1
|
Turner RL. The Metameric Echinoderm. Integr Org Biol 2024; 6:obae005. [PMID: 38558855 PMCID: PMC10980344 DOI: 10.1093/iob/obae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Animal phyla are distinguished by their body plans, the ways in which their bodies are organized. A distinction is made, for example, among phyla with bodies of many segments (metameric; e.g., annelids, arthropods, and chordates), others with completely unsegmented bodies (americ; e.g., flatworms and mollusks), and a few phyla with bodies of 2 or 3 regions (oligomeric; e.g., echinoderms and hemichordates). The conventional view of echinoderms as oligomeric coelomates adequately considers early development, but it fails to recognize the metameric body plan that develops in the juvenile rudiment and progresses during indeterminate adult growth. As in the 3 phyla traditionally viewed to be metameric (annelids, arthropods, and chordates), metamery, or metamerism, in echinoderms occurs by (1) subterminal budding of (2) serially repeated components of (3) mesodermal origin. A major difference in most echinoderms is that metamery is expressed along multiple body axes, usually 5. The view of a metameric echinoderm might invite new discussions of metazoan body plans and new approaches to the study of morphogenesis, particularly in comparative treatments with annelids, arthropods, and chordates.
Collapse
Affiliation(s)
- R L Turner
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901-6975, USA
| |
Collapse
|
2
|
Janssen R, Budd GE. New insights into mesoderm and endoderm development, and the nature of the onychophoran blastopore. Front Zool 2024; 21:2. [PMID: 38267986 PMCID: PMC10809584 DOI: 10.1186/s12983-024-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Early during onychophoran development and prior to the formation of the germ band, a posterior tissue thickening forms the posterior pit. Anterior to this thickening forms a groove, the embryonic slit, that marks the anterior-posterior orientation of the developing embryo. This slit is by some authors considered the blastopore, and thus the origin of the endoderm, while others argue that the posterior pit represents the blastopore. This controversy is of evolutionary significance because if the slit represents the blastopore, then this would support the amphistomy hypothesis that suggests that a slit-like blastopore in the bilaterian ancestor evolved into protostomy and deuterostomy. RESULTS In this paper, we summarize our current knowledge about endoderm and mesoderm development in onychophorans and provide additional data on early endoderm- and mesoderm-determining marker genes such as Blimp, Mox, and the T-box genes. CONCLUSION We come to the conclusion that the endoderm of onychophorans forms prior to the development of the embryonic slit, and thus that the slit is not the primary origin of the endoderm. It is thus unlikely that the embryonic slit represents the blastopore. We suggest instead that the posterior pit indeed represents the lips of the blastopore, and that the embryonic slit (and surrounding tissue) represents a morphologically superficial archenteron-like structure. We conclude further that both endoderm and mesoderm development are under control of conserved gene regulatory networks, and that many of the features found in arthropods including the model Drosophila melanogaster are likely derived.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
3
|
Schulreich SM, Salamanca-Díaz DA, Zieger E, Calcino AD, Wanninger A. A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve. ORG DIVERS EVOL 2022; 22:893-913. [PMID: 36398106 PMCID: PMC9649484 DOI: 10.1007/s13127-022-00569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves. Supplementary information The online version contains supplementary material available at 10.1007/s13127-022-00569-5.
Collapse
Affiliation(s)
- Stephan M. Schulreich
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - David A. Salamanca-Díaz
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elisabeth Zieger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andrew D. Calcino
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andreas Wanninger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
4
|
Sachslehner A, Zieger E, Calcino A, Wanninger A. HES and Mox genes are expressed during early mesoderm formation in a mollusk with putative ancestral features. Sci Rep 2021; 11:18030. [PMID: 34504115 PMCID: PMC8429573 DOI: 10.1038/s41598-021-96711-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.
