1
|
O'Connor E, Töpf A, Zahedi RP, Spendiff S, Cox D, Roos A, Lochmüller H. Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Ann N Y Acad Sci 2018; 1412:102-112. [PMID: 29315608 DOI: 10.1111/nyas.13520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare disorders that cause fatigable muscle weakness due to defective signal transmission at the neuromuscular junction, a specialized synapse between peripheral motor neurons and their target muscle fibers. There are now over 30 causative genes that have been reported for CMS. Of these, there are 10 that are associated with a limb-girdle pattern of muscle weakness and are thus classed as LG-CMS. Next-generation sequencing and advanced methods of data sharing are likely to uncover further genes that are associated with similar clinical phenotypes, contributing to better diagnosis and effective treatment of LG-CMS patients. This review highlights clinical and pathological hallmarks of LG-CMS in relation to the underlying genetic defects and pathways. Tailored animal and cell models are essential to elucidate the exact function and pathomechanisms at the neuromuscular synapse that underlie LG-CMS. The integration of genomics and proteomics data derived from these models and patients reveals new and often unexpected insights that are relevant beyond the rare genetic disorder of LG-CMS and may extend to the functioning of mammalian synapses in health and disease more generally.
Collapse
Affiliation(s)
- Emily O'Connor
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Sally Spendiff
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Cox
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation. J Neurosci 2016; 36:2663-76. [PMID: 26937007 DOI: 10.1523/jneurosci.2847-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. SIGNIFICANCE STATEMENT In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an unexpected role of the extracellular matrix collagen XV in motor axon pathfinding. We show that the synthesis of collagen XV-B by slow muscle precursors and its deposition in the common motor path are dependent on a novel two-step mechanism that determines axon decisions at a choice point during motor axonogenesis. Zebrafish and humans use common molecular cues and regulatory mechanisms for the neuromuscular system development. And as such, our study reveals COL15A1 as a candidate gene for orphan neuromuscular disorders.
Collapse
|
3
|
Li VWT, Tsui MPM, Chen X, Hui MNY, Jin L, Lam RHW, Yu RMK, Murphy MB, Cheng J, Lam PKS, Cheng SH. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8275-8285. [PMID: 26888529 DOI: 10.1007/s11356-016-6180-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects.
Collapse
Affiliation(s)
- Vincent Wai Tsun Li
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Mei Po Mirabelle Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Xueping Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Michelle Nga Yu Hui
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Ling Jin
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Raymond H W Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Margaret B Murphy
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Jinping Cheng
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Paul Kwan Sing Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Shuk Han Cheng
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China.
- Department of Biomedical Science, City University of Hong Kong, 83 Tat Chee Avenue SAR, Hong Kong, China.
| |
Collapse
|
4
|
Abstract
BACKGROUND Zebrafish is an amenable vertebrate model useful for the study of development and genetics. Small molecule screenings in zebrafish have successfully identified several drugs that affect developmental process. OBJECTIVE This review covers the basics of zebrafish muscle system such as muscle development and muscle defects. It also reviews the potential use of zebrafish for chemical screening with regards to muscle disorders. CONCLUSION During embryogenesis, zebrafish start to coil their body by contracting trunk muscles 17 h postfertilization, indicating that a motor circuit and skeletal muscle are functionally developed at early stages. Mutagenesis screens in zebrafish have identified many motility mutants that display morphological or functional defects in the CNS, clustering defects of acetylcholine receptors at the neuromuscular junctions or pathological defects of muscles. Most of the muscular mutants are useful as animal models of human muscle disease such as muscle dystrophy. As zebrafish live in water, pharmacological drugs are easily assayable during development, and thus zebrafish may be used to determine novel drugs that mitigate muscle disease.
