1
|
Ide H, Hayashida Y, Morimoto YV. Visualization of c-di-GMP in multicellular Dictyostelium stages. Front Cell Dev Biol 2023; 11:1237778. [PMID: 37547475 PMCID: PMC10399225 DOI: 10.3389/fcell.2023.1237778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
The bacterial signaling molecule cyclic diguanosine monophosphate (c-di-GMP) is only synthesized and utilized by the cellular slime mold Dictyostelium discoideum among eukaryotes. Dictyostelium cells undergo a transition from a unicellular to a multicellular state, ultimately forming a stalk and spores. While Dictyostelium is known to employ c-di-GMP to induce differentiation into stalk cells, there have been no reports of direct observation of c-di-GMP using fluorescent probes. In this study, we used a fluorescent probe used in bacteria to visualize its localization within Dictyostelium multicellular bodies. Cytosolic c-di-GMP concentrations were significantly higher at the tip of the multicellular body during stalk formation.
Collapse
Affiliation(s)
- Hayato Ide
- Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Yukihisa Hayashida
- Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Yusuke V. Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
2
|
Kawabe Y, Schaap P. Adenylate cyclase A amplification and functional diversification during Polyspondylium pallidum development. EvoDevo 2022; 13:18. [PMID: 36261860 PMCID: PMC9583560 DOI: 10.1186/s13227-022-00203-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background In Dictyostelium discoideum (Ddis), adenylate cyclase A (ACA) critically generates the cAMP oscillations that coordinate aggregation and morphogenesis. Unlike group 4 species like Ddis, other groups do not use extracellular cAMP to aggregate. However, deletion of cAMP receptors (cARs) or extracellular phosphodiesterase (PdsA) in Polyspondylium pallidum (Ppal, group 2) blocks fruiting body formation, suggesting that cAMP oscillations ancestrally control post-aggregative morphogenesis. In group 2, the acaA gene underwent several duplications. We deleted the three Ppal aca genes to identify roles for either gene and tested whether Ppal shows transient cAMP-induced cAMP accumulation, which underpins oscillatory cAMP signalling. Results In contrast to Ddis, pre-aggregative Ppal cells did not produce a pulse of cAMP upon stimulation with the cAR agonist 2′H-cAMP, but acquired this ability after aggregation. Deletion of Ppal aca1, aca2 and aca3 yielded different phenotypes. aca1ˉ cells showed relatively thin stalks, aca2ˉ showed delayed secondary sorogen formation and aca3ˉ formed less aggregation centers. The aca1ˉaca2ˉ and aca1ˉaca3ˉ mutants combined individual defects, while aca2ˉaca3ˉ and aca1ˉaca3ˉaca2ˉ additionally showed > 24 h delay in aggregation, with only few aggregates with fragmenting streams being formed. The fragments developed into small fruiting bodies with stalk and spore cells. Aggregation was restored in aca2ˉaca3ˉ and aca1ˉaca3ˉaca2ˉ by 2.5 mM 8Br-cAMP, a membrane-permeant activator of cAMP-dependent protein kinase (PKA). Like Ddis, Ppal sorogens also express the adenylate cyclases ACR and ACG. We found that prior to aggregation, Ddis acaˉ/ACG cells produced a pulse of cAMP upon stimulation with 2′H-cAMP, indicating that cAMP oscillations may not be dependent on ACA alone. Conclusions The three Ppal replicates of acaA perform different roles in stalk morphogenesis, secondary branch formation and aggregation, but act together to enable development by activating PKA. While even an aca1ˉaca3ˉaca2ˉ mutant still forms (some) fruiting bodies, suggesting little need for ACA-induced cAMP oscillations in this process, we found that ACG also mediated transient cAMP-induced cAMP accumulation. It, therefore, remains likely that post-aggregative Ppal morphogenesis is organized by cAMP oscillations, favouring a previously proposed model, where cAR-regulated cAMP hydrolysis rather than its synthesis dominates oscillatory behaviour. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-022-00203-7.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, DD15EH, UK.
| |
Collapse
|
3
|
Forbes G, Chen ZH, Kin K, Schaap P. Novel RNAseq-Informed Cell-type Markers and Their Regulation Alter Paradigms of Dictyostelium Developmental Control. Front Cell Dev Biol 2022; 10:899316. [PMID: 35602609 PMCID: PMC9117722 DOI: 10.3389/fcell.2022.899316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell differentiation is traditionally monitored with a few marker genes, which may bias results. To understand the evolution and regulation of the spore, stalk, cup and basal disc cells in Dictyostelia, we previously performed RNAseq on purified cell-types of taxon-group representative dictyostelids. Using promoter-lacZ constructs in D. discoideum, we here investigate the spatio-temporal expression pattern of 29 cell-type specific genes. Genes selected for spore- or cup-specificity in RNAseq were validated as such by lacZ expression, but genes selected for stalk-specificity showed variable additional expression in basal disc, early cup or prestalk populations. We measured responses of 25 genes to 15 single or combined regimes of induction by stimuli known to regulate cell differentiation. The outcomes of these experiments were subjected to hierarchical clustering to identify whether common modes of regulation were correlated with specific expression patterns. The analysis identified a cluster combining the spore and cup genes, which shared upregulation by 8-bromo cyclic AMP and down-regulation by Differentiation Inducing Factor 1 (DIF-1). Most stalk-expressed genes combined into a single cluster and shared strong upregulation by cyclic di-guanylate (c-di-GMP), and synergistic upregulation by combined DIF-1 and c-di-GMP. There was no clustering of genes expressed in other soma besides the stalk, but two genes that were only expressed in the stalk did not respond to any stimuli. In contrast to current models, the study indicates the existence of a stem-cell like soma population in slugs, whose members only acquire ultimate cell fate after progressing to their terminal location during fruiting body morphogenesis.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zhi-Hui Chen
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Koryu Kin
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- *Correspondence: Pauline Schaap,
| |
Collapse
|
4
|
Yamada Y, Forbes G, Du Q, Kawata T, Schaap P. Loss of PIKfyve Causes Transdifferentiation of Dictyostelium Spores Into Basal Disc Cells. Front Cell Dev Biol 2021; 9:692473. [PMID: 34490246 PMCID: PMC8417116 DOI: 10.3389/fcell.2021.692473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
The 1-phosphatidylinositol-3-phosphate 5-kinase PIKfyve generates PtdIns3,5P2 on late phagolysosomes, which by recruiting the scission protein Atg18, results in their fragmentation in the normal course of endosome processing. Loss of PIKfyve function causes cellular hypervacuolization in eukaryotes and organ failure in humans. We identified pikfyve as the defective gene in a Dictyostelium mutant that failed to form spores. The amoebas normally differentiated into prespore cells and initiated spore coat protein synthesis in Golgi-derived prespore vesicles. However, instead of exocytosing, the prespore vesicles fused into the single vacuole that typifies the stalk and basal disc cells that support the spores. This process was accompanied by stalk wall biosynthesis, loss of spore gene expression and overexpression of ecmB, a basal disc and stalk-specific gene, but not of the stalk-specific genes DDB_G0278745 and DDB_G0277757. Transdifferentiation of prespore into stalk-like cells was previously observed in mutants that lack early autophagy genes, like atg5, atg7, and atg9. However, while autophagy mutants specifically lacked cAMP induction of prespore gene expression, pikfyve - showed normal early autophagy and prespore induction, but increased in vitro induction of ecmB. Combined, the data suggest that the Dictyostelium endosomal system influences cell fate by acting on cell type specific gene expression.
