1
|
Mignone V, Arruda MA, Kilpatrick L, Moore B, Woolard J, Hill S, Goulding J. Quantitative analysis of human umbilical vein endothelial cell morphology and tubulogenesis. J Microsc 2025. [PMID: 39981861 DOI: 10.1111/jmi.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Primary human umbilical vein endothelial cells can grow as both a monolayer in culture and also as a capillary-like network making them an ideal model system in order to study vascular remodelling. Image-based analysis can allow assessment of cell morphology and motility but is dependent on accurate cell segmentation which requires high-contrast images not normally achievable without fluorescent markers. Here, ptychography is employed as a label-free image-based modality in order to extract quantitative metrics of morphology and tubulogenesis from cultured HUVECs over time in an automated multiwell assay. Phase-specific parameters of dry mass, optical thickness and sphericity were extracted and assessed alongside other metrics of cell number and shape. Tubulogenesis could be captured dynamically without any imaging artefacts from use of a basement membrane matrix and metrics of tube number, growth and branching exported alongside morphology metrics at early time-points. Utilising ptychography-based image analysis, all VEGF165a isoforms studied, elicited a concentration-dependent effect on cell elongation and survival within a HUVEC monolayer. Pharmacologically relevant parameters of potency (EC50) and efficacy were derived, exemplifying this label-free approach for the multiparameter and multiwell quantitative study of vascular remodelling in physiologically relevant cells at 37°C.
Collapse
Affiliation(s)
- Viviane Mignone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, UK
| | - Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, UK
| | - Laura Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, UK
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Benjamin Moore
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, UK
| | - Stephen Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, UK
| | - Joëlle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Ou KL, Chen CK, Huang JJ, Chang WW, Hsieh Li SM, Jiang TX, Widelitz RB, Lansford R, Chuong CM. Adaptive patterning of vascular network during avian skin development: Mesenchymal plasticity and dermal vasculogenesis. Cells Dev 2024; 179:203922. [PMID: 38688358 PMCID: PMC11633821 DOI: 10.1016/j.cdev.2024.203922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
A vasculature network supplies blood to feather buds in the developing skin. Does the vasculature network during early skin development form by sequential sprouting from the central vasculature or does local vasculogenesis occur first that then connect with the central vascular tree? Using transgenic Japanese quail Tg(TIE1p.H2B-eYFP), we observe that vascular progenitor cells appear after feather primordia formation. The vasculature then radiates out from each bud and connects with primordial vessels from neighboring buds. Later they connect with the central vasculature. Epithelial-mesenchymal recombination shows local vasculature is patterned by the epithelium, which expresses FGF2 and VEGF. Perturbing noggin expression leads to abnormal vascularization. To study endothelial origin, we compare transcriptomes of TIE1p.H2B-eYFP+ cells collected from the skin and aorta. Endothelial cells from the skin more closely resemble skin dermal cells than those from the aorta. The results show developing chicken skin vasculature is assembled by (1) physiological vasculogenesis from the peripheral tissue, and (2) subsequently connects with the central vasculature. The work implies mesenchymal plasticity and convergent differentiation play significant roles in development, and such processes may be re-activated during adult regeneration. SUMMARY STATEMENT: We show the vasculature network in the chicken skin is assembled using existing feather buds as the template, and endothelia are derived from local bud dermis and central vasculature.
Collapse
Affiliation(s)
- Kuang-Ling Ou
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, United States of America; Burn Center, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, United States of America; Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - William Weijen Chang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Integrative Stem Cell Center, China Medical University, Taichung, Taiwan; Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Shu-Man Hsieh Li
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, United States of America
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States of America; Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|
3
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. Biol Open 2024; 13:bio060323. [PMID: 38451093 PMCID: PMC10979512 DOI: 10.1242/bio.060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. Here, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. By engineering human induced pluripotent stem cells (hiPSCs) consisting of wild-type (WT), heterozygous (CDX2-Het), and homozygous null CDX2 (CDX2-KO) genotypes, differentiating these cells in a 2D gastruloid model, and subjecting these cells to single-nucleus RNA and ATAC sequencing, we identify several pathways that are dose-dependently regulated by CDX2 including VEGF and non-canonical WNT. snATAC-seq reveals that CDX2-Het cells retain a WT-like chromatin accessibility profile, suggesting accessibility alone is not sufficient to drive this variability in gene expression. Because the loss of CDX2 or TBXT phenocopy one another in vivo, we compared differentially expressed genes in our CDX2-KO to those from TBXT-KO hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and reveal pathways that may underlie the defects in vascular development and allantoic elongation seen in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
4
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577277. [PMID: 38328098 PMCID: PMC10849648 DOI: 10.1101/2024.01.25.577277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Proper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series for CDX2 in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous null CDX2 genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one another in vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, including ANK3 and ANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2 in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institutes, San Francisco, CA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Benoit G. Bruneau
- Gladstone Institutes, San Francisco, CA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| |
Collapse
|
5
|
Lai A, Zhou Y, Thurgood P, Chheang C, Chandra Sekar N, Nguyen N, Peter K, Khoshmanesh K, Baratchi S. Endothelial Response to the Combined Biomechanics of Vessel Stiffness and Shear Stress Is Regulated via Piezo1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59103-59116. [PMID: 38073418 DOI: 10.1021/acsami.3c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
How endothelial cells sense and respond to dynamic changes in their biophysical surroundings as we age is not fully understood. Vascular stiffness is clearly a contributing factor not only in several cardiovascular diseases but also in physiological processes such as aging and vascular dementia. To address this gap, we utilized a microfluidic model to explore how substrate stiffness in the presence of shear stress affects endothelial morphology, senescence, proliferation, and inflammation. We also studied the role of mechanosensitive ion channel Piezo1 in endothelial responses under the combined effect of shear stress and substrate stiffness. To do so, we cultured endothelial cells inside microfluidic channels covered with fibronectin-coated elastomer with elastic moduli of 40 and 200 kPa, respectively, mimicking the stiffness of the vessel walls in young and aged arteries. The endothelial cells were exposed to atheroprotective and atherogenic shear stress levels of 10 and 2 dyn/cm2, respectively. Our findings show that substrate stiffness affects senescence under atheroprotective flow conditions and cytoskeleton remodeling, senescence, and inflammation under atherogenic flow conditions. Additionally, we found that the expression of Piezo1 plays a crucial role in endothelial adaptation to flow and regulation of inflammation under both atheroprotective and atherogenic shear stress levels. However, Piezo1 contribution to endothelial senescence was limited to the soft substrate and atheroprotective shear stress level. Overall, our study characterizes the response of endothelial cells to the combined effect of shear stress and substrate stiffness and reveals a previously unidentified role of Piezo1 in endothelial response to vessel stiffening, which potentially can be therapeutically targeted to alleviate endothelial dysfunction in aging adults.
Collapse
Affiliation(s)
- Austin Lai
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Ying Zhou
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Peter Thurgood
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Chanly Chheang
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Nadia Chandra Sekar
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Medical Technology Victoria, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Hayashi T, Yura F, Mada J, Kurihara H, Tokihiro T. Pattern formation of elliptic particles by two-body interactions: A model for dynamics of endothelial cells in angiogenesis. J Theor Biol 2022; 555:111300. [PMID: 36209900 DOI: 10.1016/j.jtbi.2022.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/18/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
A two-dimensional mathematical model for dynamics of endothelial cells in angiogenesis is investigated. Angiogenesis is a morphogenic process in which new blood vessels emerge from an existing vascular network. Recently a one-dimensional discrete dynamical model has been proposed to reproduce elongation, bifurcation, and cell motility such as cell-mixing during angiogenesis on the assumption of a simple two-body interaction between endothelial cells. The present model is its two-dimensional extension, where endothelial cells are represented as the ellipses with the two-body interactions: repulsive interaction due to excluded volume effect, attractive interaction through pseudopodia and rotation by contact. We show that the oblateness of ellipses and the magnitude of contact rotation significantly affect the shape of created vascular patterns and elongation of branches.
