1
|
Vallecillo-Rivas M, Fernández-Romero E, Pérez-Segura M, Toledano R, Amar-Zetouni A, Toledano M, Vallecillo C. Efficacy of topical application of corticosteroids in the remineralization of dental pulp tissue. A systematic review of the literature. J Dent 2024; 150:105333. [PMID: 39218288 DOI: 10.1016/j.jdent.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The aim of this systematic review was to demonstrate the efficacy of topical application of corticosteroids in remineralization of dental pulp tissues to preserve their vitality and function. DATA, SOURCES AND STUDY SELECTION An electronic search was performed using MEDLINE by PubMed, EMBASE, Web of Science (WOS), and Scopus databases. The inclusion criteria were in vitro studies that employed dental pulp tissue obtained from extracted healthy permanent human teeth and were subjected to topical administration of corticosteroids and evaluated tissue remineralization by performing any mineralization assay. A total of 11 studies were selected for inclusion. PRISMA guidelines were followed, and the methodological quality and risk of bias of the included studies were evaluated using the RoBDEMAT guidelines. Also, tables were designed for data extraction, including tissue mineralization and osteogenic differentiation as primary and secondary outcomes, respectively. CONCLUSIONS Alizarin Red S (ARS) has been able to demonstrate a possible mineralizing power of corticosteroids, applied at an adequate dose. The up-regulation of Alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OSP), sialophosphoprotein (DSPP), runt-related transcription factor 2 (RUNX2), collagen type 1 alpha 1(COL1α1) and dentin matrix protein 1 (DMP-1) induced the osteogenic/odontogenic differentiation of dental pulp stem cells (DPSCs). CLINICAL SIGNIFICANCE Deep carious lesions treatment is still challenging in restorative dentistry. Some treatments have been focused on dental pulp tissue remineralization to maintain the function and vitality. After corticosteroids topical application, mineral deposition and osteogenic differentiation have been detected.
Collapse
Affiliation(s)
- Marta Vallecillo-Rivas
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Enrique Fernández-Romero
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Michelle Pérez-Segura
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Raquel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Anisa Amar-Zetouni
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain.
| | - Cristina Vallecillo
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
McMillan HP, Lundy FT, Dunne OM, McLoughlin KJ, About I, Curtis TM, El Karim I. Immunological isolation and characterization of neuronal progenitors from human dental pulp: A laboratory-based investigation. Int Endod J 2024; 57:1136-1146. [PMID: 38713428 DOI: 10.1111/iej.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
AIMS Dental pulp stem cells (DPSCs) contain a population of stem cells with a broad range of differentiation potentials, as well as more lineage-committed progenitors. Such heterogeneity is a significant obstacle to experimental and clinical applications. The aim of this study is to isolate and characterize a homogenous neuronal progenitor cell population from human DPSCs. METHODOLOGY Polysialylated-neural cell adhesion molecule (PSA-NCAM+) neural progenitors were isolated from the dental pulp of three independent donors using magnetic-activated cell sorting (MACS) technology. Immunofluorescent staining with a panel of neural and non-neural markers was used to characterize the magnetically isolated PSA-NCAM+ fraction. PSA-NCAM+ cells were then cultured in Neurobasal A supplemented with neurotrophic factors: dibutyryl cyclic-AMP, neurotrophin-3, B27 and N2 supplements to induce neuronal differentiation. Both PSA-NCAM+ and differentiated PSA-NCAM+ cells were used in Ca2+ imaging studies to assess the functionality of P2X3 receptors as well as membrane depolarization. RESULTS PSA-NCAM+ neural progenitors were isolated from a heterogeneous population of hDPSCs using magnetic-activated cell sorting and anti-PSA-NCAM MicroBeads. Flow cytometry analysis demonstrated that immunomagnetic sorting significantly increased the purity of PSA-NCAM+ cells. Immunofluorescent staining revealed expression of pan-neuronal and mature neuronal markers, PGP9.5 and MAP2, respectively, as well as weak expression of the mature sensory markers, peripherin and islet1. ATP-induced response was mediated predominately by P2X3 receptors in both undifferentiated and differentiated cells, with a greater magnitude observed in the latter. In addition, membrane depolarizations were also detected in cells before and after differentiation when loaded with fast-voltage-responding fluorescent molecule, FluoVolt™ in response to potassium chloride. Interestingly, only differentiated PSA-NCAM+ cells were capable of spontaneous membrane oscillations. CONCLUSIONS In summary, DPSCs contain a population of neuronal progenitors with enhanced neural differentiation and functional neural-like properties that can be effectively isolated with magnetic-activated cell sorting (MACS).
