1
|
Sanders SM, Travert MK, Cartwright P. Frizzled3 expression and colony development in hydractiniid hydrozoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:311-317. [PMID: 32638544 DOI: 10.1002/jez.b.22980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/11/2022]
Abstract
Hydractiniid hydrozoan colonies are comprised of individual polyps connected by tube-like stolons or a sheet-like mat. Mat and stolons function to integrate the colony through continuous epithelia and shared gastrovascular cavity. Although mechanisms of hydrozoan polyp development have been well studied, little is known about the signaling processes governing the patterning of colonies. Here we investigate the Wnt receptor family Frizzled. Phylogenetic analysis reveals that hydrozoans possess four Frizzled orthologs. We find that one of these genes, Frizzled3, shows a spatially restricted expression pattern in colony-specific tissue in two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, in a manner that corresponds to their distinct colony forms (stolonal mat in Hydractinia and free stolons in Podocoryna). Interestingly, Frizzled3 was lost in the genome of Hydra, which is a solitary polyp and thus lacks colony-specific tissue. Current evidence suggests that the Wnt signaling pathway plays a key role in the evolution of colony diversity and colony loss in Hydrozoa.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas.,Thomas E. Starzl Transplantation Institute and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew K Travert
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| |
Collapse
|
2
|
Rodrigues M, Ostermann T, Kremeser L, Lindner H, Beisel C, Berezikov E, Hobmayer B, Ladurner P. Profiling of adhesive-related genes in the freshwater cnidarian Hydra magnipapillata by transcriptomics and proteomics. BIOFOULING 2016; 32:1115-1129. [PMID: 27661452 PMCID: PMC5080974 DOI: 10.1080/08927014.2016.1233325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
The differentiated ectodermal basal disc cells of the freshwater cnidarian Hydra secrete proteinaceous glue to temporarily attach themselves to underwater surfaces. Using transcriptome sequencing and a basal disc-specific RNA-seq combined with in situ hybridisation a highly specific set of candidate adhesive genes was identified. A de novo transcriptome assembly of 55,849 transcripts (>200 bp) was generated using paired-end and single reads from Illumina libraries constructed from different polyp conditions. Differential transcriptomics and spatial gene expression analysis by in situ hybridisation allowed the identification of 40 transcripts exclusively expressed in the ectodermal basal disc cells. Comparisons after mass spectrometry analysis of the adhesive secretion showed a total of 21 transcripts to be basal disc specific and eventually secreted through basal disc cells. This is the first study to survey adhesion-related genes in Hydra. The candidate list presented in this study provides a platform for unravelling the molecular mechanism of underwater adhesion of Hydra.
Collapse
Affiliation(s)
- Marcelo Rodrigues
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas Ostermann
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremeser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Eugene Berezikov
- ERIBA, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Wenger Y, Buzgariu W, Galliot B. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150040. [PMID: 26598723 PMCID: PMC4685579 DOI: 10.1098/rstb.2015.0040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory-motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution.
Collapse
Affiliation(s)
- Y Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - W Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - B Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
4
|
Nawrocki AM, Cartwright P. A novel mode of colony formation in a hydrozoan through fusion of sexually generated individuals. Curr Biol 2012; 22:825-9. [PMID: 22521789 DOI: 10.1016/j.cub.2012.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Coloniality, as displayed by most hydrozoans, is thought to confer a size advantage in substrate-limited benthic marine environments and affects nearly every aspect of a species' ecology and evolution. Hydrozoan colonies normally develop through asexual budding of polyps that remain interconnected by continuous epithelia. The clade Aplanulata is unique in that it comprises mostly solitary species, including the model organism Hydra, with only a few colonial species. We reconstruct a multigene phylogeny to trace the evolution of coloniality in Aplanulata, revealing that the ancestor of Aplanulata was solitary and that coloniality was regained in the genus Ectopleura. Examination of Ectopleura larynx development reveals a unique type of colony formation never before described in Hydrozoa, in that colonies form through sexual reproduction followed by epithelial fusion of offspring polyps to adults. We characterize the expression of manacle, a gene involved in foot development in Hydra, to determine polyp-colony boundaries. Our results suggest that stalks beneath the neck do not have polyp identity and instead are specialized structures that interconnect polyps. Epithelial fusion, brooding behavior, and the presence of a skeleton were all key factors behind the evolution of this novel pathway to coloniality in Ectopleura.