Collapse
Affiliation(s)
- Tatsuya Hayashi
- Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan.
| | - Fumitaka Yura
- School of Systems Information Science, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido, 041-8655, Japan
| | - Jun Mada
- College of Industrial Technology, Nihon University, 1-2-1, Izumi-cho, Narashino, Chiba, 275-8575, Japan
| | - Hiroki Kurihara
- Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Tokihiro
- Graduate School of Mathematical Science, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan.
| |
Collapse
|
7
|
Fan X, Muruganandan S, Shallie PD, Dhal S, Petitt M, Nayak NR. VEGF Maintains Maternal Vascular Space Homeostasis in the Mouse Placenta through Modulation of Trophoblast Giant Cell Functions. Biomolecules 2021; 11:1062. [PMID: 34356686 PMCID: PMC8301892 DOI: 10.3390/biom11071062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic growth factor that acts primarily on endothelial cells, but numerous studies suggest that VEGF also acts on non-endothelial cells, including trophoblast cells. Inhibition of VEGF signaling by excess production of the endogenous soluble VEGF receptor sFlt1 in trophoblast cells has been implicated in several pregnancy complications. Our previous studies and other reports have shown that VEGF directly regulates placental vascular development and functions and that excess VEGF production adversely affects placental vascular development. Trophoblast giant cells (TGCs) line the maternal side of the placental vasculature in mice and function like endothelial cells. In this study, we specifically examined the effect of excess VEGF signaling on TGC development associated with defective placental vascular development using two mouse models an endometrial VEGF overexpression model and a placenta-specific sFlt1 knockdown model. Placentas of endometrial VEGF-overexpressing dams at embryonic days (E) 11.5 and 14.5 showed dramatic enlargement of the venous maternal spaces in junctional zones. The size and number of the parietal TGCs that line these venous spaces in the placenta were also significantly increased. Although junctional zone venous blood spaces from control and VEGF-overexpressing dams were not markedly different in size at E17.5, the number and size of P-TGCs were both significantly increased in the placentas from VEGF-overexpressing dams. In sFlt1 knockdown placentas, however, there was a significant increase in the size of the sinusoidal TGC-lined, alkaline phosphatase-positive maternal blood spaces in the labyrinth. These results suggest that VEGF signaling plays an important role in maintaining the homeostasis of the maternal vascular space in the mouse placenta through modulation of TGC development and differentiation, similar to the effect of VEGF on endothelial cells in other vascular beds.
Collapse
Affiliation(s)
- Xiujun Fan
- Laboratory of Reproductive Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanmugam Muruganandan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.M.); (N.R.N.)
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Philemon D Shallie
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (P.D.S.); (S.D.); (M.P.)
| | - Sabita Dhal
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (P.D.S.); (S.D.); (M.P.)
| | - Matthew Petitt
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (P.D.S.); (S.D.); (M.P.)
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.M.); (N.R.N.)
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (P.D.S.); (S.D.); (M.P.)
| |
Collapse
|
8
|
Kisspeptin regulates the development of caprine primordial follicles in vitro. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Dakroub A, Nasser SA, Kobeissy F, Yassine HM, Orekhov A, Sharifi-Rad J, Iratni R, El-Yazbi AF, Eid AH. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J Cell Physiol 2021; 236:6282-6296. [PMID: 33634486 DOI: 10.1002/jcp.30345] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alexander Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon.,Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Faculty of Pharmacy, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Rykiel G, Gray M, Rongish B, Rugonyi S. Transient increase in VEGF-A leads to cardiac tube anomalies and increased risk of congenital heart malformations. Anat Rec (Hoboken) 2021; 304:2685-2702. [PMID: 33620155 DOI: 10.1002/ar.24605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays a critical role during early heart development. Clinical evidence shows that conditions associated with changes in VEGF signaling in utero are correlated with an increased risk of congenital heart defects (CHD) in newborns. However, how malformations develop after abnormal VEGF exposure is unknown. During embryogenesis, a primitive heart, consisting of an endocardial tube enveloped by a myocardial mantle, is the first organ to function. This tubular heart ultimately transforms into a four-chambered heart. To determine how a transient increase in VEGF prior to heart tube formation affects heart development leading to CHD, we applied exogenous VEGF or a control (vehicle) solution to quail embryos in ovo at Hamburger-Hamilton (HH) stage 8 (28-30 hr of incubation), right before heart tube formation. Light microscopy analysis of embryos re-incubated after treatment for 13 hrs (to approximately HH11/HH12) showed that increased VEGF leads to impaired heart tube elongation accompanied by diameter expansion. Micro-CT analysis of embryos re-incubated for 9 days (to approximately HH38), when the heart is fully formed, showed that VEGF treatment increased the rate of cardiac malformations in surviving embryos. Despite no sex differences in survival, female embryos were more likely to develop cardiac malformations. Our results further suggest that heart tube malformations after a transient increase in VEGF right before heart tube formation may be reversible, leading to normal hearts.
Collapse
Affiliation(s)
- Graham Rykiel
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - MacKenzie Gray
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Brenda Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Wang X, Bove AM, Simone G, Ma B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front Cell Dev Biol 2020; 8:599281. [PMID: 33304904 PMCID: PMC7701214 DOI: 10.3389/fcell.2020.599281] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play crucial roles in vasculogenesis and angiogenesis. Angiogenesis is an important mechanism in many physiological and pathological processes, and is involved in endothelial cell proliferation, migration, and survival, then leads to further tubulogenesis, and finally promotes formation of vessels. This series of signaling cascade pathways are precisely mediated by VEGF/VEGFR-2 system. The VEGF binding to the IgD2 and IgD3 of VEGFR-2 induces the dimerization of the receptor, subsequently the activation and trans-autophosphorylation of the tyrosine kinase, and then the initiation of the intracellular signaling cascades. Finally the VEGF-activated VEGFR-2 stimulates and mediates variety of signaling transduction, biological responses, and pathological processes in angiogenesis. Several crucial phosphorylated sites Tyr801, Try951, Try1175, and Try1214 in the VEGFR-2 intracellular domains mediate several key signaling processes including PLCγ-PKC, TSAd-Src-PI3K-Akt, SHB-FAK-paxillin, SHB-PI3K-Akt, and NCK-p38-MAPKAPK2/3 pathways. Based on the molecular structure and signaling pathways of VEGFR-2, the strategy of the VEGFR-2-targeted therapy should be considered to employ in the treatment of the VEGF/VEGFR-2-associated diseases by blocking the VEGF/VEGFR-2 signaling pathway, inhibiting VEGF and VEGFR-2 gene expression, blocking the binding of VEGF and VEGFR-2, and preventing the proliferation, migration, and survival of vascular endothelial cells expressing VEGFR-2.