Collapse
Affiliation(s)
- Hayley P McMillan
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Fionnuala T Lundy
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Orla M Dunne
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Kiran John McLoughlin
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Imad About
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - T M Curtis
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Ikhlas El Karim
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| |
Collapse
|
3
|
Kim M, Lee SH, Shin DH. In Vitro Study of the Biological and Physical Properties of Dual-Cure Resin-Modified Calcium Silicate-Based Cement. Dent J (Basel) 2023; 11:dj11050120. [PMID: 37232772 DOI: 10.3390/dj11050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The aim of the present study was to compare the biological and mechanical properties of a novel dual-cure, resin-modified calcium silicate material, Theracal PT® (TP), with those of Theracal LC® (TL) and BiodentineTM (BD). METHODS The cell counting kit-8 was used on human dental pulp cells to test cell the viability of the three materials. Antibacterial activity of TP, TL, and BD against Enterococcus faecalis was investigated under anaerobic conditions. The ability of the materials to support odontogenic differentiation was studied by examining the relative gene expression of osteocalcin (OCN), osteopontin (OPN), and Collagen I (ColI) using real-time polymerase chain reaction. For mechanical property tests, microhardness was evaluated using the Vickers microhardness (VHN) test, and the bond strength to the resin was evaluated using a shear bond test machine. RESULTS There was no significant difference in cell viability between TL and TP after 48 h, and BD showed the highest cell viability, while TP showed the highest antibacterial effect. At the 12-h time point, there was no significant difference in ColI and OCN expression between BD and TP, but TP showed a higher expression of OPN than BD. However, at the 48-h time point, ColI and OCN showed higher levels of expression for BD than for TP and TL. At the same time point, only OPN had a higher diffusion for TP than for BD. TP demonstrated a VHN of approximately 30-35. This value was higher than that of TL and lower than that of BD. In contrast to VHN, the shear bond strength to resin was significantly higher for TL and TP than for BD. CONCLUSION TP showed lower biocompatibility than BD but higher OPN expression and antibacterial effects than BD and TL. TP showed higher shear bond strength than BD and higher VHN than TL and BD at the 24-h time point.
Collapse
Affiliation(s)
- Minjung Kim
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Dong-Hoon Shin
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Khoshbin E, Ghasemi L, Najafi R, Karkehabadi H. Effects of CEM cement and emdogain on proliferation and differentiation of human stem cells from the apical papilla: a comparative in vitro study. Biotechnol Lett 2023; 45:69-81. [PMID: 36550335 DOI: 10.1007/s10529-022-03329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study compared the effects of calcium-enriched mixture (CEM) cement, Emdogain (EMD), and their combination (CEM/Emdogain) on the differentiation and proliferation of stem cells from the apical papilla (SCAPs). METHODS In this in vitro, experimental study, SCAPs were isolated from two sound immature impacted third molars and cultured. After ensuring their stemness by detecting cell surface markers they were exposed to CEM cement, Emdogain, and CEM cement coated with Emdogain for 24 and 72 h. The control cells did not undergo any intervention. Cell viability [by methyl thiazolyl tetrazolium (MTT) assay], expression of odontogenic differentiation genes [by quantitative reverse-transcription polymerase chain reaction (qRT-PCR)], and alkaline phosphatase (ALP) activity (by ALP staining kit) were evaluated. Data were analyzed by one-way ANOVA, t-test, and Mann-Whitney test (α = 0.05). RESULTS Cell viability in the CEM cement and CEM/Emdogain groups decreased compared with the control group at 72 h (P < 0.05). Expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP) genes, and ALP activity significantly increased in all three experimental groups compared with the control group at both 24 and 72 h. This increase was substantially more significant in CEM/Emdogain group (P > 0.05). The number of mineralized nodules significantly increased in all groups at 72 h, with a higher rate in the CEM/Emdogain group. CONCLUSION All biomaterials increased the differentiation of SCAPs, expression of odontogenic differentiation genes, and ALP activity, but CEM/Emdogain was considerably more effective for this purpose.