Collapse
Affiliation(s)
- Hiromi Hirata
- Nagoya University, Graduate School of Science, Proof to Hiromi Hirata Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan +81 52 789 2980 ; +81 52 789 2979 ;
| |
Collapse
|
5
|
Song Y, Panzer JA, Wyatt RM, Balice-Gordon RJ. Formation and plasticity of neuromuscular synaptic connections. Int Anesthesiol Clin 2006; 44:145-78. [PMID: 16849961 DOI: 10.1097/00004311-200604420-00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Schweitzer J, Becker T, Lefebvre J, Granato M, Schachner M, Becker CG. Tenascin-C is involved in motor axon outgrowth in the trunk of developing zebrafish. Dev Dyn 2006; 234:550-66. [PMID: 16110513 DOI: 10.1002/dvdy.20525] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Motor axons in the trunk of the developing zebrafish exit from the ventral spinal cord in one ventral root per hemisegment and grow on a common path toward the region of the horizontal myoseptum, where they select their specific pathways. Tenascin-C, a component of the extracellular matrix, is concentrated in this choice region. Adaxial cells and other myotomal cells express tenascin-C mRNA, suggesting that these cells are the source of tenascin-C protein. Overexpressing an axon repellent fragment containing the cysteine-rich region and the epidermal growth factor-like repeats of tenascin-C led to retarded growth of ventral motor nerves between their spinal exit point and the horizontal myoseptum. Injection of a protein fragment containing the same part of tenascin-C also induced slower growth of motor nerves. Conversely, knock down of tenascin-C protein resulted in abnormal lateral branching of ventral motor nerves. In the zebrafish unplugged mutant, in which axons display pathfinding defects in the region of the horizontal myoseptum, tenascin-C immunoreactivity was not detectable in this region, indicating an abnormal extracellular matrix in unplugged. We conclude that tenascin-C is part of a specialized extracellular matrix in the region of the horizontal myoseptum that influences the growth of motor axons.
Collapse
|
7
|
Birely J, Schneider VA, Santana E, Dosch R, Wagner DS, Mullins MC, Granato M. Genetic screens for genes controlling motor nerve-muscle development and interactions. Dev Biol 2005; 280:162-76. [PMID: 15766756 DOI: 10.1016/j.ydbio.2005.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/10/2005] [Accepted: 01/12/2005] [Indexed: 11/16/2022]
Abstract
Motor growth cones navigate long and complex trajectories to connect with their muscle targets. Experimental studies have shown that this guidance process critically depends on extrinsic cues. In the zebrafish embryo, a subset of mesodermal cells, the adaxial cells, delineates the prospective path of pioneering motor growth cones. Genetic ablation of adaxial cells causes profound pathfinding defects, suggesting the existence of adaxial cell derived guidance factors. Intriguingly, adaxial cells are themselves migratory, and as growth cones approach they migrate away from the prospective axonal path to the lateral surface of the myotome, where they develop into slow-twitching muscle fibers. Genetic screens in embryos stained with an antibody cocktail identified mutants with specific defects in differentiation and migration of adaxial cells/slow muscle fibers, as well as mutants with specific defects in axonal pathfinding, including exit from the spinal cord and pathway selection. Together, the genes underlying these mutant phenotypes define pathways essential for nerve and muscle development and interactions between these two cell types.
Collapse
Affiliation(s)
- Joanne Birely
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang J, Lefebvre JL, Zhao S, Granato M. Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice. Nat Neurosci 2004; 7:1303-9. [PMID: 15543140 DOI: 10.1038/nn1350] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/07/2004] [Indexed: 11/08/2022]
Abstract
En route to their target, pioneering motor growth cones repeatedly encounter choice points at which they make pathway decisions. In the zebrafish mutant unplugged, two of the three segmental motor axons make incorrect decisions at a somitic choice point. Using positional cloning, we show here that unplugged encodes a homolog of muscle-specific kinase (MuSK) and that, unlike mammalian MuSK, unplugged has only a limited role in neuromuscular synaptogenesis. We demonstrate that unplugged is transiently expressed in cells adjacent to the choice point and that unplugged signaling before the arrival of growth cones induces changes in the extracellular environment. In addition, we find that the unplugged locus generates three different transcripts. The splice variant 1 (SV1) isoform lacks the extracellular modules essential for agrin responsiveness, and signaling through this isoform mediates axonal pathfinding, independent of the MuSK downstream component rapsyn. Our results demonstrate a new role for MuSK homologs in axonal pathway selection.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | |
Collapse
|
9
|
Hirata H, Saint-Amant L, Waterbury J, Cui W, Zhou W, Li Q, Goldman D, Granato M, Kuwada JY. accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development 2004; 131:5457-68. [PMID: 15469975 DOI: 10.1242/dev.01410] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When wild-type zebrafish embryos are touched at 24 hours post-fertilization (hpf), they typically perform two rapid alternating coils of the tail. By contrast, accordion (acc) mutants fail to coil their tails normally but contract the bilateral trunk muscles simultaneously to shorten the trunk, resulting in a pronounced dorsal bend. Electrophysiological recordings from muscles showed that the output from the central nervous system is normal in mutants, suggesting a defect in muscles is responsible. In fact, relaxation in acc muscle is significantly slower than normal. In vivo imaging of muscle Ca2+ transients revealed that cytosolic Ca2+ decay was significantly slower in acc muscle. Thus, it appears that the mutant behavior is caused by a muscle relaxation defect due to the impairment of Ca2+ re-uptake. Indeed, acc mutants carry a mutation in atp2a1 gene that encodes the sarco(endo)plasmic reticulum Ca2+-ATPase 1 (SERCA1), a Ca2+ pump found in the muscle sarcoplasmic reticulum (SR) that is responsible for pumping Ca2+ from the cytosol back to the SR. As SERCA1 mutations in humans lead to Brody disease, an exercise-induced muscle relaxation disorder, zebrafish accordion mutants could be a useful animal model for this condition.