Collapse
Affiliation(s)
- Xinrong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | | | | | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Munarin F, Kant RJ, Rupert CE, Khoo A, Coulombe KLK. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 2020; 251:120033. [PMID: 32388033 PMCID: PMC8115013 DOI: 10.1016/j.biomaterials.2020.120033] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Heart regeneration after myocardial infarction requires new cardiomyocytes and a supportive vascular network. Here, we evaluate the efficacy of localized delivery of angiogenic factors from biomaterials within the implanted muscle tissue to guide growth of a more dense, organized, and perfused vascular supply into implanted engineered human cardiac tissue on an ischemia/reperfusion injured rat heart. We use large, aligned 3-dimensional engineered tissue with cardiomyocytes derived from human induced pluripotent stem cells in a collagen matrix that contains dispersed alginate microspheres as local protein depots. Release of angiogenic growth factors VEGF and bFGF in combination with morphogen sonic hedgehog from the microspheres into the local microenvironment occurs from the epicardial implant site. Analysis of the 3D vascular network in the engineered tissue via Microfil® perfusion and microCT imaging at 30 days shows increased volumetric network density with a wider distribution of vessel diameters, proportionally increased branching and length, and reduced tortuosity. Global heart function is increased in the angiogenic factor-loaded cardiac implants versus sham. These findings demonstrate for the first time the efficacy of a combined remuscularization and revascularization therapy for heart regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Fabiola Munarin
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Cassady E Rupert
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Amelia Khoo
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Turner KR, Adams C, Staelens S, Deckmyn H, San Antonio J. Crucial Role for Endothelial Cell α2β1 Integrin Receptor Clustering in Collagen-Induced Angiogenesis. Anat Rec (Hoboken) 2019; 303:1604-1618. [PMID: 31581346 DOI: 10.1002/ar.24277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 11/07/2022]
Abstract
Angiogenesis is a crucial mechanism of vascular growth and regeneration that requires biosynthesis and cross-linking of collagens in vivo and is induced by collagen in vitro. Here, we use an in vitro model in which apical Type I collagen gels rapidly induce angiogenesis in endothelial monolayers. We extend previous studies demonstrating the importance of the endothelial α2β1 integrin, a key collagen receptor, in angiogenesis by investigating the roles of receptor clustering and conformational activation. Immunocytochemical localization of α2β1 integrins in endothelial monolayers showed a concentration of integrins along cell-cell borders. After inducing angiogenesis with collagen, the receptors redistributed to apical cell surfaces, aligning with collagen fibers, which were also redistributed during angiogenesis. Levels of conformationally activated α2β1 integrins were unchanged during angiogenesis and undetected on endothelial cells binding collagen in suspension. We mimicked the polyvalency of collagen fibrils using antibody-coated polystyrene beads to cluster endothelial cell surface α2β1 integrins, which induced rapid angiogenesis in the absence of collagen gels. Clustering of αvβ3 integrins and PECAM-1 but not of α1 integrins also induced angiogenesis. Soluble antibodies alone had no effect. Thus, the angiogenic property of collagen may reside in its ability to ligate and cluster cell surface receptors such as α2β1 integrins. Furthermore, synthetic substrates that promote the clustering of select endothelial cell surface receptors mimic the angiogenic properties of Type I collagen and may have applications in promoting vascularization of engineered tissues. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Kevin R Turner
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Christopher Adams
- Department of Anatomy, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Stephanie Staelens
- Agrosavfe NV, Ghent, Zwijnaarde, Belgium.,Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - James San Antonio
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Aleksandrova A, Filla MB, Kosa E, Little CD, Petersen A, Rongish BJ. Altered VEGF Signaling Leads to Defects in Heart Tube Elongation and Omphalomesenteric Vein Fusion in Quail Embryos. Anat Rec (Hoboken) 2018; 302:175-185. [PMID: 30299585 DOI: 10.1002/ar.23948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/11/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Formation of the endocardial and myocardial heart tubes involves precise cardiac progenitor sorting and tissue displacements from the primary heart field to the embryonic midline-a process that is dependent on proper formation of conjoining great vessels, including the omphalomesenteric veins (OVs) and dorsal aortae. Using a combination of vascular endothelial growth factor (VEGF) over- and under-activation, fluorescence labeling of cardiac progenitors (endocardial and myocardial), and time-lapse imaging, we show that altering VEGF signaling results in previously unreported myocardial, in addition to vascular and endocardial phenotypes. Resultant data show: (1) exogenous VEGF leads to truncated endocardial and myocardial heart tubes and grossly dilated OVs; (2) decreased levels of VEGF receptor 2 tyrosine kinase signaling result in a severe abrogation of the endocardial tube, dorsal aortae, and OVs. Surprisingly, only slightly altered myocardial tube fusion and morphogenesis is observed. We conclude that VEGF has direct effects on the VEGF receptor 2-bearing endocardial and endothelial precursors, and that altered vascular morphology of the OVs also indirectly results in altered myocardial tube formation. Anat Rec, 302:175-185, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anastasiia Aleksandrova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Michael B Filla
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Edina Kosa
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Alan Petersen
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| |
Collapse
|
15
|
Pereira MLM, Marinho CRF, Epiphanio S. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome? Front Cell Infect Microbiol 2018; 8:161. [PMID: 29868517 PMCID: PMC5964746 DOI: 10.3389/fcimb.2018.00161] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Malaria is a serious disease and was responsible for 429,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications of severe malaria; it is characterized by a high mortality rate and can even occur after antimalarial treatment when parasitemia is not detected. Rodent models of ALI/ARDS show similar clinical signs as in humans when the rodents are infected with murine Plasmodium. In these models, it was shown that the induction of the enzyme heme oxygenase 1 (HO-1) is protective against severe malaria complications, including cerebral malaria and ALI/ARDS. Increased lung endothelial permeability and upregulation of VEGF and other pro-inflammatory cytokines were found to be associated with malaria-associated ALI/ARDS (MA-ALI/ARDS), and both were reduced after HO-1 induction. Additionally, mice were protected against MA-ALI/ARDS after treatment with carbon monoxide- releasing molecules or with carbon monoxide, which is also released by the HO-1 activity. However, high HO-1 levels in inflammatory cells were associated with the respiratory burst of neutrophils and with an intensification of inflammation during episodes of severe malaria in humans. Here, we review the main aspects of HO-1 in malaria and ALI/ARDS, presenting the dual role of HO-1 and possibilities for therapeutic intervention by modulating this important enzyme.
Collapse
Affiliation(s)
- Marcelo L M Pereira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Buno KP, Chen X, Weibel JA, Thiede SN, Garimella SV, Yoder MC, Voytik-Harbin SL. In Vitro Multitissue Interface Model Supports Rapid Vasculogenesis and Mechanistic Study of Vascularization across Tissue Compartments. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21848-60. [PMID: 27136321 PMCID: PMC5007191 DOI: 10.1021/acsami.6b01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A significant challenge facing tissue engineers is the design and development of complex multitissue systems, including vascularized tissue-tissue interfaces. While conventional in vitro models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis (vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic vascularization strategies will likely rely on coordinated integration of both processes. To address this challenge, we developed a novel in vitro multitissue interface model in which human endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a surrounding tissue microenvironment. This highly reproducible approach exploits biphilic surfaces (nanostructured surfaces with distinct superhydrophobic and hydrophilic regions) to (i) support tissue compartments with user-specified matrix composition and physical properties as well as cell type and density and (ii) introduce boundary conditions that prevent the cell-mediated tissue contraction routinely observed with conventional three-dimensional monodispersion cultures. This multitissue interface model was applied to test the hypothesis that independent control of cell-extracellular matrix (ECM) and cell-cell interactions would affect vascularization within the tissue sphere as well as across the tissue-tissue interface. We found that high-cell-density tissue spheres containing 5 × 10(6) ECFCs/mL exhibit rapid and robust vasculogenesis, forming highly interconnected, stable (as indicated by type IV collagen deposition) vessel networks within only 3 days. Addition of adipose-derived stromal cells (ASCs) in the surrounding tissue further enhanced vasculogenesis within the sphere as well as angiogenic vessel elongation across the tissue-tissue boundary, with both effects being dependent on the ASC density. Overall, results show that the ECFC density and ECFC-ASC crosstalk, in terms of paracrine and mechanophysical signaling, are critical determinants of vascularization within a given tissue compartment and across tissue interfaces. This new in vitro multitissue interface model and the associated mechanistic insights it yields provide guiding principles for the design and optimization of multitissue vascularization strategies for research and clinical applications.