Collapse
Affiliation(s)
- Elham Khoshbin
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Ghasemi
- Department of Endodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Zhang Y, Luo W, Zheng L, Hu J, Nie L, Zeng H, Tan X, Jiang Y, Li Y, Zhao T, Yang Z, He TC, Zhang H. Efficient bone regeneration of BMP9-stimulated human periodontal ligament stem cells (hPDLSCs) in decellularized bone matrix (DBM) constructs to model maxillofacial intrabony defect repair. Stem Cell Res Ther 2022; 13:535. [PMID: 36575551 PMCID: PMC9795631 DOI: 10.1186/s13287-022-03221-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND BMP9-stimulated DPSCs, SCAPs and PDLSCs are effective candidates for repairing maxillofacial bone defects in tissue engineering, while the most suitable seed cell source among these three hDMSCs and the optimal combination of most suitable type of hDMSCs and BMP9 have rarely been explored. Moreover, the orthotopic maxillofacial bone defect model should be valuable but laborious and time-consuming to evaluate various candidates for bone regeneration. Thus, inspired from the maxillofacial bone defects and the traditional in vivo ectopic systems, we developed an intrabony defect repair model to recapitulate the healing events of orthotopic maxillofacial bone defect repair and further explore the optimized combinations of most suitable hDMSCs and BMP9 for bone defect repair based on this modified ectopic system. METHODS Intrabony defect repair model was developed by using decellularized bone matrix (DBM) constructs prepared from the cancellous part of porcine lumbar vertebral body. We implanted DBM constructs subcutaneously on the flank of each male NU/NU athymic nude mouse, followed by directly injecting the cell suspension of different combinations of hDMSCs and BMP9 into the central hollow area of the constructs 7 days later. Then, the quality of the bony mass, including bone volume fraction (BV/TV), radiographic density (in Hounsfield units (HU)) and the height of newly formed bone, was measured by micro-CT. Furthermore, the H&E staining and immunohistochemical staining were performed to exam new bone and new blood vessel formation in DBM constructs. RESULTS BMP9-stimulated periodontal ligament stem cells (PDLSCs) exhibited the most effective bone regeneration among the three types of hDMSCs in DBM constructs. Furthermore, an optimal dose of PDLSCs with a specific extent of BMP9 stimulation was confirmed for efficacious new bone and new blood vessel formation in DBM constructs. CONCLUSIONS The reported intrabony defect repair model can be used to identify optimized combinations of suitable seed cells and biological factors for bone defect repair and subsequent development of efficacious bone tissue engineering therapies.
