immune system. We review in this article some of the mechanisms by which heavy metal exposure can lead to autoimmunity.
Collapse
Affiliation(s)
- Benjamin Rowley
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
15
|
White MW, Jerome ME, Vaishnava S, Guerini M, Behnke M, Striepen B. Genetic rescue of a Toxoplasma gondii conditional cell cycle mutant. Mol Microbiol 2005; 55:1060-71. [PMID: 15686554 DOI: 10.1111/j.1365-2958.2004.04471.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth rate is a major pathogenesis factor in the parasite Toxoplasma gondii; however, how cell division is controlled in this protozoan is poorly understood. Herein, we show that centrosomal duplication is an indicator of S phase entry while centrosome migration marks mitotic entry. Using the pattern of centrosomal replication, we confirmed that mutant ts11C9 undergoes a bimodal cell cycle arrest that is characterized by two subpopulations containing either single or duplicated centrosomes which correlate with the bipartite genome distribution observed at the non-permissive temperature. Genetic rescue of ts11C9 was performed using a parental RH strain cDNA library, and the cDNA responsible for conferring temperature resistance (growth at 40 degrees C) was recovered by recombination cloning. A single T. gondii gene encoding the protein homologue of XPMC2 was responsible for genetic rescue of the temperature-sensitive defect in ts11C9 parasites. This protein is a known suppressor of mitotic defects, and in tachyzoites, TgXPMC2-YFP localized to the parasite nucleus and nucleolus which is consistent with the expected subcellular localization of critical mitotic factors. Altogether, these results demonstrate that ts11C9 is a conditional mitotic mutant containing a single defect which influences two distinct control points in the T. gondii tachyzoite cell cycle.
Collapse
Affiliation(s)
- Michael W White
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Häggqvist B, Havarinasab S, Björn E, Hultman P. The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice. Toxicology 2005; 208:149-64. [PMID: 15664442 DOI: 10.1016/j.tox.2004.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Accepted: 11/06/2004] [Indexed: 11/19/2022]
Abstract
Methylmercury (MeHg) is a common environmental pollutant due to both natural and anthropogenic sources. Although the central nervous system (CNS) is considered the critical organ for the toxic effect of MeHg, it has recently been suggested that the immune system might be at least as sensitive as the CNS. We have examined the effects of MeHg on the immune system in genetically metal-susceptible mice. Subcutaneous (sc) injections of 2 mg MeHg/kg body weight (bw) every third day (internal dose ca. 540 microg Hg/kg bw/day) to A.SW mice of the H-2(s) haplotype, caused during the first week a 47 and 9% reduction of B- and T-cells, respectively, which indicates immunosuppression. Subsequently, an autoimmune syndrome developed which shared certain features with the syndrome induced by inorganic mercury in H-2(s) mice, including antibodies targeting the 34 kDa nucleolar protein fibrillarin, increased expression of IL-4 mRNA, increase of Th2-type of immunoglobulins (IgE and IgG1), and increased MHC class II expression on B-cells. However, the response using MeHg was attenuated compared with even lower doses of Hg in the form of inorganic mercury, and specifically lacked the increased expression of IL-2 and IFN-gamma mRNA, the polyclonal B-cell activation (PBA), and the systemic immune-complex (IC) deposits which are induced by inorganic mercury. Increasing the dose of MeHg increased the titre of anti-nucleolar antibodies and shortened the induction time, but did not lead to stronger immunostimulation or systemic IC-deposits. The kidney and liver selectively accumulated MeHg, while the blood, spleen and lymph nodes showed lower levels of MeHg. The accumulation of MeHg and Hg(2+) increased throughout the 30-day period. The fraction of Hg(2+) in the kidney varied between 4 and 22%, and the lymph nodes showed a maximum of 30% Hg(2+). We conclude first that MeHg has quantitatively different effect on the immune system compared with inorganic mercury, and secondly that an initial immunosuppression induced by a xenobiotic does not preclude subsequent immunostimulation and autoimmunity.
Collapse
Affiliation(s)
- Bo Häggqvist
- Division of Molecular and Immunological Pathology (AIR), Department of Molecular and Clinical Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | |
Collapse
|
17
|
Gubbels MJ, Wieffer M, Striepen B. Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. Mol Biochem Parasitol 2005; 137:99-110. [PMID: 15279956 DOI: 10.1016/j.molbiopara.2004.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 05/05/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite, and its sub-cellular organization shows clear adaptations to this life-style. In addition to organelles shared among all eukaryotes, the organism possesses a number of specialized compartments with important roles in host cell invasion and intra-cellular survival. These unique aspects of the parasite's biology are also reflected in its genome. The ongoing genome sequencing efforts for T. gondii and related apicomplexans predict a high proportion of genes unique to the phylum, which lack homologs in other model organisms. Knowing the sub-cellular localization of these gene products will be an important first step towards their functional characterization. We used a library approach wherein parasite genomic DNA was fused to the yellow fluorescent protein (YFP) gene. Parasites transformed with this library were screened by flow cytometry and fluorescence microscopy. Clones tagged in a wide variety of sub-cellular compartments (nucleus, mitochondria, ER, dense granules (secreted), spliceosome, plasma membrane, apicoplast, inner membrane complex) were isolated and confirmed using compartment specific markers. Clones with tags in parasite-specific localizations were subjected to insert rescue and phenotypic verification using an in vitro recombination system. Among the genes identified is a novel inner membrane complex gene (IMC3) conserved among Apicomplexa.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Center for Tropical and Emerging Global Diseases, University of Georgia, 724 Biological Sciences Building, Athens 30602, USA
| | | | | |
Collapse
|
18
|
Stanĕk D, Rader SD, Klingauf M, Neugebauer KM. Targeting of U4/U6 small nuclear RNP assembly factor SART3/p110 to Cajal bodies. J Cell Biol 2003; 160:505-16. [PMID: 12578909 PMCID: PMC2173746 DOI: 10.1083/jcb.200210087] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spliceosomal small nuclear RNAs (snRNAs) are distributed throughout the nucleoplasm and concentrated in nuclear inclusions termed Cajal bodies (CBs). A role for CBs in the metabolism of snRNPs has been proposed but is not well understood. The SART3/p110 protein interacts transiently with the U6 and U4/U6 snRNPs and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. Here we report that SART3/p110 is enriched in CBs but not in gems or residual CBs lacking coilin. The U6 snRNP Sm-like (LSm) proteins, also involved in U4/U6 snRNP assembly, were localized to CBs as well. The levels of SART3/p110 and LSm proteins in CBs were reduced upon treatment with the transcription inhibitor alpha-amanitin, suggesting that CB localization reflects active processes dependent on transcription/splicing. The NH2-terminal HAT domain of SART3/p110 was necessary and sufficient for specific protein targeting to CBs. Overexpression of truncation mutants containing the HAT domain had dominant negative effects on U6 snRNP localization to CBs, indicating that endogenous SART3/p110 plays a role in targeting the U6 snRNP to CBs. We propose that U4 and U6 snRNPs accumulate in CBs for the purpose of assembly into U4/U6 snRNPs by SART3/p110.
Collapse
Affiliation(s)
- David Stanĕk
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | |
Collapse
|