Collapse
Affiliation(s)
- Kevin P. Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xuemei Chen
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justin A. Weibel
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Stephanie N. Thiede
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suresh V. Garimella
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mervin C. Yoder
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sherry L. Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Corresponding Author:. Phone: (765) 496-6128. Address: Martin C. Jischke Hall of Biomedical Engineering, Room 3033, 206 South Martin Jischke Drive, West Lafayette, IN 47907-2032, U.S.A
| |
Collapse
|
17
|
Regmi S, Jeong JH. Superiority of three-dimensional stem cell clusters over monolayer culture: An archetype to biological application. Macromol Res 2016. [DOI: 10.1007/s13233-016-4107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Xiao B, Zhou X, Ye M, Lv S, Wu M, Liao C, Han L, Kang C, Zhu X. MicroRNA‑566 modulates vascular endothelial growth factor by targeting Von Hippel‑Landau in human glioblastoma in vitro and in vivo. Mol Med Rep 2015; 13:379-85. [PMID: 26572705 DOI: 10.3892/mmr.2015.4537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 09/22/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are able to function as either oncogenes or tumor suppressor genes in tumorigenesis, and have been proposed as novel targets for anticancer treatment. It has previously been suggested that miRNAs have important roles in the initiation and progression of glioblastoma; however, the effects of miR‑566 in glioblastoma are currently unclear. The present study aimed to demonstrate that miR-566 can modulate vascular endothelial growth factor (VEGF) by targeting Von Hippel‑Lindau (VHL) in glioblastoma in vitro and in vivo by inhibiting the expression of miR-566. Glioblastoma is a highly vascularized tumor, which exhibits increased expression of angiogenic factors, including VEGF, which are crucial in the process of glioblastoma angiogenesis. Existing research has demonstrated that VHL is a tumor suppressor gene that is associated with various tumors. In addition, VHL is able to regulate the expression of VEGF by promoting the degradation of hypoxia‑inducible factor‑1α via ubiquitination. It has been predicted, using bioinformatics, that the VHL gene is regulated by miR‑566. Therefore, the present study hypothesized that miR‑566 may regulate VEGF expression by targeting VHL during the angiogenic process of glioblastoma multiforme. The results of the present study demonstrated that inhibition of miR‑566 expression increases the expression levels of VHL, decreases the expression levels of VEGF, and inhibits the invasive and migratory abilities of glioblastoma. In addition, VHL was identified as a functional target of miR‑566.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xuan Zhou
- Department of Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Minhua Ye
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Changchun Liao
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro‑Oncology, Tianjin 300052, P.R. China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro‑Oncology, Tianjin 300052, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Xu M, Xu H, Qin Z, Zhang J, Yang X, Xu F. Increased expression of angiogenic factors in cultured human brain arteriovenous malformation endothelial cells. Cell Biochem Biophys 2015; 70:443-7. [PMID: 24771337 DOI: 10.1007/s12013-014-9937-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To compare the mRNA level of angiogenic factor vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, and MMP-9 in cultured human brain arteriovenous malformation (AVM) endothelial cells (ECs) and normal brain endothelial cells (BECs). Tissue explants both from deformed vessels of AVM and normal microvessel were put into culture for endothelial cells. After the monolayer adherent ECs reached confluence, they were tested with endothelial specific marker CD34 and von Willebrand factor (vWF) by immunochemical assay. mRNA levels of VEGF-A, MMP-2, and MMP-9 in AVM endothelial cells (AVMECs) and BECs were measured by PCR. Immunostaining confirmed that more than 95 % of the cultured cells were CD34 (Fig. 1b) and/or vWF positive. Expression levels of VEGF-A and MMP-2 mRNAs were significantly higher in AVMECs than in BECs. The MMP-9 level was also increased in AVMECs, but the difference was not statistically significant. Vascular tissue explants adherent method is a better approach for isolation and culture of AVMECs. Cultured AVMECs expressed higher angiogenic factors (VEGF, MMP-2) than the controlled BECs, implicating angiogenesis plays an important role in the pathogenesis of AVM.
Collapse
Affiliation(s)
- Ming Xu
- Department of Anesthesiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Scianna M. An extended Cellular Potts Model analyzing a wound healing assay. Comput Biol Med 2015; 62:33-54. [DOI: 10.1016/j.compbiomed.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 02/04/2023]
|
21
|
García S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. LAB ON A CHIP 2015; 15:2606-14. [PMID: 25977997 DOI: 10.1039/c5lc00140d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological function is influenced by a synergy between chemical concentration and extracellular matrix stiffness is largely unknown, however, because no current strategy enables the integration of both types of cues in a single experiment. Here we present a robust microfluidic device that generates a stable, linear and diffusive chemical gradient over a biocompatible hydrogel with a well-defined stiffness gradient. Device fabrication relies on patterned PSA (Pressure Sensitive Adhesive) stacks that can be implemented with minimal cost and lab equipment. This technique is suitable for long-term observation of cell migration and application of traction force microscopy. We validate our device by testing MDCK cell scattering in response to perpendicular gradients of hepatocyte growth factor (HGF) and substrate stiffness.
Collapse
Affiliation(s)
- S García
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Santos JM, Camões SP, Filipe E, Cipriano M, Barcia RN, Filipe M, Teixeira M, Simões S, Gaspar M, Mosqueira D, Nascimento DS, Pinto-do-Ó P, Cruz P, Cruz H, Castro M, Miranda JP. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther 2015; 6:90. [PMID: 25956381 PMCID: PMC4448539 DOI: 10.1186/s13287-015-0082-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/19/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. Methods A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. Results UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM2D-treated wounds in vivo. Although CM2D proved to be beneficial, CM3D-treated wounds revealed a completely regenerated tissue by day 14 after excisions, with a more mature vascular system already showing glands and hair follicles. Conclusions This work unravels an important alternative to the use of cells in the final formulation of advanced therapy medicinal products by providing a proof of concept that a reproducible system for the production of UCX®-conditioned medium can be used to prime a secretome for eventual clinical applications. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0082-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge M Santos
- ECBio - Investigação e Desenvolvimento em Biotecnologia S.A., Rua Henrique Paiva Couceiro, N° 27, 2700-451, Amadora, Portugal.
| | - Sérgio P Camões
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Elysse Filipe
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Madalena Cipriano
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Rita N Barcia
- ECBio - Investigação e Desenvolvimento em Biotecnologia S.A., Rua Henrique Paiva Couceiro, N° 27, 2700-451, Amadora, Portugal.
| | - Mariana Filipe
- ECBio - Investigação e Desenvolvimento em Biotecnologia S.A., Rua Henrique Paiva Couceiro, N° 27, 2700-451, Amadora, Portugal.
| | - Mariana Teixeira
- ECBio - Investigação e Desenvolvimento em Biotecnologia S.A., Rua Henrique Paiva Couceiro, N° 27, 2700-451, Amadora, Portugal.
| | - Sandra Simões
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Manuela Gaspar
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Diogo Mosqueira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, N° 823, 4150-180, Porto, Portugal.
| | - Diana S Nascimento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, N° 823, 4150-180, Porto, Portugal.
| | - Perpétua Pinto-do-Ó
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, N° 823, 4150-180, Porto, Portugal. .,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal. .,Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, 75015, France.