Collapse
Affiliation(s)
- Yuxin Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen Zheng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Hu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Li Nie
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huan Zeng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xi Tan
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yucan Jiang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yeming Li
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhuohui Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- grid.412578.d0000 0000 8736 9513Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Hongmei Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Human Primary Odontoblast-like Cell Cultures—A Focused Review Regarding Cell Characterization. J Clin Med 2022; 11:jcm11185296. [PMID: 36142943 PMCID: PMC9501234 DOI: 10.3390/jcm11185296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Cell cultures can provide useful in vitro models. Since odontoblasts are postmitotic cells, they cannot be expanded in cell cultures. Due to their extension into the dentin, injuries are inevitable during isolation. Therefore, “odontoblast-like” cell culture models have been established. Nowadays, there is no accepted definition of odontoblast-like cell cultures, i.e., isolation, induction, and characterization of cells are not standardized. Furthermore, no quality-control procedures are defined yet. Thus, the aim of this review was to evaluate both the methods used for establishment of cell cultures and the validity of molecular methods used for their characterization. An electronic search was performed in February 2022 using the Medline, Scopus, and Web of Science database identifying publications that used human primary odontoblast-like cell cultures as models and were published between 2016 and 2022. Data related to (I) cell culture conditions, (II) stem cell screening, (III) induction media, (IV) mineralization, and (V) cell characterization were analyzed. The included publications were not able to confirm an odontoblast-like nature of their cell cultures. For their characterization, not only a similarity to dentin but also a distinction from bone must be demonstrated. This is challenging, due to the developmental and evolutionary proximity of these two tissue types.
Collapse
|
7
|
Ravenscroft H, El Karim I, Krasnodembskaya AD, Gilmore B, About I, Lundy FT. Novel Antibacterial Properties of the Human Dental Pulp Multipotent Mesenchymal Stromal Cell Secretome. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:956-969. [PMID: 35339427 DOI: 10.1016/j.ajpath.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
It is well recognized that clearance of bacterial infection within the dental pulp precedes pulpal regeneration. However, although the regenerative potential of the human dental pulp has been investigated extensively, its antimicrobial potential remains to be examined in detail. In the current study bactericidal assays were used to demonstrate that the secretome of dental pulp multipotent mesenchymal stromal cells (MSCs) has direct antibacterial activity against the archetypal Gram-positive and Gram-negative bacteria, Staphylococcus aureus and Escherichia coli, respectively, as well as the oral pathogens Streptococcus mutans, Lactobacillus acidophilus, and Fusobacterium nucleatum. Furthermore, a cytokine/growth factor array, enzyme-linked immunosorbent assays, and antibody blocking were used to show that cytokines and growth factors present in the dental pulp MSC secretome, including hepatocyte growth factor, angiopoietin-1, IL-6, and IL-8, contribute to this novel antibacterial activity. This study elucidated a novel and diverse antimicrobial secretome from human dental pulp MSCs, suggesting that these cells contribute to the antibacterial properties of the dental pulp. With this improved understanding of the secretome of dental pulp MSCs and its novel antibacterial activity, new evidence for the ability of the dental pulp to fight infection and restore functional competence is emerging, providing further support for the biological basis of pulpal repair and regeneration.
Collapse
Affiliation(s)
- Harriet Ravenscroft
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ikhlas El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Brendan Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Imad About
- Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Aix Marseille University, Marseille, France
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
8
|
Kang KR, Kim JS, Seo JY, Lim H, Kim TH, Yu SK, Kim HJ, Kim CS, Chun HS, Park JC, Kim DK. Nicotinamide phosphoribosyltransferase regulates the cell differentiation and mineralization in cultured odontoblasts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:37-45. [PMID: 34965994 PMCID: PMC8723980 DOI: 10.4196/kjpp.2022.26.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Kyeong-Rok Kang
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jae-Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jeong-Yeon Seo
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Ageassociated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - HyangI Lim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Tae-Hyeon Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Sun-Kyoung Yu
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Heung-Joong Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Chun Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Hong Sung Chun
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Ageassociated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Do Kyung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
9
|
Abstract
Teeth and the surrounding periodontal tissues are affected by many pathologies that compromise their integrity and significantly affect life quality. The study of the main dental tissues, the dental pulp and periodontium, is made arduous by their close association with highly mineralized tissues (dentin, cementum, and alveolar bone). Here we describe a protocol to isolate all cells composing human dental pulp and periodontium for single-cell RNA sequencing analysis. For complete details on the use and execution of this protocol, please refer to Pagella et al. (2021).