Collapse
Affiliation(s)
- Yoko Yamada
- School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Department of Biology, Faculty of Science, Toho University, Funabashi, Japan.,Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Qingyou Du
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
Kin K, Schaap P. Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas. Genes (Basel) 2021; 12:487. [PMID: 33801615 PMCID: PMC8067170 DOI: 10.3390/genes12040487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
Multicellularity evolved repeatedly in the history of life, but how it unfolded varies greatly between different lineages. Dictyostelid social amoebas offer a good system to study the evolution of multicellular complexity, with a well-resolved phylogeny and molecular genetic tools being available. We compare the life cycles of the Dictyostelids with closely related amoebozoans to show that complex life cycles were already present in the unicellular common ancestor of Dictyostelids. We propose frost resistance as an early driver of multicellular evolution in Dictyostelids and show that the cell signalling pathways for differentiating spore and stalk cells evolved from that for encystation. The stalk cell differentiation program was further modified, possibly through gene duplication, to evolve a new cell type, cup cells, in Group 4 Dictyostelids. Studies in various multicellular organisms, including Dictyostelids, volvocine algae, and metazoans, suggest as a common principle in the evolution of multicellular complexity that unicellular regulatory programs for adapting to environmental change serve as "proto-cell types" for subsequent evolution of multicellular organisms. Later, new cell types could further evolve by duplicating and diversifying the "proto-cell type" gene regulatory networks.
Collapse
Affiliation(s)
- Koryu Kin
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| |
Collapse
|
6
|
Schaap P. From environmental sensing to developmental control: cognitive evolution in dictyostelid social amoebas. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190756. [PMID: 33487113 PMCID: PMC7934950 DOI: 10.1098/rstb.2019.0756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dictyostelid social amoebas respond to starvation by self-organizing into multicellular slugs that migrate towards light to construct spore-bearing structures. These behaviours depend on excitable networks that enable amoebas to produce propagating waves of the chemoattractant cAMP, and to respond by directional movement. cAMP additionally regulates cell differentiation throughout development, with differentiation and cell movement being coordinated by interaction of the stalk inducer c-di-GMP with the adenylate cyclase that generates cAMP oscillations. Evolutionary studies indicate how the manifold roles of cAMP in multicellular development evolved from a role as intermediate for starvation-induced encystation in the unicellular ancestor. A merger of this stress response with the chemotaxis excitable networks yielded the developmental complexity and cognitive capabilities of extant Dictyostelia. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| |
Collapse
|
7
|
Singer G, Araki T, Weijer CJ. Oscillatory cAMP cell-cell signalling persists during multicellular Dictyostelium development. Commun Biol 2019; 2:139. [PMID: 31044164 PMCID: PMC6478855 DOI: 10.1038/s42003-019-0371-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Propagating waves of cAMP, periodically initiated in the aggregation centre, are known to guide the chemotactic aggregation of hundreds of thousands of starving individual Dictyostelium discoideum cells into multicellular aggregates. Propagating optical density waves, reflecting cell periodic movement, have previously been shown to exist in streaming aggregates, mounds and migrating slugs. Using a highly sensitive cAMP-FRET reporter, we have now been able to measure periodically propagating cAMP waves directly in these multicellular structures. In slugs cAMP waves are periodically initiated in the tip and propagate backward through the prespore zone. Altered cAMP signalling dynamics in mutants with developmental defects strongly support a key functional role for cAMP waves in multicellular Dictyostelium morphogenesis. These findings thus show that propagating cAMP not only control the initial aggregation process but continue to be the long range cell-cell communication mechanism guiding cell movement during multicellular Dictyostelium morphogenesis at the mound and slugs stages.