| | - Pedro Cruz
- ECBio - Investigação e Desenvolvimento em Biotecnologia S.A., Rua Henrique Paiva Couceiro, N° 27, 2700-451, Amadora, Portugal.
| | - Helder Cruz
- ECBio - Investigação e Desenvolvimento em Biotecnologia S.A., Rua Henrique Paiva Couceiro, N° 27, 2700-451, Amadora, Portugal.
| | - Matilde Castro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Joana P Miranda
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
23
|
Costa EVL, Nogueira RDA. Multifractal dimension and lacunarity of yolk sac vasculature after exposure to magnetic field. Microvasc Res 2015; 99:1-7. [DOI: 10.1016/j.mvr.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 01/05/2023]
|
24
|
Czajka CA, Drake CJ. Self-assembly of prevascular tissues from endothelial and fibroblast cells under scaffold-free, nonadherent conditions. Tissue Eng Part A 2014; 21:277-87. [PMID: 25076018 DOI: 10.1089/ten.tea.2014.0183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To advance the emerging field of bioengineered prevascularized tissues, we investigated factors that control primary vascular network formation in scaffold-free, high-density cell suspension-derived tissues. Fabricating primary vascular networks in a scaffold-free system requires endothelial cells (ECs) and extracellular matrix (ECM)-producing cells that act together to elaborate a permissive matrix. We report findings on the effects to vascular patterning induced by altering the ratio of human endothelial to human fibroblast cells. Analysis revealed that a 1:4 ratio of ECs to fibroblasts resulted in the synthesis of an ECM permissive for organization of primary vascular networks that recapitulated the pattern of primary vascular networks observed in vivo. Importantly this work highlighted the significance of tension in the organization of vascular networks in prevascularized tissues. To our knowledge our in vitro studies are the first to demonstrate the formation of two distinct vascular patterns in an initially homogenous culture system. Specifically, we demonstrate that within our constructs, vascular networks formed with distinct directional orientations that reflect self-assembly-mediated tension. Further, our studies demonstrate that treatment of prevascularized tissues with matrix-promoting factors such as transforming growth factor beta 1 (TGFβ1) increases tissue strength without altering vascular network patterning. Together, the ability to generate prevascularized tissues from human cells in scaffold-free systems and the ability to enhance the strength of the constructs with matrix-promoting factors represent advances to the potential translational utility of prevascularized tissues both as subcutaneous implants and in surgical scenarios requiring the application of tension to the tissue construct.
Collapse
Affiliation(s)
- Caitlin A Czajka
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, South Carolina
| | | |
Collapse
|
25
|
Expression of protease-activated receptor 1 and 2 and anti-tubulogenic activity of protease-activated receptor 1 in human endothelial colony-forming cells. PLoS One 2014; 9:e109375. [PMID: 25289673 PMCID: PMC4188577 DOI: 10.1371/journal.pone.0109375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell (hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2, which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the addition of VEGF (50-100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25-100 ng/ml) rescued tube formation by ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link between adult vasculogenesis and the coagulation cascade.
Collapse
|
26
|
Abbasi O, Mashayekhi F, Mirzajani E, Fakhriyeh Asl S, Mahmoudi T, Saeedi Saedi H. Soluble VEGFR1 concentration in the serum of patients with colorectal cancer. Surg Today 2014; 45:215-20. [PMID: 24676933 DOI: 10.1007/s00595-014-0886-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/14/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE VEGFR is involved in complex biological processes, including inflammation and cancer development, progression and metastasis. Many proteins, including VEGFR, are proteolytically released from the surface of cells by a process known as ectodomain shedding. The aim of this study was to assess the expression of soluble VEGFR1 (sVEGFR1) in the serum of patients with colorectal cancer (CRC). METHODS Sixty-two serum samples from healthy controls and 88 samples from patients with different stages of CRC were included in this study. The total protein concentration (TPC) was measured using a Bio-Rad protein assay, and the expression and concentration of sVEGFR1 was determined by a Western blot analysis and enzyme-linked immunosorbent assay, respectively. RESULTS No significant difference in the serum TPC of patients with and without CRC was seen. The relative s-VEGFR1 expression and concentration of sVEGFR1 in the serum of patients with CRC were significantly increased compared to those in controls (P < 0.001). CONCLUSIONS The results of this study suggest that VEGFR1 shedding may provide a reliable and practical indicator of the malignant potential, tumor progression and overall tumor burden. The findings also suggest that sVEGFR1 might be involved in the pathophysiology of CRC, and the detection of serum sVEGFR1 may be useful in classifying CRC.
Collapse
Affiliation(s)
- Oranus Abbasi
- Department of Cell and Molecular Biology, Pardis International, University of Guilan, Rasht, Iran
| | | | | | | | | | | |
Collapse
|
27
|
Scianna M, Bell C, Preziosi L. A review of mathematical models for the formation of vascular networks. J Theor Biol 2013; 333:174-209. [DOI: 10.1016/j.jtbi.2013.04.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023]
|
28
|
Saito T, Takeda N, Amiya E, Nakao T, Abe H, Semba H, Soma K, Koyama K, Hosoya Y, Imai Y, Isagawa T, Watanabe M, Manabe I, Komuro I, Nagai R, Maemura K. VEGF-A induces its negative regulator, soluble form of VEGFR-1, by modulating its alternative splicing. FEBS Lett 2013; 587:2179-85. [PMID: 23711375 DOI: 10.1016/j.febslet.2013.05.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor-A (VEGF-A) is one of the major angiogenic factors, and its actions are primarily mediated through its two membrane receptors, VEGFR-1 and VEGFR-2. A soluble form of VEGFR-1 (sVEGFR-1) sequesters the free form of VEGF-A, and acts as a potent anti-angiogenic factor. While sVEGFR-1 is synthesized as a splice variant of VEGF-R1 gene, the interactions between VEGF-A and sVEGFR-1 remain largely unknown. Here, we show that VEGF-A upregulates sVEGF-R1 expression in human vascular endothelial cells but leaves full-length VEGF-R1 expression unchanged, and that this induction was dependent on the VEGFR-2-protein kinase C-MEK signaling pathway. The VEGF-A-induced sVEGFR-1 upregulation can operate as a negative feedback system, which if modulated can become a novel therapeutic target for regulating pathological angiogenesis.
Collapse
Affiliation(s)
- Tetsuya Saito
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Palm MM, Merks RMH. Vascular networks due to dynamically arrested crystalline ordering of elongated cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012725. [PMID: 23410377 DOI: 10.1103/physreve.87.012725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/29/2012] [Indexed: 06/01/2023]
Abstract
Recent experimental and theoretical studies suggest that crystallization and glass-like solidification are useful analogies for understanding cell ordering in confluent biological tissues. It remains unexplored how cellular ordering contributes to pattern formation during morphogenesis. With a computational model we show that a system of elongated, cohering biological cells can get dynamically arrested in a network pattern. Our model provides an explanation for the formation of cellular networks in culture systems that exclude intercellular interaction via chemotaxis or mechanical traction.