Collapse
Affiliation(s)
- Attila Sachslehner
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andrew Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
6
|
Hu G, Li G, Wang H, Wang Y. Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression. Development 2017; 144:4694-4703. [PMID: 29122841 DOI: 10.1242/dev.157172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
Abstract
Correct patterning of left-right (LR) asymmetry is essential during the embryonic development of bilaterians. Hedgehog (Hh) signaling is known to play a role in LR asymmetry development of mouse, chicken and sea urchin embryos by regulating Nodal expression. In this study, we report a novel regulatory mechanism for Hh in LR asymmetry development of amphioxus embryos. Our results revealed that Hh-/- embryos abolish Cerberus (Cer) transcription, with bilaterally symmetric expression of Nodal, Lefty and Pitx In consequence, Hh-/- mutants duplicated left-side structures and lost right-side characters, displaying an abnormal bilaterally symmetric body plan. These LR defects in morphology and gene expression could be rescued by Hh mRNA injection. Our results indicate that Hh participates in amphioxus LR patterning by controlling Cer gene expression. Curiously, however, upregulation of Hh signaling failed to alter the Cer expression pattern or LR morphology in amphioxus embryos, indicating that Hh might not provide an asymmetric cue for Cer expression. In addition, Hh is required for mouth opening in amphioxus, hinting at a homologous relationship between amphioxus and vertebrate mouth development.
Collapse
Affiliation(s)
- Guangwei Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Hui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| |
Collapse
|
7
|
Expansion of TALE homeobox genes and the evolution of spiralian development. Nat Ecol Evol 2017; 1:1942-1949. [PMID: 29085062 DOI: 10.1038/s41559-017-0351-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022]
Abstract
Spiralians, including molluscs, annelids and platyhelminths, share a unique development process that includes the typical geometry of early cleavage and early segregation of cell fate in blastomeres along the animal-vegetal axis. However, the molecular mechanisms underlying this early cell fate segregation are largely unknown. Here, we report spiralian-specific expansion of the three-amino-acid loop extension (TALE) class of homeobox genes. During early development, some of these TALE genes are expressed in staggered domains along the animal-vegetal axis in the limpet Nipponacmea fuscoviridis and the polychaete Spirobranchus kraussii. Inhibition or overexpression of these genes alters the developmental fate of blastomeres, as predicted by the gene expression patterns. These results suggest that the expansion of novel TALE genes plays a critical role in the establishment of a novel cell fate segregation mechanism in spiralians.
Collapse
|
8
|
Yue JX, Kozmikova I, Ono H, Nossa CW, Kozmik Z, Putnam NH, Yu JK, Holland LZ. Conserved Noncoding Elements in the Most Distant Genera of Cephalochordates: The Goldilocks Principle. Genome Biol Evol 2016; 8:2387-405. [PMID: 27412606 PMCID: PMC5010895 DOI: 10.1093/gbe/evw158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120-160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes in several vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over >500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates.
Collapse
Affiliation(s)
- Jia-Xing Yue
- Biosciences at Rice, Rice University, Houston, Texas Present address: Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Nice 06107 France
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Prague 14220, Czech Republic
| | - Hiroki Ono
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California
| | - Carlos W Nossa
- Biosciences at Rice, Rice University, Houston, Texas Present address: Gene by Gene Ltd., Houston, TX 77008
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Prague 14220, Czech Republic
| | - Nicholas H Putnam
- Biosciences at Rice, Rice University, Houston, Texas Present address: Dovetail Genomics, Santa Cruz, CA 95060
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California
| |
Collapse
|
9
|
Kozin VV, Filimonova DA, Kupriashova EE, Kostyuchenko RP. Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling. Mech Dev 2016; 140:1-11. [PMID: 27000638 DOI: 10.1016/j.mod.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Mesoderm represents the evolutionary youngest germ layer and forms numerous novel tissues in bilaterian animals. Despite the established conservation of the gene regulatory networks that drive mesoderm differentiation (e.g. myogenesis), mechanisms of mesoderm specification are highly variable in distant model species. Thus, broader phylogenetic sampling is required to reveal common features of mesoderm formation across bilaterians. Here we focus on a representative of Spiralia, the marine annelid Alitta virens, whose mesoderm development is still poorly investigated on the molecular level. We characterize three novel early mesodermal markers for A. virens - Twist, Mox, and Evx - which are differentially expressed within the mesodermal lineages. The Twist mRNA is ubiquitously distributed in the fertilized egg and exhibits specific expression in endomesodermal- and ectomesodermal-founder cells at gastrulation. Twist is expressed around the blastopore and later in a segmental metameric pattern. We consider this expression to be ancestral, and in support of the enterocoelic hypothesis of mesoderm evolution. We also revealed an early pattern of the MAPK activation in A. virens that is different from the previously reported pattern in spiralians. Inhibition of the MAPK pathway by U0126 disrupts the metameric Twist and Mox expression, indicating an early requirement of the MAPK cascade for proper morphogenesis of endomesodermal tissues.