Collapse
Affiliation(s)
- Gail Singer
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
| | - Tsuyoshi Araki
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
- Present Address: Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554 Japan
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
| |
Collapse
|
8
|
Hehmeyer J. Two potential evolutionary origins of the fruiting bodies of the dictyostelid slime moulds. Biol Rev Camb Philos Soc 2019; 94:1591-1604. [PMID: 30989827 DOI: 10.1111/brv.12516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
Dictyostelium discoideum and the other dictyostelid slime moulds ('social amoebae') are popular model organisms best known for their demonstration of sorocarpic development. In this process, many cells aggregate to form a multicellular unit that ultimately becomes a fruiting body bearing asexual spores. Several other unrelated microorganisms undergo comparable processes, and in some it is evident that their multicellular development evolved from the differentiation process of encystation. While it has been argued that the dictyostelid fruiting body had similar origins, it has also been proposed that dictyostelid sorocarpy evolved from the unicellular fruiting process found in other amoebozoan slime moulds. This paper reviews the developmental biology of the dictyostelids and other relevant organisms and reassesses the two hypotheses on the evolutionary origins of dictyostelid development. Recent advances in phylogeny, genetics, and genomics and transcriptomics indicate that further research is necessary to determine whether or not the fruiting bodies of the dictyostelids and their closest relatives, the myxomycetes and protosporangids, are homologous.
Collapse
|
9
|
Bhadoriya P, Jain M, Kaicker G, Saidullah B, Saran S. Deletion of Htt cause alterations in cAMP signaling and spatial patterning in Dictyostelium discoideum. J Cell Physiol 2019; 234:18858-18871. [PMID: 30916411 DOI: 10.1002/jcp.28524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 01/08/2023]
Abstract
In the present study, we have analyzed in detail the functions of Htt during growth and development of the protist, Dictyostelium discoideum by creating mutants (both overexpressor and knockout). The mRNA was present at all stages of growth and development. Overexpression of htt did not show any major anomaly, while deletion resulted in delayed aggregation territory formation and showed asynchronous development especially after slug stage. The slugs formed by htt - cells showed aberration in anterior-posterior boundary, showing increased prestalk region. DdHtt regulates STAT transcription factors in the tip organizer region that help maintain patterning and culmination. In chimeras with the wild-type, htt - cells preferentially localized to the tip of the slug and basal disc regions of the fruiting body showing prestalk/stalk bias, while the overexpressing cells majorly populated the prespore/spore region showing spore bias. These differences could be attributed to protein kinase A (PKA)-regulated cyclic adenosine monophosphate (cAMP) signaling.
Collapse
Affiliation(s)
- Pooja Bhadoriya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Mukul Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Geeta Kaicker
- School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Bano Saidullah
- School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Chen ZH, Singh R, Cole C, Lawal HM, Schilde C, Febrer M, Barton GJ, Schaap P. Adenylate cyclase A acting on PKA mediates induction of stalk formation by cyclic diguanylate at the Dictyostelium organizer. Proc Natl Acad Sci U S A 2017; 114:516-521. [PMID: 28057864 PMCID: PMC5255622 DOI: 10.1073/pnas.1608393114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordination of cell movement with cell differentiation is a major feat of embryonic development. The Dictyostelium stalk always forms at the organizing tip, by a mechanism that is not understood. We previously reported that cyclic diguanylate (c-di-GMP), synthesized by diguanylate cyclase A (DgcA), induces stalk formation. Here we used transcriptional profiling of dgca- structures to identify target genes for c-di-GMP, and used these genes to investigate the c-di-GMP signal transduction pathway. We found that knockdown of cAMP-dependent protein kinase (PKA) activity in prestalk cells reduced stalk gene induction by c-di-GMP, whereas PKA activation bypassed the c-di-GMP requirement for stalk gene expression. c-di-GMP caused a persistent increase in cAMP, which still occurred in mutants lacking the adenylate cyclases ACG or ACR, or the cAMP phosphodiesterase RegA. However, both inhibition of adenylate cyclase A (ACA) with SQ22536 and incubation of a temperature-sensitive ACA mutant at the restrictive temperature prevented c-di-GMP-induced cAMP synthesis as well as c-di-GMP-induced stalk gene transcription. ACA produces the cAMP pulses that coordinate Dictyostelium morphogenetic cell movement and is highly expressed at the organizing tip. The stalk-less dgca- mutant regained its stalk by expression of a light-activated adenylate cyclase from the ACA promoter and exposure to light, indicating that cAMP is also the intermediate for c-di-GMP in vivo. Our data show that the more widely expressed DgcA activates tip-expressed ACA, which then acts on PKA to induce stalk genes. These results explain why stalk formation in Dictyostelia always initiates at the site of the morphogenetic organizer.
Collapse
Affiliation(s)
- Zhi-Hui Chen
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Reema Singh
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Christian Cole
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hajara Mohammed Lawal
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Christina Schilde
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Melanie Febrer
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Geoffrey J Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Pauline Schaap
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
11
|
Bretschneider T, Othmer HG, Weijer CJ. Progress and perspectives in signal transduction, actin dynamics, and movement at the cell and tissue level: lessons from Dictyostelium. Interface Focus 2016; 6:20160047. [PMID: 27708767 DOI: 10.1098/rsfs.2016.0047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement of cells and tissues is a basic biological process that is used in development, wound repair, the immune response to bacterial invasion, tumour formation and metastasis, and the search for food and mates. While some cell movement is random, directed movement stimulated by extracellular signals is our focus here. This involves a sequence of steps in which cells first detect extracellular chemical and/or mechanical signals via membrane receptors that activate signal transduction cascades and produce intracellular signals. These intracellular signals control the motile machinery of the cell and thereby determine the spatial localization of the sites of force generation needed to produce directed motion. Understanding how force generation within cells and mechanical interactions with their surroundings, including other cells, are controlled in space and time to produce cell-level movement is a major challenge, and involves many issues that are amenable to mathematical modelling.
Collapse
Affiliation(s)
- Till Bretschneider
- Warwick Systems Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Hans G Othmer
- School of Mathematics , University of Minnesota , Minneapolis, MN 55455 , USA
| | | |
Collapse
|
12
|
Rodriguez-Centeno J, Sastre L. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene. PLoS One 2016; 11:e0148533. [PMID: 26840347 PMCID: PMC4739590 DOI: 10.1371/journal.pone.0148533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/20/2016] [Indexed: 12/01/2022] Open
Abstract
Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation.