Collapse
Affiliation(s)
- Annalise M Nawrocki
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
5
|
Reddy PC, Bidaye SS, Ghaskadbi S. Genome-wide screening reveals the emergence and divergence of RTK homologues in basal Metazoan Hydra magnipapillata. J Biosci 2011; 36:289-96. [PMID: 21654083 DOI: 10.1007/s12038-011-9065-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) are key components of cell-cell signalling required for growth and development of multicellular organisms. It is therefore likely that the divergence of RTKs and associated components played a significant role in the evolution of multicellular organisms. We have carried out the present study in hydra, a diploblast, to investigate the divergence of RTKs after parazoa and before emergence of triploblast phyla. The domain-based screening using Hidden Markov Models (HMMs) for RTKs in Genomescan predicted gene models of the Hydra magnipapillata genome resulted in identification of 15 RTKs. These RTKs have been classified into eight families based on domain architecture and homology. Only 5 of these RTKs have been previously reported and a few of these have been partially characterized. A phylogeny-based analysis of these predicted RTKs revealed that seven subtype duplications occurred between 'parazoan-eumetazoan split' and 'diploblast-triploblast split' in animal phyla. These results suggest that most of the RTKs evolved before the radiata-bilateria divergence during animal evolution.
Collapse
Affiliation(s)
- P C Reddy
- Division of Animal Sciences, Agharkar Research Institute, Pune 411004, India
| | | | | |
Collapse
|
6
|
Steele RE, David CN, Technau U. A genomic view of 500 million years of cnidarian evolution. Trends Genet 2010; 27:7-13. [PMID: 21047698 DOI: 10.1016/j.tig.2010.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/23/2010] [Accepted: 10/08/2010] [Indexed: 01/29/2023]
Abstract
Cnidarians (corals, anemones, jellyfish and hydras) are a diverse group of animals of interest to evolutionary biologists, ecologists and developmental biologists. With the publication of the genome sequences of Hydra and Nematostella, whose last common ancestor was the stem cnidarian, researchers are beginning to see the genomic underpinnings of cnidarian biology. Cnidarians are known for the remarkable plasticity of their morphology and life cycles. This plasticity is reflected in the Hydra and Nematostella genomes, which differ to an exceptional degree in size, base composition, transposable element content and gene conservation. It is now known what cnidarian genomes, given 500 million years, are capable of; as we discuss here, the next challenge is to understand how this genomic history has led to the striking diversity seen in this group.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry and the Developmental Biology Center, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
7
|
Abstract
The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.
Collapse
|
8
|
Galliot B, Miljkovic-Licina M, de Rosa R, Chera S. Hydra, a niche for cell and developmental plasticity. Semin Cell Dev Biol 2006; 17:492-502. [PMID: 16807002 DOI: 10.1016/j.semcdb.2006.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The silencing of genes whose expression is restricted to specific cell types and/or specific regeneration stages opens avenues to decipher the molecular control of the cellular plasticity underlying head regeneration in hydra. In this review, we highlight recent studies that identified genes involved in the immediate cytoprotective function played by gland cells after amputation; the early dedifferentiation of digestive cells into blastema-like cells during head regeneration, and the early late proliferation of neuronal progenitors required for head patterning. Hence, developmental plasticity in hydra relies on spatially restricted and timely orchestrated cellular modifications, where the functions played by stem cells remain to be characterized.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
9
|
Vorobyov E, Horst J. Getting the Proto-Pax by the Tail. J Mol Evol 2006; 63:153-64. [PMID: 16830101 DOI: 10.1007/s00239-005-0163-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 01/31/2006] [Indexed: 01/23/2023]
Abstract
Pax genes encode transcription factors governing the determination of different cell types and even organs in the development of multicellular animals. Pax proteins are characterized by the presence of three evolutionarily conserved elements: two DNA-binding domains, the paired domain (PD) and paired-type homeodomain (PtHD), and the short octopeptide sequence (OP) located between PD and PtHD. PD is the defining feature of this class of genes, while OP and/or PtHD may be divergent or absent in some members of the family. Phylogenetic analyses of the PD and PtHD sequences do not distinguish which particular type of the extant Pax genes more resembles the ancestral type. Here we present evidence for the existence of a fourth evolutionarily conserved domain in the Pax proteins, the paired-type homeodomain tail (PHT). Our data also imply that the hypothetical proto-Pax protein most probably exhibited a complex structure, PD-OP-PtHD-PHT, which has been retained in the extant proteins Pax3/7 of the ascidia and lancelet, and Pax7 of the vertebrates. Finally, based on structural considerations, a scenario for the evolutionary emergence of the proto-Pax gene is proposed.