Collapse
Affiliation(s)
- Vitaly V Kozin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| | - Daria A Filimonova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina E Kupriashova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| |
Collapse
|
10
|
Aldea D, Leon A, Bertrand S, Escriva H. Expression of Fox genes in the cephalochordate Branchiostoma lanceolatum. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Passamaneck YJ, Hejnol A, Martindale MQ. Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa. EvoDevo 2015; 6:10. [PMID: 25897375 PMCID: PMC4404124 DOI: 10.1186/s13227-015-0004-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Brachiopods undergo radial cleavage, which is distinct from the stereotyped development of closely related spiralian taxa. The mesoderm has been inferred to derive from the archenteron walls following gastrulation, and the primary mesoderm derivative in the larva is a complex musculature. To investigate the specification and differentiation of the mesoderm in the articulate brachiopod Terebratalia transversa, we have identified orthologs of genes involved in mesoderm development in other taxa and investigated their spatial and temporal expression during the embryonic and larval development of T. transversa. Results Orthologs of 17 developmental regulatory genes with roles in the development of the mesoderm in other bilaterian animals were found to be expressed in the developing mesoderm of T. transversa. Five genes, Tt.twist, Tt.GATA456, Tt.dachshund, Tt.mPrx, and Tt.NK1, were found to have expression throughout the archenteron wall at the radial gastrula stage, shortly after the initiation of gastrulation. Three additional genes, Tt.Pax1/9, Tt.MyoD, and Tt.Six1/2, showed expression at this stage in only a portion of the archenteron wall. Tt.eya, Tt.FoxC, Tt.FoxF, Tt.Mox, Tt.paraxis, Tt.Limpet, and Tt.Mef2 all showed initial mesodermal expression during later gastrula or early larval stages. At the late larval stage, Tt.dachshund, Tt.Limpet, and Tt.Mef2 showed expression in nearly all mesoderm cells, while all other genes were localized to specific regions of the mesoderm. Tt.FoxD and Tt.noggin both showed expression in the ventral mesoderm at the larval stages, with gastrula expression patterns in the archenteron roof and blastopore lip, respectively. Conclusions Expression analyses support conserved roles for developmental regulators in the specification and differentiation of the mesoderm during the development of T. transversa. Expression of multiple mesodermal factors in the archenteron wall during gastrulation supports previous morphological observations that this region gives rise to larval mesoderm. Localized expression domains during gastrulation and larval development evidence early regionalization of the mesoderm and provide a basis for hypotheses regarding the molecular regulation underlying the complex system of musculature observed in the larva. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813 USA ; The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate, 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| |
Collapse
|
12
|
Soukup V, Yong LW, Lu TM, Huang SW, Kozmik Z, Yu JK. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo 2015; 6:5. [PMID: 25954501 PMCID: PMC4423147 DOI: 10.1186/2041-9139-6-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 11/24/2022] Open
Abstract
Background Nodal is an important determinant of the left-right (LR) body axis in bilaterians, specifying the right side in protostomes and non-chordate deuterostomes as opposed to the left side in chordates. Amphioxus represents an early-branching chordate group, rendering it especially useful for studying the character states that predate the origin of vertebrates. However, its anatomy, involving offset arrangement of axial structures, marked asymmetry of the oropharyngeal region, and, most notably, a mouth positioned on the left side, contrasts with the symmetric arrangement of the corresponding regions in other chordates. Results We show that the Nodal signaling pathway acts to specify the LR axis in the cephalochordate amphioxus in a similar way as in vertebrates. At early neurula stages, Nodal switches from initial bilateral to the left-sided expression and subsequently specifies the left embryonic side. Perturbation of Nodal