Collapse
Affiliation(s)
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/Arturo Duperier, 4, 28029, Madrid, Spain
- CIBERER, Valencia, Spain
- * E-mail:
| |
Collapse
|
13
|
Loomis WF. Genetic control of morphogenesis in Dictyostelium. Dev Biol 2015; 402:146-61. [PMID: 25872182 PMCID: PMC4464777 DOI: 10.1016/j.ydbio.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Cells grow, move, expand, shrink and die in the process of generating the characteristic shapes of organisms. Although the structures generated during development of the social amoeba Dictyostelium discoideum look nothing like the structures seen in metazoan embryogenesis, some of the morphogenetic processes used in their making are surprisingly similar. Recent advances in understanding the molecular basis for directed cell migration, cell type specific sorting, differential adhesion, secretion of matrix components, pattern formation, regulation and terminal differentiation are reviewed. Genes involved in Dictyostelium aggregation, slug formation, and culmination of fruiting bodies are discussed.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
14
|
Abstract
Transcriptional control of developmental genes is important for cell differentiation and pattern formation. Developing Dictyostelium discoideum cells form a multicellular structure in which individual cells differentiate into either stalk cells or spores. This simplicity makes the organism an attractive model for studying fundamental problems in developmental biology. However, the morphogenetic process of forming a stalked fruiting body conceals a certain degree of complexity. This is reflected in the presence of multiple prestalk subtypes that have individual roles to generate the fruiting body. This review describes recent advances in understanding the molecular mechanisms, mediated by transcription factors that generate prestalk-cell heterogeneity.
Collapse
Affiliation(s)
- Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
15
|
Schaap P. Evolution of developmental cyclic adenosine monophosphate signaling in the Dictyostelia from an amoebozoan stress response. Dev Growth Differ 2011; 53:452-62. [PMID: 21585352 PMCID: PMC3909795 DOI: 10.1111/j.1440-169x.2011.01263.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 10/27/2022]
Abstract
The Dictyostelid social amoebas represent one of nature's several inventions of multicellularity. Though normally feeding as single cells, nutrient stress triggers the collection of amoebas into colonies that form delicately shaped fruiting structures in which the cells differentiate into spores and up to three cell types to support the spore mass. Cyclic adenosine monophosphate (cAMP) plays a very dominant role in controlling morphogenesis and cell differentiation in the model species Dictyostelium discoideum. As a secreted chemoattractant cAMP coordinates cell movement during aggregation and fruiting body morphogenesis. Secreted cAMP also controls gene expression at different developmental stages, while intracellular cAMP is extensively used to transduce the effect of other stimuli that control the developmental program. In this review, I present an overview of the different roles of cAMP in the model D. discoideum and I summarize studies aimed to resolve how these roles emerged during Dictyostelid evolution.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dow Street, Dundee DD15EH, UK.
| |
Collapse
|
16
|
Abstract
Signal transducers and activators of transcription (STAT) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. These proteins are components of JAK/STAT signal transduction pathways, which regulate immune responses, cell fate, proliferation, cell migration, and programmed cell death in multicellular organisms. The cellular slime mould, Dictyostelium discoideum, is the simplest multicellular organism using molecules homologous to STATs, Dd-STATa-d. The Dd-STATa null mutant displays delayed aggregation, no phototaxis and fails culmination. Here, the functions of Dictyostelium STATs during development and their associated signaling molecules are discussed.
Collapse
Affiliation(s)
- Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi 274-8510, Japan.
| |
Collapse
|
17
|
Galardi-Castilla M, Garciandía A, Suarez T, Sastre L. The Dictyostelium discoideum acaA gene is transcribed from alternative promoters during aggregation and multicellular development. PLoS One 2010; 5:e13286. [PMID: 20949015 PMCID: PMC2952602 DOI: 10.1371/journal.pone.0013286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Extracellular cAMP is a key extracellular signaling molecule that regulates aggregation, cell differentiation and morphogenesis during multi-cellular development of the social amoeba Dictyostelium discoideum. This molecule is produced by three different adenylyl cyclases, encoded by the genes acaA, acrA and acgA, expressed at different stages of development and in different structures. METHODOLOGY/PRINCIPAL FINDINGS This article describes the characterization of the promoter region of the acaA gene, showing that it is transcribed from three different alternative promoters. The distal promoter, promoter 1, is active during the aggregation process while the more proximal promoters are active in tip-organiser and posterior regions of the structures. A DNA fragment containing the three promoters drove expression to these same regions and similar results were obtained by in situ hybridization. Analyses of mRNA expression by quantitative RT-PCR with specific primers for each of the three transcripts also demonstrated their different temporal patterns of expression. CONCLUSIONS/SIGNIFICANCE The existence of an aggregation-specific promoter can be associated with the use of cAMP as chemo-attractant molecule, which is specific for some Dictyostelium species. Expression at late developmental stages indicates that adenylyl cyclase A might play a more important role in post-aggregative development than previously considered.