Collapse
|
30
|
Wang CH, Kang ST, Yeh CK. Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis. Biomaterials 2012; 34:1852-61. [PMID: 23219326 DOI: 10.1016/j.biomaterials.2012.11.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/20/2012] [Indexed: 12/19/2022]
Abstract
Ultrasound-triggered acoustic droplet vaporization (ADV) has been reported as a mechanical and chemical theranostic strategy for tumor treatment. However, targeting of sufficient amounts of droplets to solid tumors to direct effective mechanical force toward tumor cells remains a major challenge. In this study, we incorporated superparamagnetic iron oxide (SPIO) nanoparticles into acoustic droplets to allow both magnetism-assisted targeting and magnetic resonance (MR)-guided ultrasound-triggered ADV. The multi-functionality of these droplets was further increased by co-encapsulation of the chemotherapeutic drug doxorubicin (DOX) and surface conjugation of anti-vascular endothelial growth factor receptor 2 antibody, to serve as an additional targeting moiety. Maximum loading capacities of 7.69 mg SPIO and 1.53 mg DOX per mL were achieved, and magnetic properties were characterized by determination of magnetic hysteresis curves and transverse relaxation rates. In vitro and in vivo MR imaging demonstrated the feasibility of dual modal imaging of SPIO-embedded droplets. Finally, a vessel-mimicking phantom model with live C6 glioma cells was used to demonstrate a 5.4-fold improvement in targeting efficacy by magnetism-assisted targeting of the SPIO-embedded droplets, and effective disruption of cells by insonation-induced ADV, suggesting the potential of developing this system for future clinical applications.
Collapse
Affiliation(s)
- Chung-Hsin Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | |
Collapse
|
31
|
Goldie LC, Nix MK, Hirschi KK. Embryonic vasculogenesis and hematopoietic specification. Organogenesis 2012; 4:257-63. [PMID: 19337406 DOI: 10.4161/org.4.4.7416] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/15/2007] [Indexed: 01/13/2023] Open
Abstract
Vasculogenesis is the process by which blood vessels are formed de novo. In mammals, vasculogenesis occurs in parallel with hematopoiesis, the formation of blood cells. Thus, it is debated whether vascular endothelial cells and blood cells are derived from a common progenitor. Whether or not this is the case, there certainly is commonality among regulatory factors that control the differentiation and differentiated function of both cell lineages. VEGF is a major regulator of both cell types and plays a critical role, in coordination with other signaling pathways and transcriptional regulators, in controlling the differentiation and behavior of endothelial and blood cells during early embryonic development, as further discussed herein.
Collapse
Affiliation(s)
- Lauren C Goldie
- Department of Pediatrics and Molecular and Cellular Biology; Children's Nutrition Research Center; Center for Cell and Gene Therapy; Baylor College of Medicine; Houston, Texas USA
| | | | | |
Collapse
|
32
|
Biedka M, Makarewicz R, Kopczyńska E, Marszałek A, Goralewska A, Kardymowicz H. Angiogenesis and lymphangiogenesis as prognostic factors after therapy in patients with cervical cancer. Contemp Oncol (Pozn) 2012; 16:6-11. [PMID: 23788848 PMCID: PMC3687378 DOI: 10.5114/wo.2012.27330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 04/02/2011] [Accepted: 07/25/2011] [Indexed: 01/16/2023] Open
Abstract
AIM OF THE STUDY This retrospective study attempts to evaluate the influence of serum vascular endothelial growth factor C (VEGF-C), microvessel density (MVD) and lymphatic vessel density (LMVD) on the result of tumour treatment in women with cervical cancer. MATERIAL AND METHODS The research was carried out in a group of 58 patients scheduled for brachytherapy for cervical cancer. All women were patients of the Department and University Hospital of Oncology and Brachytherapy, Collegium Medicum in Bydgoszcz of Nicolaus Copernicus University in Toruń. VEGF-C was determined by means of a quantitative sandwich enzyme immunoassay using a human antibody VEGF-C ELISA produced by Bender MedSystem, enzyme-linked immunosorbent detecting the activity of human VEGF-C in body fluids. The measure for the intensity of angiogenesis and lymphangiogenesis in immunohistochemical reactions is the number of blood vessels within the tumour. Statistical analysis was done using Statistica 6.0 software (StatSoft, Inc. 2001). The Cox proportional hazards model was used for univariate and multivariate analyses. Univariate analysis of overall survival was performed as outlined by Kaplan and Meier. In all statistical analyses p < 0.05 (marked red) was taken as significant. RESULTS In 51 patients who showed up for follow-up examination, the influence of the factors of angiogenesis, lymphangiogenesis, patients' age and the level of haemoglobin at the end of treatment were assessed. Selected variables, such as patients' age, lymph vessel density (LMVD), microvessel density (MVD) and the level of haemoglobin (Hb) before treatment were analysed by means of Cox logical regression as potential prognostic factors for lymph node invasion. The observed differences were statistically significant for haemoglobin level before treatment and the platelet number after treatment. The study revealed the following prognostic factors: lymph node status, FIGO stage, and kind of treatment. No statistically significant influence of angiogenic and lymphangiogenic factors on the prognosis was found. CONCLUSION Angiogenic and lymphangiogenic factors have no value in predicting response to radiotherapy in cervical cancer patients.
Collapse
Affiliation(s)
- Marta Biedka
- Chair and Clinic of Oncology and Brachytherapy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Radiotherapy Department I, Oncology Centre, Bydgoszcz, Poland
| | - Roman Makarewicz
- Chair and Clinic of Oncology and Brachytherapy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Kopczyńska
- Chair and Department of Pathobiochemistry and Chemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej Marszałek
- Chair and Department of Clinical Pathomorphology, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Chair and Department of Clinical Pathomorphology, Poznan University of Medical Sciences, Poland
| | | | | |
Collapse
|
33
|
Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 2012; 3:671. [PMID: 22334074 DOI: 10.1038/ncomms1668] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 01/09/2012] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that cytoplasmic actin filaments are essential factors in the modulation of nuclear shape and function. However, the mechanistic understanding of the internal orchestration between cell and nuclear shape is still lacking. Here we show that orientation and deformation of the nucleus are regulated by lateral compressive forces driven by tension in central actomyosin fibres. By using a combination of micro-manipulation tools, our study reveals that tension in central stress fibres is gradually generated by anisotropic force contraction dipoles, which expand as the cell elongates and spreads. Our findings indicate that large-scale cell shape changes induce a drastic condensation of chromatin and dramatically affect cell proliferation. On the basis of these findings, we propose a simple mechanical model that quantitatively accounts for our experimental data and provides a conceptual framework for the mechanistic coordination between cell and nuclear shape.
Collapse
|
34
|
Czirok A, Rongish BJ, Little CD. Vascular Network Formation in Expanding versus Static Tissues: Embryos and Tumors. Genes Cancer 2011; 2:1072-80. [PMID: 22866198 PMCID: PMC3411129 DOI: 10.1177/1947601911426774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this perspectives article, we review scientific literature regarding de novo formation of vascular networks within tissues undergoing a significant degree of motion. Next, we contrast dynamic pattern formation in embryos to the vascularization of relatively static tissues, such as the retina. We argue that formation of primary polygonal vascular networks is an emergent process, which is regulated by biophysical mechanisms. Dynamic empirical data, derived from quail embryos, show that vascular beds readily form within a moving extracellular matrix (ECM) microenvironment-which we analogize to the de novo vascularization of small rapidly growing tumors. Our perspective is that the biophysical rules, which govern cell motion during vasculogenesis, may hold important clues to understanding how the first vessels form in certain malignancies.
Collapse
Affiliation(s)
- Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Brenda J. Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Charles D. Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Garriock RJ, Mikawa T. Early arterial differentiation and patterning in the avian embryo model. Semin Cell Dev Biol 2011; 22:985-92. [PMID: 22020129 DOI: 10.1016/j.semcdb.2011.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 01/04/2023]
Abstract
Of the many models to study vascular biology the avian embryo remains an informative and powerful model system that has provided important insights into endothelial cell recruitment, assembly and remodeling during development of the circulatory system. This review highlights several discoveries in the avian system that show how arterial patterning is regulated using the model of dorsal aortae development along the embryo midline during gastrulation and neurulation. These discoveries were made possible through spatially and temporally controlled gain-of-function experiments that provided direct evidence that BMP signaling plays a pivotal role in vascular recruitment, patterning and remodeling and that Notch-signaling recruits vascular precursor cells to the dorsal aortae. Importantly, BMP ligands are broadly expressed throughout embryos but BMP signaling activation region is spatially defined by precisely regulated expression of BMP antagonists. These discoveries provide insight into how signaling, both positive and negative, regulate vascular patterning. This review also illustrates similarities of early arterial patterning along the embryonic midline in amniotes both avian and mammalians including human, evolutionarily specialized from non-amniotes such as fish and frog.