signaling with small chemical inhibitors (SB505124 and SB431542) alters expression of other members of the pathway and of left/right-sided, organ-specific genes. Upon inhibition, larvae display loss of the innate alternation of both somites and axons of peripheral nerves and loss of left-sided pharyngeal structures, such as the mouth, the preoral pit, and the duct of the club-shaped gland. Concomitantly, the left side displays ectopic expression of otherwise right-sided genes, and the larvae exhibit bilaterally symmetrical morphology, with duplicated endostyle and club-shaped gland structures. Conclusions We demonstrate that Nodal signaling is necessary for establishing the LR embryonic axis and for developing profound asymmetry in amphioxus. Our data suggest that initial symmetry breaking in amphioxus and propagation of the pathway on the left side correspond with the situation in vertebrates. However, the organs that become targets of the pathway differ between amphioxus and vertebrates, which may explain the pronounced asymmetry of its oropharyngeal and axial structures and the left-sided position of the mouth. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-6-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14220 Czech Republic
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Song-Wei Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14220 Czech Republic
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan ; Institute of Oceanography, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617 Taiwan
| |
Collapse
|
13
|
Blum M, Feistel K, Thumberger T, Schweickert A. The evolution and conservation of left-right patterning mechanisms. Development 2014; 141:1603-13. [PMID: 24715452 DOI: 10.1242/dev.100560] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Morphological asymmetry is a common feature of animal body plans, from shell coiling in snails to organ placement in humans. The signaling protein Nodal is key for determining this laterality. Many vertebrates, including humans, use cilia for breaking symmetry during embryonic development: rotating cilia produce a leftward flow of extracellular fluids that induces the asymmetric expression of Nodal. By contrast, Nodal asymmetry can be induced flow-independently in invertebrates. Here, we ask when and why flow evolved. We propose that flow was present at the base of the deuterostomes and that it is required to maintain organ asymmetry in otherwise perfectly bilaterally symmetrical vertebrates.
Collapse
Affiliation(s)
- Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
14
|
Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A 2011; 108:9160-5. [PMID: 21571634 DOI: 10.1073/pnas.1014235108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FGF signaling is one of the few cell-cell signaling pathways conserved among all metazoans. The diversity of FGF gene content among different phyla suggests that evolution of FGF signaling may have participated in generating the current variety of animal forms. Vertebrates possess the greatest number of FGF genes, the functional evolution of which may have been implicated in the acquisition of vertebrate-specific morphological traits. In this study, we have investigated the roles of the FGF signal during embryogenesis of the cephalochordate amphioxus, the best proxy for the chordate ancestor. We first isolate the full FGF gene complement and determine the evolutionary relationships between amphioxus and vertebrate FGFs via phylogenetic and synteny conservation analysis. Using pharmacological treatments, we inhibit the FGF signaling pathway in amphioxus embryos in different time windows. Our results show that the requirement for FGF signaling during gastrulation is a conserved character among chordates, whereas this signal is not necessary for neural induction in amphioxus, in contrast to what is known in vertebrates. We also show that FGF signal, acting through the MAPK pathway, is necessary for the formation of the most anterior somites in amphioxus, whereas more posterior somite formation is not FGF-dependent. This result leads us to propose that modification of the FGF signal function in the anterior paraxial mesoderm in an amphioxus-like vertebrate ancestor might have contributed to the loss of segmentation in the preotic paraxial mesoderm of the vertebrate head.