Collapse
Affiliation(s)
- Maria Galardi-Castilla
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas/Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Whitney TJ, Gardner DG, Mott ML, Brandon M. Identifying the molecular basis of functions in the transcriptome of the social amoeba Dictyostelium discoideum. GENETICS AND MOLECULAR RESEARCH 2010; 9:394-415. [PMID: 20309825 DOI: 10.4238/vol9-1gmr752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The unusual life cycle of Dictyostelium discoideum, in which an extra-cellular stressor such as starvation induces the development of a multicellular fruiting body consisting of stalk cells and spores from a culture of identical amoebae, provides an excellent model for investigating the molecular control of differentiation and the transition from single- to multi-cellular life, a key transition in development. We utilized serial analysis of gene expression (SAGE), a molecular method that is unbiased by dependence on previously identified genes, to obtain a transcriptome from a high-density culture of amoebae, in order to examine the transition to multi-cellular development. The SAGE method provides relative expression levels, which allows us to rank order the expressed genes. We found that a large number of ribosomal proteins were expressed at high levels, while various components of the proteosome were expressed at low levels. The only identifiable transmembrane signaling system components expressed in amoebae are related to quorum sensing, and their expression levels were relatively low. The most highly expressed gene in the amoeba transcriptome, dutA untranslated RNA, is a molecule with unknown function that may serve as an inhibitor of translation. These results suggest that high-density amoebae have not initiated development, and they also suggest a mechanism by which the transition into the development program is controlled.
Collapse
Affiliation(s)
- T J Whitney
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | | | | | | |
Collapse
|
19
|
WANG HONGYU, WILLIAMS JEFFREYG. Identification of a target for CudA, the transcription factor which directs formation of the Dictyostelium tip organiser. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:161-5. [PMID: 19757394 PMCID: PMC3672975 DOI: 10.1387/ijdb.082723hw] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The tip of the Dictyostelium slug functions much like an embryonic organiser; when grafted onto the flank of a recipient slug, it recruits a mass of prespore cells and leads them away as part of a secondary slug. CudA is a nuclear protein which is expressed in prespore cells where it acts as a specific transcription factor. CudA is also expressed in an anteriorly located group of cells, the tip-organiser, that is believed to constitute the functional tip. We identify an expansin-like gene, expl7, that is expressed within the tip-organiser region and which is not expressed in a cudA null strain. The expl7 promoter contains a region that binds to CudA in vitro and this region is necessary for expression in the tip-organiser. These results provide an end-point for a previously defined signal transduction pathway in which regionalized expression of the ACA adenylyl cyclase within the tip-organiser leads to localised cAMP-induced activation of STATa and consequent binding of STATa to the cudA promoter. STATa then induces expression of cudA and cudA directs the transcription of target genes such as expl7.
Collapse
Affiliation(s)
- HONG-YU WANG
- College of Life Sciences, University of Dundee, Dundee, U.K
| | | |
Collapse
|
20
|
WANG HONGYU, WILLIAMS JEFFREYG. Synergy between two transcription factors directs gene expression in Dictyostelium tip-organiser cells. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:1301-7. [PMID: 20711998 PMCID: PMC3042209 DOI: 10.1387/ijdb.103141hw] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
cotC requires the transcription factor CudA for its expression in the posterior, prespore cells of the slug, while the expL7 gene requires CudA for its expression in the anterior, tip-organiser region. In order to identify additional transcription factors that might mediate tip-organiser specific expression, we performed affinity chromatography on slug nuclear extracts. The affinity matrix bore cap-site distal sequences from region A of the expL7 promoter; an essential region located upstream of the CudA binding domain. One of the proteins purified was G-box binding factor (GBF), a zinc finger transcription factor which binds to G-rich elements, known as G boxes, that are present in the promoters of many developmental genes, including cotC. Previous work identified an essential sequence motif within region A and we show that this element is a G box, that binds recombinant GBF. Moreover, a G box from within the cotC promoter can substitute for region A of expL7 in directing tip-organiser specific expression of expL7. Thus the same two transcription factors, CudA and GBF, seem to co-operate to direct both tip-organiser and prespore gene expression. How then is specificity achieved? Replacing a CudA binding region in the cotC promoter with the CudA binding domain from expL7 strongly represses cotC promoter activity. Hence we suggest that differences in the topology of the multiple CudA half- sites contained within the two different CudA binding regions, coupled with differences in the signalling environment between tip-organiser cells and prespore cells, ensure correct expL7 expression.
Collapse
Affiliation(s)
- HONG YU WANG
- College of Life Sciences, University of Dundee, U.K
| | | |
Collapse
|
21
|
Abstract
Collective cell migration is a key process during the development of most organisms. It can involve either the migration of closely packed mesenchymal cells that make dynamic contacts with frequently changing neighbour cells, or the migration of epithelial sheets that typically display more stable cell-cell interactions and less frequent changes in neighbours. These collective movements can be controlled by short- or long-range dynamic gradients of extracellular signalling molecules, depending on the number of cells involved and their distance of migration. These gradients are sensed by some or all of the migrating cells and translated into directed migration, which in many settings is further modulated by cell-contact-mediated attractive or repulsive interactions that result in contact-following or contact-inhibition of locomotion, respectively. Studies of collective migration of groups of epithelial cells during development indicate that, in some cases, only leader cells sense and migrate up an external signal gradient, and that adjacent cells follow through strong cell-cell contacts. In this Commentary, I review studies of collective cell migration of differently sized cell populations during the development of several model organisms, and discuss our current understanding of the molecular mechanisms that coordinate this migration.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
22
|
Chuai M, Dormann D, Weijer CJ. Imaging cell signalling and movement in development. Semin Cell Dev Biol 2009; 20:947-55. [DOI: 10.1016/j.semcdb.2009.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
23
|
The Evolution of Morphogenetic Signalling in Social Amoebae. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Abstract
CudA, a nuclear protein required for Dictyostelium prespore-specific gene expression, binds in vivo to the promoter of the cotC prespore gene. A 14 nucleotide region of the cotC promoter binds CudA in vitro and ECudA, an Entamoeba CudA homologue, also binds to this site. The CudA and ECudA DNA-binding sites contain a dyad and, consistent with a symmetrical binding site, CudA forms a homodimer in the yeast two-hybrid system. Mutation of CudA binding sites within the cotC promoter reduces expression from cotC in prespore cells. The CudA and ECudA proteins share a 120 amino acid core of homology, and clustered point mutations introduced into two highly conserved motifs within the ECudA core region decrease its specific DNA binding in vitro. This region, the presumptive DNA-binding domain, is similar in sequence to domains in two Arabidopsis proteins and one Oryza protein. Significantly, these are the only proteins in the two plant species that contain an SH2 domain. Such a structure, with a DNA-binding domain located upstream of an SH2 domain, suggests that the plant proteins are orthologous to metazoan STATs. Consistent with this notion, the DNA sequence of the CudA half site, GAA, is identical to metazoan STAT half sites, although the relative positions of the two halves of the dyad are reversed. These results define a hitherto unrecognised class of transcription factors and suggest a model for the evolution of STATs and their DNA-binding sites.