Collapse
Affiliation(s)
- Eugene Vorobyov
- Institut für Humangenetik, UKM, Vesaliusweg 12-14, D-48149, Münster, Germany
| | | |
Collapse
|
10
|
Böttger A, Strasser D, Alexandrova O, Levin A, Fischer S, Lasi M, Rudd S, David CN. Genetic screen for signal peptides in Hydra reveals novel secreted proteins and evidence for non-classical protein secretion. Eur J Cell Biol 2006; 85:1107-17. [PMID: 16814424 DOI: 10.1016/j.ejcb.2006.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289-296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.
Collapse
Affiliation(s)
- Angelika Böttger
- Department Biologie II, Ludwig Maximilians University, Grosshadernerstr 2, D-82152, Planegg/Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Amimoto Y, Kodama R, Kobayakawa Y. Foot formation in Hydra: A novel gene, anklet, is involved in basal disk formation. Mech Dev 2006; 123:352-61. [PMID: 16644190 DOI: 10.1016/j.mod.2006.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/15/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
We isolated a novel gene by a differential-display RT-PCR method comparing basal disk tissue and peduncle tissue in a species of Hydra, Pelmatohydra robusta, and we referred to it as anklet. The putative anklet product has a signal sequence in its N-terminus, and it has one MAC/PF domain and one EGF domain. In normal hydra, the expression of anklet was restricted in the periphery of the basal disk and the lowest region of the peduncle. In foot-regenerating animals, anklet was first expressed in the newly differentiated basal disk gland cells at the regenerating basal end, and then expression became restricted at the periphery of the regenerated basal disk and in the lowest region of the peduncle. This spatially specific expression pattern suggested that the product of the anklet gene plays a role in basal disk formation. We therefore examined the role played by the protein product of the anklet gene by suppressing the transcription level of anklet using an RNA-mediated interference (RNAi) method. Suppression of the level of expression of the anklet gene led to a decrease in basal disk size in normal hydra, and to a delay in basal disk regeneration in foot-amputated animals. These results suggested that anklet is involved in the formation and maintenance of the basal disk in hydra.
Collapse
Affiliation(s)
- Yasuko Amimoto
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu 4-2-1, Chuo-ku, Fukuoka 810-8560, Japan
| | | | | |
Collapse
|
12
|
Siebert S, Thomsen S, Reimer MM, Bosch TCG. Control of foot differentiation in Hydra: Phylogenetic footprinting indicates interaction of head, bud and foot patterning systems. Mech Dev 2005; 122:998-1007. [PMID: 15922570 DOI: 10.1016/j.mod.2005.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Homeodomain transcription factor CnNK-2 seems to play a major role in foot formation in Hydra. Recently, we reported in vitro evidence indicating that CnNK-2 has autoregulatory features and regulates expression of the morphogenetic peptide pedibin. We proposed that CnNK-2 and pedibin synergistically orchestrate foot differentiation processes. Here, we further analyzed the regulatory network controlling foot formation in Hydra. By phylogenetic footprinting we compared the CnNK-2 5'-flanking sequence from two closely related species, Hydra vulgaris and Hydra oligactis. Unexpectedly, we detected a highly conserved binding site for HNF-3beta, a vertebrate Forkhead transcription factor, in the CnNK-2 5'-flanking region. The Hydra HNF-3beta homolog budhead is predominantly expressed in the apical region of the body column and early during budding. Budhead is absent from tissue expressing CnNK-2 and thought to be involved in determining tissue for head differentiation. By electrophoretic mobility shift assays we demonstrate an in vitro interaction between recombinant budhead protein and the interspecific conserved HNF-3beta binding motif in the CnNK-2 5'-flanking region. Our results strengthen the view of CnNK-2 as an important regulator during foot patterning processes. Furtheron, they point to budhead as a candidate for a transcriptional regulator of CnNK-2 and to an interaction of foot and head patterning processes in Hydra on the molecular level.