Collapse
|
15
|
Chen Z, Zhang H, Yang H, Huang X, Zhang X, Zhang P. The expression of AmphiTCTP, a TCTP orthologous gene in amphioxus related to the development of notochord and somites. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:460-5. [PMID: 17400495 DOI: 10.1016/j.cbpb.2007.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 02/07/2007] [Accepted: 02/25/2007] [Indexed: 11/25/2022]
Abstract
The translationally controlled tumor protein (TCTP) is highly conserved and has been widely found in eukaryotic organisms. Here, we report the phylogenetic analysis and developmental expression of AmphiTCTP, a TCTP homologous gene in cephalochordate amphioxus. Phylogenetic analysis indicates that the putative protein of AmphiTCTP is close to its vertebrate orthologs. The mRNA of AmphiTCTP is found in fertilized eggs, early cleavage embryo and most of the early developmental stages by in situ hybridization and RT-PCR, but its expression is not detectable from late cleavage stage to mid-gastrula. The expression of AmphiTCTP in zygotes and early cleavage stages shows that AmphiTCTP may be a maternal gene. From the early neurula stage onward, AmphiTCTP transcript is localized in the presumptive notochord, presomitic mesoderm, and nascent somites. However, its expression is gradually down-regulated after the notochord and somites have been formed. The expression pattern of AmphiTCTP thus coincides with the differentiation of the notochord and somites, this suggests that AmphiTCTP may not be a housekeeping gene and may play an important role in mesoderm development.
Collapse
Affiliation(s)
- Zhongke Chen
- Life Science College, The Key Lab of Experimental Teratolog of Ministry of Education, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
16
|
Levin M. Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. ACTA ACUST UNITED AC 2006; 78:191-223. [PMID: 17061264 DOI: 10.1002/bdrc.20078] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well-characterized, the left-right (LR) axis has only relatively recently begun to be understood at the molecular level. The mechanisms that ensure invariant LR asymmetry of the heart, viscera, and brain involve fundamental aspects of cell biology, biophysics, and evolutionary biology, and are important not only for basic science but also for the biomedicine of a wide range of birth defects and human genetic syndromes. The LR axis links biomolecular chirality to embryonic development and ultimately to behavior and cognition, revealing feedback loops and conserved functional modules occurring as widely as plants and mammals. This review focuses on the unique and fascinating physiological aspects of LR patterning in a number of vertebrate and invertebrate species, discusses several profound mechanistic analogies between biological regulation in diverse systems (specifically proposing a nonciliary parallel between kidney cells and the LR axis based on subcellular regulation of ion transporter targeting), highlights the possible importance of early, highly-conserved intracellular events that are magnified to embryo-wide scales, and lays out the most important open questions about the function, evolutionary origin, and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Developmental Biology, The Forsyth Institute, and the Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
17
|
Lowe CJ, Terasaki M, Wu M, Freeman RM, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C, Smith M, Kirschner M, Gerhart J. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 2006; 4:e291. [PMID: 16933975 PMCID: PMC1551926 DOI: 10.1371/journal.pbio.0040291] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022] Open
Abstract
We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called "dorsal." On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other.
Collapse
Affiliation(s)
- Christopher J Lowe
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Michael Wu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda Runft
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Kristen Kwan
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saori Haigo
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Eric Lander
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Chris Gruber
- Express Genomics, Frederick, Maryland, United States of America
| | - Mark Smith
- Express Genomics, Frederick, Maryland, United States of America
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
18
|
Raya A, Izpisúa Belmonte JC. Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev Genet 2006; 7:283-93. [PMID: 16543932 DOI: 10.1038/nrg1830] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vertebrates seem to be essentially bilaterally symmetrical on the exterior, there are numerous interior left-right asymmetries in the disposition and placement of internal organs. These asymmetries are established during embryogenesis by complex epigenetic and genetic cascades. Recent studies in a range of model organisms have made important progress in understanding how this laterality information is generated and conveyed to large regions of the embryo. Both commonalities and divergences are emerging in the mechanisms that different vertebrates use in left-right axis specification. Recent evidence also provides intriguing links between the establishment of left-right asymmetries and the symmetrical elongation of the anterior-posterior axis.