Collapse
Affiliation(s)
| | | | - Masashi Fukuzawa
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
25
|
Alvarez-Curto E, Saran S, Meima M, Zobel J, Scott C, Schaap P. cAMP production by adenylyl cyclase G induces prespore differentiation in Dictyostelium slugs. Development 2007; 134:959-66. [PMID: 17267449 PMCID: PMC2176081 DOI: 10.1242/dev.02775] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Encystation and sporulation are crucial developmental transitions for solitary and social amoebae, respectively. Whereas little is known of encystation, sporulation requires both extra- and intracellular cAMP. After aggregation of social amoebae, extracellular cAMP binding to surface receptors and intracellular cAMP binding to cAMP-dependent protein kinase (PKA) act together to induce prespore differentiation. Later, a second episode of PKA activation triggers spore maturation. Adenylyl cyclase B (ACB) produces cAMP for maturation, but the cAMP source for prespore induction is unknown. We show that adenylyl cyclase G (ACG) protein is upregulated in prespore tissue after aggregation. acg null mutants show reduced prespore differentiation, which becomes very severe when ACB is also deleted. ACB is normally expressed in prestalk cells, but is upregulated in the prespore region of acg null structures. These data show that ACG induces prespore differentiation in wild-type cells, with ACB capable of partially taking over this function in its absence.
Collapse
Affiliation(s)
- Elisa Alvarez-Curto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Angus DD1 5EH, UK
| | - Shweta Saran
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Angus DD1 5EH, UK
| | - Marcel Meima
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Angus DD1 5EH, UK
| | - Jenny Zobel
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Angus DD1 5EH, UK
| | - Claire Scott
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Angus DD1 5EH, UK
| | - Pauline Schaap
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Angus DD1 5EH, UK
| |
Collapse
|
26
|
Singleton CK, Kirsten JH, Dinsmore CJ. Function of ammonium transporter A in the initiation of culmination of development in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:991-6. [PMID: 16835443 PMCID: PMC1489295 DOI: 10.1128/ec.00058-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The histidine kinase DhkC controls a phosphorelay involved in regulating the slug versus culmination choice during the multicellular developmental program of Dictyostelium discoideum. When the relay is active, slug migration is favored due to the activation of a cyclic AMP (cAMP) phosphodiesterase and the resultant lowering of the intracellular and extracellular levels of cAMP. Ammonia signaling represents one input into the DhkC phosphorelay, and previous studies indicated that the ammonium transporter C inhibits the relay in response to low ammonia levels. Evidence is presented that another member of the family of ammonium transporters, AmtA, also regulates the slug/culmination choice. Under standard conditions of development, the wild-type strain requires a transitional period of 2 to 3 h to go from fingers to culminants, with some slugs forming and migrating briefly prior to culmination. In contrast, amtA null cells, like cells that lack DhkC, possessed a transitional period of only 1 to 2 h and rarely formed slugs. Disruption of amtA in an amtC null strain overcame the slugger phenotype of that strain and restored its ability to culminate. Strains lacking AmtA were insensitive to the ability of ammonia to promote and prolong slug migration. These findings lead to the proposal that AmtA functions in ammonia sensing as an activator of the DhkC phosphorelay in response to perceived high ammonia levels.
Collapse
Affiliation(s)
- Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, Tennessee 37235-1634, USA.
| | | | | |
Collapse
|
27
|
Williams JG. Transcriptional regulation of Dictyostelium pattern formation. EMBO Rep 2006; 7:694-8. [PMID: 16819464 PMCID: PMC1500839 DOI: 10.1038/sj.embor.7400714] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/13/2006] [Indexed: 11/10/2022] Open
Abstract
On starvation, Dictyostelium cells form a terminally differentiated structure, known as the fruiting body, which comprises stalk and spore cells. Their precursors--prestalk and prespore cells--are spatially separated and accessible in a migratory structure known as the slug. This simplicity and manipulability has made Dictyostelium attractive to both experimental and theoretical developmental biologists. However, this outward simplicity conceals a surprising degree of developmental sophistication. Multiple prestalk subtypes are formed and undertake a co-ordinated series of morphogenetic cell movements to generate the fruiting body. This review describes recent advances in understanding the signalling pathways that generate prestalk-cell heterogeneity, focusing on the roles of the prestalk-cell inducer differentiation-inducing factor-1 (DIF-1), the tip inducer cAMP and the transcription factors that mediate their actions; these include signal transducer and activator of transcription (STAT) proteins, basic leucine zipper (bZIP) proteins and a Myb protein of a class previously described only in plants.
Collapse
Affiliation(s)
- Jeffrey G Williams
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
28
|
Strmecki L, Greene DM, Pears CJ. Developmental decisions in Dictyostelium discoideum. Dev Biol 2005; 284:25-36. [PMID: 15964562 DOI: 10.1016/j.ydbio.2005.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/14/2005] [Accepted: 05/06/2005] [Indexed: 11/28/2022]
Abstract
Dictyostelium discoideum is an excellent system in which to study developmental decisions. Synchronous development is triggered by starvation and rapidly generates a limited number of cell types. Genetic and image analyses have revealed the elegant intricacies associated with this simple development system. Key signaling pathways identified as regulating cell fate decisions are likely to be conserved with metazoa and are providing insight into differentiation decisions under circumstances where considerable cell movement takes place during development.