Collapse
Affiliation(s)
- S Siebert
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
13
|
Takahashi T, Hatta M, Yum S, Gee L, Ohtani M, Fujisawa T, Bode HR. Hym-301, a novel peptide, regulates the number of tentacles formed in hydra. Development 2005; 132:2225-34. [PMID: 15829526 DOI: 10.1242/dev.01792] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hym-301 is a peptide that was discovered as part of a project aimed at isolating novel peptides from hydra. We have isolated and characterized the gene Hym-301, which encodes this peptide. In an adult, the gene is expressed in the ectoderm of the tentacle zone and hypostome, but not in the tentacles. It is also expressed in the developing head during bud formation and head regeneration. Treatment of regenerating heads with the peptide resulted in an increase in the number of tentacles formed, while treatment with Hym-301 dsRNA resulted in a reduction of tentacles formed as the head developed during bud formation or head regeneration. The expression patterns plus these manipulations indicate the gene has a role in tentacle formation. Furthermore, treatment of epithelial animals indicates the gene directly affects the epithelial cells that form the tentacles. Raising the head activation gradient, a morphogenetic gradient that controls axial patterning in hydra, throughout the body column results in extending the range of Hym-301 expression down the body column. This indicates the range of expression of the gene appears to be controlled by this gradient. Thus,Hym-301 is involved in axial patterning in hydra, and specifically in the regulation of the number of tentacles formed.
Collapse
Affiliation(s)
- Toshio Takahashi
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Hislop NR, de Jong D, Hayward DC, Ball EE, Miller DJ. Tandem organization of independently duplicated homeobox genes in the basal cnidarian Acropora millepora. Dev Genes Evol 2005; 215:268-73. [PMID: 15702325 DOI: 10.1007/s00427-005-0468-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
A number of examples of independently duplicated regulatory genes have been identified in cnidarians, but the extent of this phenomenon and organization of these duplicated genes are unknown. Here we describe the identification of three pairs of independently duplicated homeobox genes in the anthozoan cnidarian, Acropora millepora. In each case, the pairs of paralogous genes are tightly linked, but the extent of sequence divergence implies that these do not reflect recent duplication events. The phenomenon is likely to be more general, as the examples reported here represent most of the limited number of Acropora homeobox genes for which genomic data are yet available.
Collapse
Affiliation(s)
- Nikki R Hislop
- Comparative Genomics Centre, Molecular Sciences Building 21, James Cook University, Townsville, Queensland 4811, Australia
| | | | | | | | | |
Collapse
|
15
|
Takahashi T. The evolutionary origins of vertebrate midbrain and MHB: insights from mouse, amphioxus and ascidian Dmbx homeobox genes. Brain Res Bull 2005; 66:510-7. [PMID: 16144640 DOI: 10.1016/j.brainresbull.2005.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Indexed: 12/25/2022]
Abstract
Comparative studies on developmental gene expression suggest that the ancestral chordate central nervous system comprised anterior, midbrain-hindbrain boundary (MHB) and posterior regions. The most anterior region consists of both forebrain and midbrain in vertebrates. It remains, however, unresolved when or how the vertebrate midbrain was established from this anterior zone. I previously reported a mouse PRD-class homeobox gene, Dmbx1, expressed in the presumptive midbrain at early developmental stages, and in the hindbrain at later stages, with exclusion from the MHB. To investigate the evolution of midbrain development, I have cloned Dmbx genes from amphioxus and from Ciona, representing the two most closely related lineages to the vertebrates, and examined embryonic Dmbx expression in these species. In amphioxus, no Dmbx expression is observed in the neural tube, supporting previous arguments that the MHB equivalent region has been secondarily lost in evolution. In Ciona, the CiDmbx gene is detected in neural cells posterior to Pax-2/5/8-positive cells (MHB homologue), but not in any cells anterior to them. These results support the lack of a midbrain homologue in Ciona, and suggest that midbrain development is a vertebrate innovation. Here, I report the full sequences of these genes and discuss the evolution of midbrain development in relation to the tripartite neural ground plan and the origin of the MHB organizer.