Collapse
Affiliation(s)
- Hiromi Hirata
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-0720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Brustein E, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Drapeau P. Steps during the development of the zebrafish locomotor network. ACTA ACUST UNITED AC 2004; 97:77-86. [PMID: 14706693 DOI: 10.1016/j.jphysparis.2003.10.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review summarizes recent data from our lab concerning the development of motor activities in the developing zebrafish. The zebrafish is a leading model for studies of vertebrate development because one can obtain a large number of transparent, externally and rapidly developing embryos with motor behaviors that are easy to assess (e.g. for mutagenic screens). The emergence of embryonic motility was studied behaviorally and at the cellular level. The embryonic behaviors appear sequentially and include an early, transient period of spontaneous, alternating tail coilings, followed by responses to touch, and swimming. Patch clamp recording in vivo revealed that an electrically coupled network of a subset of spinal neurons generates spontaneous tail coiling, whereas a chemical (glutamatergic and glycinergic) synaptic drive underlies touch responses and swimming and requires input from the hindbrain. Swimming becomes sustained in larvae once serotonergic neuromodulatory effects are integrated. We end with a brief overview of the genetic tools available for the study of the molecular determinants implicated in locomotor network development in the zebrafish. Combining genetic, behavioral and cellular experimental approaches will advance our understanding of the general principles of locomotor network assembly and function.
Collapse
Affiliation(s)
- Edna Brustein
- McGill Centre for Research in Neuroscience, McGill University, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Becker T, McLane MA, Becker CG. Integrin antagonists affect growth and pathfinding of ventral motor nerves in the trunk of embryonic zebrafish. Mol Cell Neurosci 2003; 23:54-68. [PMID: 12799137 DOI: 10.1016/s1044-7431(03)00018-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Integrins are thought to be important receptors for extracellular matrix (ECM) components on growing axons. Ventral motor axons in the trunk of embryonic zebrafish grow in a midsegmental pathway through an environment rich in ECM components. To test the role of integrins in this process, integrin antagonists (the disintegrin echistatin in native and recombinant form, as well as the Arg-Gly-Asp-Ser peptide) were injected into embryos just prior to axon outgrowth at 14-16 h postfertilization (hpf). All integrin antagonists affected growth of ventral motor nerves in a similar way and native echistatin was most effective. At 24 hpf, when only the three primary motor axons per trunk hemisegment had grown out, 80% (16 of 20) of the embryos analyzed had abnormal motor nerves after injection of native echistatin, corresponding to 19% (91 of 480) of all nerves. At 33 hpf, when secondary motor axons were present in the pathway, 100% of the embryos were affected (24 of 24), with 20% of all nerves analyzed (196 of 960) being abnormal. Phenotypes comprised abnormal branching (64% of all abnormal nerves) and truncations (36% of all abnormal nerves) of ventral motor nerves at 24 hpf and mostly branching of the nerves at 33 hpf (94% of all abnormal nerves). Caudal branches were at least twice as frequent as rostral branches. Surrounding trunk tissue and a number of other axon fascicles were apparently not affected by the injections. Thus integrin function contributes to both growth and pathfinding of axons in ventral motor nerves in the trunk of zebrafish in vivo.
Collapse
Affiliation(s)
- Thomas Becker
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Martinistrasse 52, Germany.
| | | | | |
Collapse
|
13
|
Abstract
The ability of an animal to carry out its normal behavioral repertoire requires generation of an enormous diversity of neurons and glia. The relative simplicity of the spinal cord makes this an especially attractive part of the nervous system for addressing questions about the development of vertebrate neural specification and function. The last decade has witnessed an explosion in our understanding of spinal cord development and the functional interactions among spinal cord neurons and glia. Cellular, genetic, molecular, physiological and behavioral studies in zebrafish have all been important in providing insights into questions that remained unanswered by studies from other vertebrate model organisms. This is the case because many zebrafish spinal neurons can be individually identified and followed over time in living embryos and larvae. In this review, we discuss what is currently known about the cellular, genetic and molecular mechanisms involved in specifying distinct cell types in the zebrafish spinal cord and how these cells establish the functional circuitry that mediates particular behaviors. We start by describing the early signals and morphogenetic movements that form the nervous system, and in particular, the spinal cord. We then provide an overview of the cell types within the spinal cord and describe how they are specified and patterned. We begin ventrally with floor plate and proceed dorsally, through motoneurons and oligodendrocytes, interneurons, astrocytes and radial glia, spinal sensory neurons and neural crest. We next describe axon pathfinding of spinal neurons. Finally, we discuss the roles of particular spinal cord neurons in specific behaviors.