Collapse
Affiliation(s)
- Angel Raya
- Center of Regenerative Medicine in Barcelona and Instituci Catalana de Recerca i Estudis Avanats (ICREA), Doctor Aiguader 80, 08003 Barcelona, Spain
| | | |
Collapse
|
19
|
Li X, Zhang W, Chen D, Lin Y, Huang X, Shi D, Zhang H. Expression of a novel somite-formation-related gene, AmphiSom, during amphioxus development. Dev Genes Evol 2005; 216:52-5. [PMID: 16211387 DOI: 10.1007/s00427-005-0027-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
A novel gene, AmphiSom, was identified in amphioxus Branchiostoma belcheri tsingtauense. Its sequence and developmental expression pattern were determined. AmphiSom transcripts were first detected in the presomitic mesoderm at the late gastrula stage and reached the highest level in the forming and nascent somites in neurulae. However, the expression of AmphiSom was rapidly down-regulated after somites were formed. It was maintained in the most anterior somite and most posterior somite at neurula stages. By 48 h, AmphiSom transcripts were detected only in the developing tail bud but were no longer detected in 72-h larva. Our data demonstrated that the AmphiSom gene is expressed during the development of somites in amphioxus and could play a role in somite formation.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Biology, Shandong University, 27 Shanda nan road, Shandong, Jinan, 250100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 2005; 122:3-25. [PMID: 15582774 DOI: 10.1016/j.mod.2004.08.006] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 08/22/2004] [Accepted: 08/23/2004] [Indexed: 12/17/2022]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a thread connecting biomolecular chirality to human cognition, along the way involving fundamental aspects of cell biology, biophysics, and evolutionary biology. An understanding of LR asymmetry is important not only for basic science, but also for the biomedicine of a wide range of birth defects and human genetic syndromes. This review summarizes the current knowledge regarding LR patterning in a number of vertebrate and invertebrate species, discusses several poorly understood but important phenomena, and highlights some important open questions about the evolutionary origin and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Cytokine Biology Department, The Forsyth Institute, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Shimeld SM, Holland ND. Amphioxus molecular biology: insights into vertebrate evolution and developmental mechanisms. CAN J ZOOL 2005. [DOI: 10.1139/z04-155] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cephalochordate amphioxus is the best available proxy for the last common invertebrate ancestor of the vertebrates. During the last decade, the developmental genetics of amphioxus have been extensively examined for insights into the evolutionary origin and early evolution of the vertebrates. Comparisons between expression domains of homologous genes in amphioxus and vertebrates have strengthened proposed homologies between specific body parts. Molecular genetic studies have also highlighted parallels in the developmental mechanisms of amphioxus and vertebrates. In both groups, a similar nested pattern of Hox gene expression is involved in rostrocaudal patterning of the neural tube, and homologous genes also appear to be involved in dorsoventral neural patterning. Studies of amphioxus molecular biology have also hinted that the protochordate ancestor of the vertebrates included cell populations that modified their developmental genetic pathways during early vertebrate evolution to yield definitive neural crest and neurogenic placodes. We also discuss how the application of expressed sequence tag and gene-mapping approaches to amphioxus have combined with developmental studies to advance our understanding of chordate genome evolution. We conclude by considering the potential offered by the sequencing of the amphioxus genome, which was completed in late 2004.
Collapse
|
22
|
Lin Y, Liang K, Zhang Y, Chen Z, Zhang H. The expression of AmphiMdp during amphioxus early development. Gene Expr Patterns 2004; 5:253-5. [PMID: 15567722 DOI: 10.1016/j.modgep.2004.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 07/20/2004] [Accepted: 07/20/2004] [Indexed: 11/25/2022]
Abstract
We report here the expression of AmphiMdp in embryos and larvae. Faint AmphiMdp transcripts were first detected in the mesendoderm at the mid-gastrula stage and later in the somites of the early neurula. Expression remained in somites throughout the neurula and early larval stages and then disappeared from the somites starting with the most anterior somite and progressing posteriorly. At the 48-h larval stage, transcripts were detected in the developing tail bud. No transcripts were detectable in the somites of the 72-h larva. The result suggests that AmphiMdp is involved in myogenesis in amphioxus.