Collapse
Affiliation(s)
- Lana Strmecki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
29
|
Kirsten JH, Xiong Y, Dunbar AJ, Rai M, Singleton CK. Ammonium transporter C of Dictyostelium discoideum is required for correct prestalk gene expression and for regulating the choice between slug migration and culmination. Dev Biol 2005; 287:146-56. [PMID: 16188250 DOI: 10.1016/j.ydbio.2005.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/04/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
Ammonium transporter C (AmtC) is one of three transporters in Dictyostelium that have been proposed to regulate entry and exit of ammonia in a cell type dependent manner and to mediate ammonia signaling. Previous work demonstrated that disruption of the amtC gene results in a slugger phenotype in which the cells remain as migrating slugs when they should form fruiting bodies. More detailed studies on the null strain revealed that differentiation of prestalk cell types was delayed and maintenance of prestalk cell gene expression was defective. There was little or no expression of ecmB, a marker for the initiation of culmination. Normal expression of CudA, a nuclear protein required for culmination, was absent in the anterior prestalk zone. The absence of CudA within the tip region was attributable to the lack of nuclear localization of the transcription factor STATa, despite expression of adenylyl cyclase A mRNA in the slug tips. Disruption of the histidine kinase gene dhkC in the amtC null strain restored STATa and CudA expression and the ability to culminate. The results suggest that the lack of nuclear translocation of STATa results from low cAMP due to a misregulated and overactive DhkC phosphorelay in the amtC null strain.
Collapse
Affiliation(s)
- Janet H Kirsten
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235-1634, USA
| | | | | | | | | |
Collapse
|
30
|
Liu CI, Cheng TL, Chen SZ, Huang YC, Chang WT. LrrA, a novel leucine-rich repeat protein involved in cytoskeleton remodeling, is required for multicellular morphogenesis in Dictyostelium discoideum. Dev Biol 2005; 285:238-51. [PMID: 16051212 DOI: 10.1016/j.ydbio.2005.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 05/07/2005] [Accepted: 05/25/2005] [Indexed: 12/17/2022]
Abstract
Cell sorting by differential cell adhesion and movement is a fundamental process in multicellular morphogenesis. We have identified a Dictyostelium discoideum gene encoding a novel protein, LrrA, which composes almost entirely leucine-rich repeats (LRRs) including a putative leucine zipper motif. Transcription of lrrA appeared to be developmentally regulated with robust expression during vegetative growth and early development. lrrA null cells generated by homologous recombination aggregated to form loose mounds, but subsequent morphogenesis was blocked without formation of the apical tip. The cells adhered poorly to a substratum and did not form tight cell-cell agglomerates in suspension; in addition, they were unable to polarize and exhibit chemotactic movement in the submerged aggregation and Dunn chamber chemotaxis assays. Fluorescence-conjugated phalloidin staining revealed that both vegetative and aggregation competent lrrA(-) cells contained numerous F-actin-enriched microspikes around the periphery of cells. Quantitative analysis of the fluorescence-stained F-actin showed that lrrA(-) cells exhibited a dramatically increase in F-actin as compared to the wild-type cells. When developed together with wild-type cells, lrrA(-) cells were unable to move to the apical tip and sorted preferentially to the rear and lower cup regions. These results indicate that LrrA involves in cytoskeleton remodeling, which is needed for normal chemotactic aggregation and efficient cell sorting during multicellular morphogenesis, particularly in the formation of apical tip.
Collapse
Affiliation(s)
- Chia-I Liu
- Department of Biochemistry, National Cheng Kung University Medical College, Tainan 701, Taiwan, ROC
| | | | | | | | | |
Collapse
|
31
|
Abstract
During starvation-induced Dictyostelium development, up to several hundred thousand amoeboid cells aggregate, differentiate and form a fruiting body. The chemotactic movement of the cells is guided by the rising phase of the outward propagating cAMP waves and results in directed periodic movement towards the aggregation centre. In the mound and slug stages of development, cAMP waves continue to play a major role in the coordination of cell movement, cell-type-specific gene expression and morphogenesis; however, in these stages where cells are tightly packed, cell-cell adhesion/contact-dependent signalling mechanisms also play important roles in these processes.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee DD1 5EH, UK.
| |
Collapse
|
32
|
Saran S, Meima ME, Alvarez-Curto E, Weening KE, Rozen DE, Schaap P. cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. J Muscle Res Cell Motil 2003; 23:793-802. [PMID: 12952077 DOI: 10.1023/a:1024483829878] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
cAMP plays a pivotal role in control of cell movement, differentiation and response to stress in all phases of the Dictyostelium life cycle. The multitudinous functions of cAMP require precise spatial and temporal control of its production, degradation and detection. Many novel proteins have recently been identified that critically modulate the cAMP signal. We focus in this review on the properties and functions of the three adenylyl cyclases and the three cAMP-phosphodiesterases that are present in Dictyostelium, and the network of proteins that regulate the activity of these enzymes. We also briefly discuss the two modes of detection of cAMP.
Collapse
Affiliation(s)
- Shweta Saran
- School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
33
|
Rutherford CL, Overall DF, Ubeidat M, Joyce BR. Analysis of 5' nucleotidase and alkaline phosphatase by gene disruption in Dictyostelium. Genesis 2003; 35:202-13. [PMID: 12717731 DOI: 10.1002/gene.10185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In Dictyostelium discoideum a phosphatase with a high pH optimum is known to increase in activity during cell differentiation and become localized to a narrow band of cells at the interface of prespore and prestalk cells. However, it was not clear if this activity is due to a classical "alkaline phosphatase" with broad range substrate specificity or to a "5'nucleotidase" with high substrate preference for 5'AMP. We attempted to disrupt the genes encoding these two phosphatase activities in order to determine if the activity that is localized to the interface region resides in either of these two proteins. During aggregation of 5nt null mutants, multiple tips formed rather than the normal single tip for each aggregate. In situ phosphatase activity assays showed that the wt and the 5nt gene disruption clones had normal phosphatase activity in the area between prestalk and prespore cell types, while the alp null mutants did not have activity in this cellular region. Thus, the phosphatase activity that becomes localized to the interface of the prestalk and prespore cells is alkaline phosphatase.