Collapse
Affiliation(s)
- Katharine E Lewis
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
14
|
Zeller J, Schneider V, Malayaman S, Higashijima SI, Okamoto H, Gui J, Lin S, Granato M. Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues. Dev Biol 2002; 252:241-56. [PMID: 12482713 DOI: 10.1006/dbio.2002.0852] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vertebrate embryos, spinal motor neurons project through segmentally reiterated nerves into the somites. Here, we report that zebrafish secondary motor neurons, which are similar to motor neurons in birds and mammals, depend on myotomal cues to navigate into the periphery. We show that the absence of myotomal adaxial cells in you-too/gli2 embryos severely impairs secondary motor axonal pathfinding, including their ability to project into the somites. Moreover, in diwanka mutant embryos, in which adaxial cells are present but fail to produce cues essential for primary motor growth cones to pioneer into the somites, secondary motor axons display similar pathfinding defects. The similarities between the axonal defects in you-too/gli2 and diwanka mutant embryos strongly suggest that pathfinding of secondary motor axons depends on myotome-derived cues, and that the diwanka gene is a likely candidate to produce or encode such a cue. Our experiments also demonstrate that diwanka plays a central role in the migration of primary and secondary motor neurons, suggesting that both neural populations share mechanisms underlying axonal pathfinding. In summary, we provide compelling evidence that myotomal cells produce multiple signals to initiate and control the migration of spinal nerve axons into the somites.
Collapse
Affiliation(s)
- Jörg Zeller
- RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E. Development of the locomotor network in zebrafish. Prog Neurobiol 2002; 68:85-111. [PMID: 12450489 DOI: 10.1016/s0301-0082(02)00075-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The zebrafish is a leading model for studies of vertebrate development and genetics. Its embryonic motor behaviors are easy to assess (e.g. for mutagenic screens), the embryos develop rapidly (hatching as larvae at 2 days) and are transparent, permitting calcium imaging and patch clamp recording in vivo. We review primarily the recent advances in understanding the cellular basis for the development of motor activities in the developing zebrafish. The motor activities are generated largely in the spinal cord and hindbrain. In the embryo these segmented structures possess a relatively small number of repeating sets of identifiable neurons. Many types of neurons as well as the two types of muscle cells have been classified based on their morphologies. Some of the molecular signals for cellular differentiation have been identified recently and mutations affecting cell development have been isolated. Embryonic motor behaviors appear in sequence and consist of an early period of transient spontaneous coiling contractions, followed by the emergence of twitching responses to touch, and later by the ability to swim. Coiling contractions are generated by an electrically coupled network of a subset of spinal neurons whereas a chemical (glutamatergic and glycinergic) synaptic drive underlies touch responses and swimming. Swimming becomes sustained in larvae once the neuromodulatory serotonergic system develops. These results indicate many similarities between developing zebrafish and other vertebrates in the properties of the synaptic drive underlying locomotion. Therefore, the zebrafish is a useful preparation for gaining new insights into the development of the neural control of vertebrate locomotion. As the types of neurons, transmitters, receptors and channels used in the locomotor network are being defined, this opens the possibility of combining cellular neurophysiology with forward and reverse molecular genetics to understand the principles of locomotor network assembly and function.
Collapse
Affiliation(s)
- Pierre Drapeau
- McGill Centre for Research in Neuroscience and Department of Biology, McGill University, Que., Montreal, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Many zebrafish mutants have specific defects in axon guidance or synaptogenesis, particularly in the retinotectal and motor systems. Several mutants have now been characterized in detail and/or cloned. A combination of genetic studies, in vivo imaging and new techniques for misexpressing genes or blocking their function promises to reveal the molecules and principles that govern wiring of the vertebrate nervous system.
Collapse
Affiliation(s)
- Lara D Hutson
- Department of Neurobiology and Anatomy, Room 401 Medical Research and Engineering Building, 20 North 1900 East, University of Utah Medical Center, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|