Collapse
|
16
|
Morphogens of hydra Hydra sp. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Takahashi T, Holland PWH. Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development. Development 2004; 131:3285-94. [PMID: 15201221 DOI: 10.1242/dev.01201] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ancestral chordate neural tube had a tripartite structure, comprising anterior, midbrain-hindbrain boundary (MHB) and posterior regions. The most anterior region encompasses both forebrain and midbrain in vertebrates. It is not clear when or how the distinction between these two functionally and developmentally distinct regions arose in evolution. Recently, we reported a mouse PRD-class homeobox gene, Dmbx1, expressed in the presumptive midbrain at early developmental stages, and the hindbrain at later stages,with exclusion from the MHB. This gene provides a route to investigate the evolution of midbrain development. We report the cloning, genomic structure,phylogeny and embryonic expression of Dmbx genes from amphioxus and from Ciona, representing the two most closely related lineages to the vertebrates. Our analyses show that Dmbx genes form a distinct, ancient,homeobox gene family, with highly conserved sequence and genomic organisation,albeit more divergent in Ciona. In amphioxus, no Dmbx expression is observed in the neural tube, supporting previous arguments that the MHB equivalent region has been secondarily modified in evolution. In Ciona, the CiDmbx gene is detected in neural cells caudal to Pax2/5/8-positive cells (MHB homologue), in the Hox-positive region, but,interestingly, not in any cells rostral to them. These results suggest that a midbrain homologue is missing in Ciona, and argue that midbrain development is a novelty that evolved specifically on the vertebrate lineage. We discuss the evolution of midbrain development in relation to the ancestry of the tripartite neural ground plan and the origin of the MHB organiser.
Collapse
Affiliation(s)
- Tokiharu Takahashi
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | |
Collapse
|
18
|
Cardenas MM, Salgado LM. STK, the src homologue, is responsible for the initial commitment to develop head structures in Hydra. Dev Biol 2003; 264:495-505. [PMID: 14651933 DOI: 10.1016/j.ydbio.2003.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
STK, the Src tyrosine kinase homologous of the fresh water polyp hydra, is a key component of the signal transduction system for cell differentiation in this organism. Its activity is strongly increased 6 h after decapitation, and the inhibition of its activity with PP2/AG1879 prevents head development. We generated STK(-) polyps by using double-stranded RNA interference; STK activity of those polyps is blocked through time. STK RNAi silenced animals could not regenerate the head, but the foot, and could not reproduce asexually. The silencing of STK causes the development of ectopic heads in decapitated polyps in the first third of their body. Some head-specific genes, like Ks1, HyTcf, and Hybra1, seem to be regulated by the signaling pathway mediated by STK because their expression is modified in the STK(-) polyps. These findings support an important function for STK in the initial commitment of cells to develop head structures in hydra.
Collapse
|
19
|
Abstract
Hydra, a primitive metazoan, has a simple structure consisting of a head, body column, and foot aligned along a single oral-aboral axis. The body column has a high capacity for regeneration of both the head and foot. Because of the tissue dynamics that take place in adult Hydra, the processes governing axial patterning are continuously active to maintain the form of the animal. Regeneration in hydra is morphallactic and closely related to these axial patterning processes. As might be expected, analysis at the molecular level indicates that the same set of genes are involved in head regeneration and the maintenance of the head in the context of the tissue dynamics of the adult. The genes analyzed so far play roles in axial patterning processes in bilaterians.
Collapse
Affiliation(s)
- Hans R Bode
- Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| |
Collapse
|
20
|
Kobayakawa Y, Kodama R. Foot formation in hydra: commitment of the basal disk cells in the lower peduncle. Dev Growth Differ 2002; 44:517-26. [PMID: 12492510 DOI: 10.1046/j.1440-169x.2002.00664.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Foot regeneration in the freshwater hydra Pelmatohydra robusta was examined using a monoclonal antibody AE03 as a marker. This antibody specifically recognizes mucous-producing ectodermal epithelial cells in the basal disk, but not cells in the peduncle region located just above the basal disk in the foot. When the basal disk was removed by amputation at the upper or lower part of the peduncle, AE03-positive (basal disk) cells always appeared at the regenerating tip of the footless polyp approximately 12-16 h later. When a small piece of tissue was cut out from the upper or lower peduncle region, the tissue invariably turned into a smooth spherical or oblong shape within a few hours. AE03 signal appeared in these spheres variably depending on their origin: when tissue pieces were derived from the lower peduncle, the signal appeared in nearly all pieces and often covered the entire surface of the pieces within 24 h. In contrast, the signal appeared in less than 10% of pieces derived from the upper peduncle. Furthermore, the signal seldom covered more than half of the surface of these pieces. When maintained for many days, pieces derived from the upper peduncle often regenerated tentacles, whereas those from the lower peduncle seldom did. These and other observations suggest that epithelial cells in the peduncle can rapidly differentiate into basal disk cells when the basal tissue is removed. However, cells in the upper peduncle are not irreversibly committed to differentiate into basal disk cells because, when cut out as small tissue pieces, they could remain AE03 negative and become tentacle cells. In contrast, the cells in the lower peduncle apparently are irreversibly committed to differentiate into basal disk cells, as they always turned rapidly into AE03-positive cells once they were physically separated from (and freed from the influence of) the basal disk itself, regardless of the separation methods used.