Collapse
|
36
|
Scianna M. A Multiscale Hybrid Model for Pro-angiogenic Calcium Signals in a Vascular Endothelial Cell. Bull Math Biol 2011; 74:1253-91. [DOI: 10.1007/s11538-011-9695-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 09/06/2011] [Indexed: 01/07/2023]
|
37
|
Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One 2011; 6:e24175. [PMID: 21949696 PMCID: PMC3176223 DOI: 10.1371/journal.pone.0024175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
Abstract
During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF) is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM). Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling.
Collapse
|
38
|
Moran CM, Salanga MC, Krieg PA. Hedgehog signaling regulates size of the dorsal aortae and density of the plexus during avian vascular development. Dev Dyn 2011; 240:1354-64. [PMID: 21384473 DOI: 10.1002/dvdy.22600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 12/13/2022] Open
Abstract
Signaling by the hedgehog (Hh) family of secreted growth factors is essential for development of embryonic blood vessels. Embryos lacking Hh function have abundant endothelial cells but fail to assemble vascular cords or lumenized endothelial tubes. However, the role of Hh signaling during later aspects of vascular patterning and morphogenesis is largely unexplored. We have used small molecule inhibitors and agonists to alter activity of the Hh signaling pathway in the chick embryo. When cyclopamine is added after cord formation, aortal cells form tubes, but these are small and disorganized and the density of the adjacent vascular plexus is reduced. Activation of the Hh pathway with SAG leads to formation of enlarged aortae and increased density of the plexus. The number of endothelial cell filopodia is found to correlate with Hh signaling levels. These studies show that Hh signaling levels must be tightly regulated for normal vascular patterning to be achieved.
Collapse
Affiliation(s)
- Carlos M Moran
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
39
|
Scianna M, Munaron L. Multiscale model of tumor-derived capillary-like network formation. ACTA ACUST UNITED AC 2011. [DOI: 10.3934/nhm.2011.6.597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Argraves KM, Wilkerson BA, Argraves WS. Sphingosine-1-phosphate signaling in vasculogenesis and angiogenesis. World J Biol Chem 2010; 1:291-7. [PMID: 21537462 PMCID: PMC3083932 DOI: 10.4331/wjbc.v1.i10.291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/29/2010] [Accepted: 09/05/2010] [Indexed: 02/05/2023] Open
Abstract
Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses.
Collapse
Affiliation(s)
- Kelley M Argraves
- Kelley M Argraves, Brent A Wilkerson, W Scott Argraves, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | | | | |
Collapse
|
41
|
Nguyen PD, Tutela JP, Thanik VD, Knobel D, Allen RJ, Chang CC, Levine JP, Warren SM, Saadeh PB. Improved diabetic wound healing through topical silencing of p53 is associated with augmented vasculogenic mediators. Wound Repair Regen 2010; 18:553-9. [PMID: 20955346 DOI: 10.1111/j.1524-475x.2010.00638.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diabetes is characterized by several poorly understood phenomena including dysfunctional wound healing and impaired vasculogenesis. p53, a master cell cycle regulator, is upregulated in diabetic wounds and has recently been shown to play a regulatory roles in vasculogenic pathways. We have previously described a novel method to topically silence target genes in a wound bed with small interfering (si)RNA. We hypothesized that silencing p53 results in improved diabetic wound healing and augmentation of vasculogenic mediators. Paired 4-mm stented wounds were created on diabetic db/db mice. Topically applied p53 siRNA, evenly distributed in an agarose matrix, was applied to wounds at postwound day 1 and 7 (matrix alone and nonsense siRNA served as controls). Animals were sacrificed at postwound days 10 and 24. Wound time to closure was photometrically assessed, and wounds were harvested for histology, immunohistochemistry, and immunofluorescence. Vasculogenic cytokine expression was evaluated via Western blot, reverse transcription-polymerase chain reaction, and enzyme-linked immunosorbent assay. The ANOVA/t-test was used to determine significance (p≤ 0.05). Local p53 silencing resulted in faster wound healing with wound closure at 18±1.3 d in the treated group vs. 28±1.0 d in controls. The treated group demonstrated improved wound architecture at each time point while demonstrating near-complete local p53 knockdown. Moreover, treated wounds showed a 1.92-fold increase in CD31 endothelial cell staining over controls. Western blot analysis confirmed near-complete p53 knockdown in treated wounds. At day 10, VEGF secretion (enzyme-linked immunosorbent assay) was significantly increased in treated wounds (109.3±13.9 pg/mL) vs. controls (33.0±3.8 pg/mL) while reverse transcription-polymerase chain reaction demonstrated a 1.86-fold increase in SDF-1 expression in treated wounds vs. controls. This profile was reversed after the treated wounds healed and before closure of controls (day 24). Augmented vasculogenic cytokine profile and endothelial cell markers are associated with improved diabetic wound healing in topical gene therapy with p53 siRNA.
Collapse
Affiliation(s)
- Phuong D Nguyen
- Institute of Reconstructive Plastic Surgery, New York University Langone Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Recent advances have documented the development of lung vasculature before and after birth, but less is known of the growth and maturation of airway vasculature. We sought to determine whether airway vasculature changes during the perinatal period and when the typical adult pattern develops. On embryonic day 16.5 mouse tracheas had a primitive vascular plexus unlike the adult airway vasculature, but instead resembling the yolk sac vasculature. Soon after birth (P0), the primitive vascular plexus underwent abrupt and extensive remodeling. Blood vessels overlying tracheal cartilage rings regressed from P1 to P3 but regrew from P4 to P7 to form the hierarchical, segmented, ladder-like adult pattern. Hypoxia and HIF-1α were present in tracheal epithelium over vessels that survived but not where they regressed. These findings reveal the plasticity of airway vasculature after birth and show that these vessels can be used to elucidate factors that promote postnatal vascular remodeling and maturation.
Collapse
Affiliation(s)
- Amy Ni
- Cardiovascular Research Institute, Comprehensive Cancer Center, Department of Anatomy, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
43
|
High-yield expression of human vascular endothelial growth factor VEGF165 in Escherichia coli and purification for therapeutic applications. Protein Expr Purif 2010; 72:184-93. [DOI: 10.1016/j.pep.2010.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 11/18/2022]
|
44
|
Endothelial cell-specific chemotaxis receptor (ecscr) promotes angioblast migration during vasculogenesis and enhances VEGF receptor sensitivity. Blood 2010; 115:4614-22. [PMID: 20086248 DOI: 10.1182/blood-2009-10-248856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelial cell-specific chemotaxis receptor (ECSCR) is a cell surface protein expressed by blood endothelial cells with roles in endothelial cell migration and signal transduction. We investigated the function of ecscr in the development of the zebrafish vasculature. Zebrafish ecscr is expressed in angioblasts and in axial vessels during angioblast migration and vasculogenesis. Morpholino-directed ecscr knockdown resulted in defective angioblast migration in the posterior lateral plate mesoderm, a process known to depend on vascular endothelial-derived growth factor (VEGF). In cultured cells, transfected ECSCR localized to actin-rich membrane protrusions, colocalizing with kinase insert domain protein receptor (KDR)/VEGF receptor 2 in these regions. ECSCR-silenced cells show reduced VEGF-induced phosphorylation of KDR but not of FMS-like tyrosine kinase 1 (FLT1)/VEGF receptor 1. Finally, chemical inhibition of VEGF receptor activity in zebrafish resulted in angioblast deficiencies that partially overlap with those seen in ecscr morphants. We propose that ecscr promotes migration of zebrafish angioblasts by enhancing endothelial kdr sensitivity to VEGF.