Collapse
Affiliation(s)
- Yushuang Lin
- Life Science College, Institute of Developmental Biology, Shanda Nan Lu No. 27, Shandong University, Jinan 250100, China
| | | | | | | | | |
Collapse
|
23
|
Abstract
A characteristic feature of the vertebrate body is its segmentation along the anteroposterior axis, as illustrated by the repetition of vertebrae that form the vertebral column. The vertebrae and their associated muscles derive from metameric structures of mesodermal origin, the somites. The segmentation of the body is established by somitogenesis, during which somites form sequentially in a rhythmic fashion from the presomitic mesoderm. This review highlights recent findings that show how dynamic gradients of morphogens and retinoic acid, coupled to a molecular oscillator, drive the formation of somites and link somitogenesis to the elongation of the anteroposterior axis.
Collapse
Affiliation(s)
- Julien Dubrulle
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
24
|
Ikuta T, Yoshida N, Satoh N, Saiga H. Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci U S A 2004; 101:15118-23. [PMID: 15469921 PMCID: PMC524048 DOI: 10.1073/pnas.0401389101] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ascidians, belonging to the subphylum Urochordata, the earliest branch from the lineage to the vertebrates, exhibit a prototypical morphogenesis of chordates in the larval development, although they subsequently metamorphose into adults with a unique body structure. Recent draft genome analysis of the ascidian Ciona intestinalis has identified 9 Hox genes, which, however, have been located on five scaffolds. Similarly, expression patterns of Ciona Hox genes are largely unknown, although some data have been available for a few Hox member genes. Thus, the cluster structure and colinearity of Hox genes are still an enigma in C. intestinalis. To address these issues, we used fluorescence in situ hybridization and whole-mount in situ hybridization techniques and examined the genomic organization and spatiotemporal expression of all Hox as well as extended Hox member genes (Evx and Mox) of C. intestinalis. We found that seven of nine Ciona Hox genes are located on a single chromosome with some ordering exceptions, and the other genes, including Evx and Mox, are located on three other chromosomes. Some Ciona Hox genes, if not all, exhibited spatially coordinated expression within the larval central nervous system and the gut of the juvenile. In light of these observations, we suggest that the cluster organization and colinearity of the Hox genes are under dispersing and disintegrating conditions in C. intestinalis.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
25
|
Hwang SPL, Wu JY, Chen CA, Hui CF, Chen CP. Novel pattern of AtXlox gene expression in starfish Archaster typicus embryos. Dev Growth Differ 2003; 45:85-93. [PMID: 12630949 DOI: 10.1046/j.1440-169x.2003.00677.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An Xlox homologue gene (AtXlox) was identified in the starfish Archaster typicus. The gene consists of two exons, and encodes a polypeptide containing 228 amino acids. Although AtXlox shared 54.6 and 50.3% global amino acid sequence similarity with sea urchin SpXlox and Xenopus XlHhox8, respectively, the homeodomain of AtXlox was highly conserved. Amino acid sequence identity as high as 85 to 100% was identified between the AtXlox homeodomain and its homologues from various vertebrate and invertebrate organisms. In addition, a conserved histidine residue located at position 44 of the homeodomain of all known Xlox homologues was also identified. Results of a phylogenetic analysis based on the 60 amino acid sequence of the homeodomain indicated that AtXlox was closely related to sea urchin SpXlox. Temporal developmental mRNA expression pattern analyzed by reverse transcription (RT)-polymerase chain reaction (PCR) showed that AtXlox mRNA was mainly expressed in the early gastrula stage embryos. Whole-mount in situ hybridization revealed a ubiquitous mRNA expression pattern in archenterons as well as in ectodermal cells near the vegetal region of early and mid-gastrula stage embryos. This spatial expression pattern is very different from those of Xlox homologues in the leech, amphioxus, and in various vertebrate organisms with spatially restricted mRNA expression patterns in endodermal cells.
Collapse
|