Collapse
Affiliation(s)
- Yoshitaka Kobayakawa
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu 4-2-1, Chuo-ku, Fukuoka 810-8560, Japan.
| | | |
Collapse
|
21
|
Abstract
Tropical reefs are among the most diverse ecosystems. Corals, as the most prominent members and framework builders of these communities, deserve special attention, especially in light of the recent decline of coral reefs worldwide. The diversity of corals at various levels has been the subject of many studies, and has traditionally been investigated using morphological characters. This approach has proved insufficient, owing to several ecological and life-history traits of corals. The use of molecular/biochemical approaches has been propelling this discipline forward at an ever-increasing rate for the past decade or so. Reticulate evolution in corals, which has challenged traditional views on the ecology, evolution, and biodiversity of these organisms, is only one example of the results of molecular studies supporting the development of new concepts. We review recent literature reporting studies of the biodiversity, ecology, and evolution of corals in which molecular methods have been employed. We anticipate that in the coming years, an increasing number of studies in molecular biology will generate new and exciting ideas regarding the biology of corals.
Collapse
|
22
|
Hoffmeister-Ullerich SAH, Herrmann D, Kielholz J, Schweizer M, Schaller HC. Isolation of a putative peroxidase, a target for factors controlling foot-formation in the coelenterate hydra. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4597-606. [PMID: 12230572 DOI: 10.1046/j.1432-1033.2002.03159.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In hydra, differentiated ectodermal cells of the foot region contain a peroxidase activity that can be used as a marker for foot-specific differentiation processes. Because the expression of the gene coding for the peroxidase must be tightly regulated during foot-specific differentiation, characterization of the protein and cloning of the corresponding gene should provide valuable tools for getting deeper insights into the regulation of foot-specific differentiation. In this paper we characterize the foot-specific peroxidase by biochemical, histochemical, and molecular biological methods. We show that it is localized in granules, and that it consists of a single component, the molecular mass of which is in the range of 43-45 kDa. Purification of the protein and subsequent cloning of its complementary DNA yielded two closely related clones, ppod1 and ppod2. Transcripts of ppod2 are abundant in the whole animal with the exception of the hypostome, the tentacles, and the foot; the expression of ppod1 matches exactly the localization of the foot-specific peroxidase.
Collapse
|
23
|
Abstract
Developmental processes in multicellular animals depend on an array of signal transduction pathways. Studies of model organisms have identified a number of such pathways and dissected them in detail. However, these model organisms are all bilaterians. Investigations of the roles of signal transduction pathways in the early-diverging metazoan Hydra have revealed that a number of the well-known developmental signaling pathways were already in place in the last common ancestor of Hydra and bilaterians. In addition to these shared pathways, it appears that developmental processes in Hydra make use of pathways involving a variety of peptides. Such pathways have not yet been identified as developmental regulators in more recently diverged animals. In this review I will summarize work to date on developmental signaling pathways in Hydra and discuss the future directions in which such work will need to proceed to realize the potential that lies in this simple animal.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92627-1700, USA.
| |
Collapse
|
24
|
Meinhardt H. The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. Bioessays 2002; 24:185-91. [PMID: 11835283 DOI: 10.1002/bies.10045] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The radial symmetric cnidarians are regarded as being close to the common metazoan ancestor before bilaterality evolved. It is proposed that a large fraction of the body of this gastrula-like organism gave rise to the head of more evolved organisms. The trunk was added later in evolution from an unfolding of a narrow zone between the tentacles and the blastoporus. This implies that, counter intuitively, the foot of the hydra corresponds to the most anterior part (forebrain and heart) while the opening of the gastric column gave rise to the anus. Two fundamentally different modes of midline formation evolved. In vertebrates, the organiser attracts cells from the both sides of the marginal zone. These leave the organiser as a unified band. The midline is formed sequentially from anterior to posterior. In insects, the midline forms opposite a dorsal repelling center, i.e., on the ventral side. This can occur more or less simultaneously over the whole anteroposterior extension.