Collapse
|
45
|
McLennan R, Teddy JM, Kasemeier-Kulesa JC, Romine MH, Kulesa PM. Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo. Dev Biol 2009; 339:114-25. [PMID: 20036652 DOI: 10.1016/j.ydbio.2009.12.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/21/2009] [Accepted: 12/16/2009] [Indexed: 01/13/2023]
Abstract
The neural crest is an excellent model to study embryonic cell migration, since cell behaviors can be studied in vivo with advanced optical imaging and molecular intervention. What is unclear is how molecular signals direct neural crest cell (NCC) migration through multiple microenvironments and into specific targets. Here, we tested the hypothesis that the invasion of cranial NCCs, specifically the rhombomere 4 (r4) migratory stream into branchial arch 2 (ba2), is due to chemoattraction through neuropilin-1-vascular endothelial growth factor (VEGF) interactions. We found that the spatio-temporal expression pattern of VEGF in the ectoderm correlated with the NCC migratory front. RT-PCR analysis of the r4 migratory stream showed that ba2 tissue expressed VEGF and r4 NCCs expressed VEGF receptor 2. When soluble VEGF receptor 1 (sVEGFR1) was injected distal to the r4 migratory front, to bind up endogenous VEGF, NCCs failed to completely invade ba2. Time-lapse imaging revealed that cranial NCCs were attracted to ba2 tissue or VEGF sources in vitro. VEGF-soaked beads or VEGF-expressing cells placed adjacent to the r4 migratory stream caused NCCs to divert from stereotypical pathways and move towards an ectopic VEGF source. Our results suggest a model in which NCC entry and invasion of ba2 is dependent on chemoattractive signaling through neuropilin-1-VEGF interactions.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
46
|
Xu K, Chong DC, Rankin SA, Zorn AM, Cleaver O. Rasip1 is required for endothelial cell motility, angiogenesis and vessel formation. Dev Biol 2009; 329:269-79. [PMID: 19272373 PMCID: PMC2683470 DOI: 10.1016/j.ydbio.2009.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/27/2023]
Abstract
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.
Collapse
Affiliation(s)
- Ke Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Diana C. Chong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Scott A. Rankin
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| |
Collapse
|
47
|
Eshkar-Oren I, Viukov SV, Salameh S, Krief S, Oh CD, Akiyama H, Gerber HP, Ferrara N, Zelzer E. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 2009; 136:1263-72. [DOI: 10.1242/dev.034199] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Limb development constitutes a central model for the study of tissue and organ patterning; yet, the mechanisms that regulate the patterning of limb vasculature have been left understudied. Vascular patterning in the forming limb is tightly regulated in order to ensure sufficient gas exchange and nutrient supply to the developing organ. Once skeletogenesis is initiated,limb vasculature undergoes two seemingly opposing processes: vessel regression from regions that undergo mesenchymal condensation; and vessel morphogenesis. During the latter, vessels that surround the condensations undergo an extensive rearrangement, forming a stereotypical enriched network that is segregated from the skeleton. In this study, we provide evidence for the centrality of the condensing mesenchyme of the forming skeleton in regulating limb vascular patterning. Both Vegf loss- and gain-of-function experiments in limb bud mesenchyme firmly established VEGF as the signal by which the condensing mesenchyme regulates the vasculature. Normal vasculature observed in limbs where VEGF receptors Flt1, Flk1, Nrp1 and Nrp2 were blocked in limb bud mesenchyme suggested that VEGF, which is secreted by the condensing mesenchyme, regulates limb vasculature via a direct long-range mechanism. Finally, we provide evidence for the involvement of SOX9 in the regulation of Vegf expression in the condensing mesenchyme. This study establishes Vegf expression in the condensing mesenchyme as the mechanism by which the skeleton patterns limb vasculature.
Collapse
Affiliation(s)
- Idit Eshkar-Oren
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Sergey V. Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Sharbel Salameh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Chun-do Oh
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Haruhiko Akiyama
- Department of Orthopaedics, Kyoto University, Kyoto 606-8507, Japan
| | | | | | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| |
Collapse
|
48
|
Jabbour MN, Elder JB, Samuelson CG, Khashabi S, Hofman FM, Giannotta SL, Liu CY. ABERRANT ANGIOGENIC CHARACTERISTICS OF HUMAN BRAIN ARTERIOVENOUS MALFORMATION ENDOTHELIAL CELLS. Neurosurgery 2009; 64:139-46; discussion 146-8. [PMID: 19145162 DOI: 10.1227/01.neu.0000334417.56742.24] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
OBJECTIVE
To identify and characterize the phenotypic and functional differences of endothelial cells derived from cerebral arteriovenous malformations (AVM), as compared with endothelial cells derived from a normal brain.
METHODS
Isolated AVM brain endothelial cells and control brain endothelial cells were evaluated immunohistochemically for expression of the endothelial cell markers von Willebrand factor and CD31, as well as angiogenic factors including vascular endothelial growth factor A, interleukin-8, and endothelin-1. Vascular endothelial growth factor receptors 1 and 2 were also evaluated using immunohistochemistry techniques. Functional assays evaluated cell proliferation, cytokine production, tubule formation, and cell migration using the modified Boyden chamber technique.
RESULTS
Endothelial cells derived from AVMs expressed high levels of vascular endothelial growth factor A and significantly overexpressed the vascular endothelial growth factor receptors 1 and 2 (P < 0.05), as compared with control endothelial cells. In addition, comparison to control brain endothelial cells demonstrated that AVM brain endothelial cells proliferated faster, migrated more quickly, and produced aberrant tubule-like structures.
CONCLUSION
Endothelial cells derived from cerebral AVMs are highly activated cells overexpressing proangiogenic growth factors and exhibiting abnormal functions consistent with highly activated endothelial cells.
Collapse
Affiliation(s)
- Mark N. Jabbour
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James B. Elder
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Shabnam Khashabi
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Florence M. Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Steven L. Giannotta
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Charles Y. Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
49
|
Abstract
Over the past two decades, a number of mathematical and computational models have been developed to study different aspects of angiogenesis that span the spatial and temporal scales encompassed by this complex process. For example, models have been built to investigate how growth factors and receptors signal endothelial cell proliferation, how groups of endothelial cells assemble into individual vessels, and how tumors recruit the ingrowth of whole microvascular networks. A prudent question to pose is: "what have we learned from these models?" This review aims to answer this question as it pertains to angiogenesis in the context of normal physiological growth, tumorigenesis, wound healing, tissue engineering, and the design of therapeutic strategies. We also provide a framework for parsing angiogenesis models into categories, according to the type of modeling approach used, the spatial and temporal scales simulated, and the overarching question being posed to the model. Finally, this review introduces some of the simplification strategies and assumptions used in model building, discusses model validation, and makes recommendations for application of modeling approaches to unresolved questions in the field.
Collapse
Affiliation(s)
- Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
50
|
Nanka O, Krizova P, Fikrle M, Tuma M, Blaha M, Grim M, Sedmera D. Abnormal Myocardial and Coronary Vasculature Development in Experimental Hypoxia. Anat Rec (Hoboken) 2008; 291:1187-99. [DOI: 10.1002/ar.20738] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|