Collapse
Affiliation(s)
- Charles L Rutherford
- Biology Department, Molecular and Cellular Biology Section, Virginia Polytechnic Institute and State University, 2119 Derring Hall, Blacksburg, VA 24061-0406, USA.
| | | | | | | |
Collapse
|
34
|
Weening KE, Wijk IVV, Thompson CR, Kessin RH, Podgorski GJ, Schaap P. Contrasting activities of the aggregative and late PDSA promoters in Dictyostelium development. Dev Biol 2003; 255:373-82. [PMID: 12648497 DOI: 10.1016/s0012-1606(02)00077-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of the Dictyostelium PdsA gene from the aggregative (PdA) and late (PdL) promoter is essential for aggregation and slug morphogenesis, respectively. We studied the regulation of the PdA and PdL promoters in slugs using labile beta-galactosidase (gal) reporter enzymes. PdL was active in prestalk cells as was also found with stable gal. PdA activity decreased strongly in slugs from all cells, except those at the rear. This is almost opposite to PdA activity traced with stable gal, where slugs showed sustained activity with highest levels at the front. PdA was down-regulated after aggregation irrespective of stimulation with any of the factors known to control gene expression. PdL activity was induced in cell suspension by cAMP and DIF acting in synergy. However, a DIF-less mutant showed normal PdL activity during development, suggesting that DIF does not control PdL in vivo. Dissection of the PdL promoter showed that all sequences essential for correct spatiotemporal control of promoter activity are downstream of the transcription start site in a region between -383 and -19 nucleotides relative to the start codon. Removal of nucleotides to position -364 eliminated responsiveness to DIF and cAMP, but normal PdL activity in prestalk cells in slugs was retained. Further 5' deletions abolished all promoter activity. This result also indicates that the induction by DIF and cAMP as seen in cell suspensions is not essential for PdL activity in normal development.
Collapse
Affiliation(s)
- Karin E Weening
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
35
|
Dormann D, Weijer G, Parent CA, Devreotes PN, Weijer CJ. Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. Curr Biol 2002; 12:1178-88. [PMID: 12176327 DOI: 10.1016/s0960-9822(02)00950-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Starving amoebae of Dictyostelium discoideum communicate by relaying extracellular cAMP signals, which direct chemotactic movement, resulting in the aggregation of thousands of cells into multicellular aggregates. Both cAMP relay and chemotaxis require the activation of PI3 kinase signaling. The spatiotemporal dynamics of PI3 kinase signaling can be followed in individual cells via the cAMP-induced membrane recruitment of a GFP-tagged PH domain-containing protein, CRAC, which is required for the activation of adenylylcyclase. RESULTS We show that polarized periodic CRAC-GFP translocation occurs during the aggregation and mound stages of development in response to periodic cAMP signals. The duration of CRAC translocation to the membrane is determined by the duration of the rising phase of the cAMP signal. The system shows rapid adaptation and responds to the rate of change of the extracellular cAMP concentration. When the cells are in close contact, it takes 10 s for the signal to propagate from one cell to the next. In slugs, all cells show a permanent polarized PI3 kinase signaling in their leading edge, which is dependent on cell-cell contact. CONCLUSIONS Measuring the redistribution of GFP-tagged CRAC has enabled us to study the dynamics of PI3 kinase-mediated cell-cell communication at the individual cell level in the multicellular stages of Dictyostelium development. This approach should also be useful to study the interactions between cell-cell signaling, cell polarization, and movement in the development of other organisms.
Collapse
Affiliation(s)
- Dirk Dormann
- School of Life Science, University of Dundee, Wellcome Trust Biocentre, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Takeda K, Saito T, Ochiai H. A novel Dictyostelium Cdk8 is required for aggregation, but is dispensable for growth. Dev Growth Differ 2002; 44:213-23. [PMID: 12060071 DOI: 10.1046/j.1440-169x.2002.00636.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When Dictyostelium cells starve, they express genes necessary for aggregation. Using insertional mutagenesis, we have isolated a mutant that does not aggregate upon starvation and that forms small plaques on bacterial lawns, thus indicating slow growth. Sequencing of the mutated locus showed a strong similarity to the catalytic domain of cdc2-related kinase genes. Phylogenetic analysis further indicated that the amino acid sequence was more close to cyclin-dependent kinase 8 than to the sequence of other cyclin-dependent kinases. Thus, we designated this gene as Ddcdk8. The Ddcdk8-null cells do not aggregate and grow somewhat more slowly than parental cells when being shaken in axenic medium or laid on bacterial plates. To confirm whether these defective phenotypes were caused by disruption of this gene, the Ddcdk8-null cells were complemented with DdCdk8 protein expressed from an endogenous promoter, but not an actin promoter, and when the complemented cells were then allowed to grow on a bacterial lawn, they began to aggregate as the food supply was depleted and finally became fruiting bodies. The results suggest that properly regulated DdCdk8 activity is essential for aggregation. Because, when starved, Ddcdk8-null cells do not express the acaA transcripts required for aggregation, we deduce that Ddcdk8 is epistatic for acaA expression, indicating that the DdCdk8 products may regulate expression of acaA and/or other genes.
Collapse
Affiliation(s)
- Kosuke Takeda
- Division of Biological Sciences, Graduate School of Science, Hokkaido University Sapporo, Japan
| | | | | |
Collapse
|