Collapse
Affiliation(s)
- Hans Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, D-76072 Tübingen, Germany.
| |
Collapse
|
25
|
King N, Carroll SB. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A 2001; 98:15032-7. [PMID: 11752452 PMCID: PMC64978 DOI: 10.1073/pnas.261477698] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of the Metazoa from protozoans is one of the major milestones in life's history. The genetic and developmental events involved in this evolutionary transition are unknown but may have involved the evolution of genes required for signaling and gene regulation in metazoans. The genome of animal ancestors may be reconstructed by identification of animal genes that are shared with related eukaryotes, particularly those that share a more recent ancestry and cell biology with animals. The choanoflagellates have long been suspected to be closer relatives of animals than are fungi, the closest outgroup of animals for which comparative genomic information is available. Phylogenetic analyses of choanoflagellate and animal relationships based on small subunit rDNA sequence, however, have yielded ambiguous and conflicting results. We find that analyses of four conserved proteins from a unicellular choanoflagellate, Monosiga brevicollis, provide robust support for a close relationship between choanoflagellates and Metazoa, suggesting that comparison of the complement of expressed genes from choanoflagellates and animals may be informative concerning the early evolution of metazoan genomes. We have discovered in M. brevicollis the first receptor tyrosine kinase (RTK), to our knowledge, identified outside of the Metazoa, MBRTK1. The architecture of MBRTK1, which includes multiple extracellular ligand-binding domains, resembles that of RTKs in sponges and humans and suggests the ability to receive and transduce signals. Thus, choanoflagellates express genes involved in animal development that are not found in other eukaryotes and that may be linked to the origin of the Metazoa.
Collapse
Affiliation(s)
- N King
- Howard Hughes Medical Institute, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
26
|
Hoffmeister-Ullerich SA. The foot formation stimulating peptide pedibin is also involved in patterning of the head in hydra. Mech Dev 2001; 106:37-45. [PMID: 11472833 DOI: 10.1016/s0925-4773(01)00401-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pedibin, a peptide of 21 amino acids, has been shown to stimulate foot formation in hydra, one of the simplest metazoan animals. The data presented here show that pedibin is synthesized as a precursor of 49 amino acids. A putative cleavage site precedes the peptide as purified from hydra tissue. The precursor, like pedibin, accelerates foot regeneration. Pedibin transcripts are concentrated in the foot region of hydra as expected, but are also present in the head region accumulating in the tentacle bases. The early appearance of pedibin transcripts during phases of cell fate specification like budding and regeneration implies that in hydra, pedibin plays an important role in patterning processes of foot and head. This is confirmed by the finding that pedibin also stimulates bud outgrowth.
Collapse
Affiliation(s)
- S A Hoffmeister-Ullerich
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
27
|
Abstract
The mechanisms by which most receptor protein-tyrosine kinases (RTKs) transmit signals are now well established. Binding of ligand results in the dimerization of receptor monomers followed by transphosphorylation of tyrosine residues within the cytoplasmic domains of the receptors. This tidy picture has, however, some strange characters lurking around the edges. Cases have now been identified in which RTKs lack kinase activity, but, despite being "dead" appear to have roles in signal transduction. Even stranger are the cases in which genes encoding RTKs produce protein products consisting of only a portion of the kinase domain. At least one such "fractured" RTK appears to be involved in signal transduction. Here we describe how these strange molecules might function and discuss the questions associated with their evolution. BioEssays 23:69-76, 2001.
Collapse
Affiliation(s)
- M Kroiher
- Zoologisches Institut, Universität zu Köln, Germany
| | | | | |
Collapse
|
28
|
Abstract
Despite their radial organization and their sister group position in the life tree, cnidarian species express during morphogenesis a large number of genes that are related to bilaterian developmental genes. Among those, homologs to forkhead, emx, aristaless, goosecoid, brachyury, wnt and nanos genes are regulated during apical patterning in cnidarians, suggesting that key components of early organizer activity were conserved across evolution and recruited for either anterior, axial, or dorso-ventral patterning in bilaterians. In contrast, the expression patterns of the cnidarian Hox-related genes suggest that the apical-basal axis of the cnidarian polyp and the anterior-posterior axis of bilaterians do not differentiate following homologous processes.
Collapse
Affiliation(s)
- B Galliot
- Department of Zoology and Animal Biology, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland.
| |
Collapse
|