Collapse
|
10
|
Afami ME, El Karim I, About I, Krasnodembskaya AD, Laverty G, Lundy FT. Multicomponent Peptide Hydrogels as an Innovative Platform for Cell-Based Tissue Engineering in the Dental Pulp. Pharmaceutics 2021; 13:1575. [PMID: 34683868 PMCID: PMC8539061 DOI: 10.3390/pharmaceutics13101575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
In light of the increasing levels of antibiotic resistance, nanomaterials and novel biologics are urgently required to manage bacterial infections. To date, commercially available self-assembling peptide hydrogels have not been studied extensively for their ability to inhibit micro-organisms relevant to tissue engineering sites such as dental root canals. In this work, we assess the biocompatibility of dental pulp stem/stromal cells with commercially available multicomponent peptide hydrogels. We also determine the effects of dental pulp stem/stromal cell (DPSC) culture in hydrogels on growth factor/cytokine expression. Furthermore, to investigate novel aspects of self-assembling peptide hydrogels, we determine their antimicrobial activity against the oral pathogens Staphylococcus aureus, Enterococcus faecalis, and Fusobacterium nucleatum. We show that self-assembling peptide hydrogels and hydrogels functionalized with the adhesion motif Arg-Gly-Asp (RGD) are biocompatible with DPSCs, and that cells grown in 3D hydrogel cultures produce a discrete secretome compared with 2D-cultured cells. Furthermore, we show that soluble peptides and assembled hydrogels have antimicrobial effects against oral pathogens. Given their antibacterial activity against oral pathogens, biocompatibility with dental pulp stem/stromal cells and enhancement of an angiogenic secretome, multicomponent peptide hydrogels hold promise for translational use.
Collapse
Affiliation(s)
- Marina E. Afami
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| | - Ikhlas El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, 13385 Marseille, France;
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| | - Garry Laverty
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| |
Collapse
|
11
|
Liu Y, Wang Y, Lou Y, Tian W, Que K. Functional expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts. J Mol Histol 2021; 52:1105-1114. [PMID: 34514518 DOI: 10.1007/s10735-021-10018-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023]
Abstract
TRPA1 and TRPV1 channels respond to external stimulation as pain mediators and form a complex with a transmembrane protein TMEM100 in some tissues. However, their expression and interaction in dental pulp is unclear. To investigate the functional co-expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts (HODs), immunohistochemistry, immunofluorescence staining and Western blot were used to study their co-localization and expression in both native HODs and cultured HOD-like cells. Calcium imaging was used to detect the functional interaction between TRPA1 and TRPV1 channels. Immunohistochemistry and multiple immunofluorescence staining of tooth slices showed positive expression of TRPA1 channel, TRPV1 channel and TMEM100 mainly in the cell bodies of HODs, and TRPA1 channel presented more obvious immunofluorescence in the cell processes than TRPV1 channel and TMEM100. HALO software analysis showed that TRPA1 and TRPV1 channels were positively expressed in most TMEM100+ HODs and these three proteins were strongly correlated in HODs (P < 0.01). The protein expression levels of TRPA1 channel, TRPV1 channel and TMEM100 in HODs showed no significant difference (P > 0.05). Double immunofluorescence staining of cultured HOD-like cells visually demonstrated that TRPA1 and TRPV1 channel were both highly co-localized with TMEM100 with similar expressive intensity. Calcium imaging showed that there was a functional interaction between TRPA1 and TRPV1 channels in HOD-like cells, and TRPA1 channel might play a greater role in this interaction. Overall, we concluded that TRPA1 channel, TRPV1 channel and TMEM100 could be functionally co-expressed in HODs.
Collapse
Affiliation(s)
- Yangqiu Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China.,Shandong Medical College, Linyi, 276000, Shandong, China
| | - Yu Wang
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China.,Stomatological Hospital of Lianyungang, The First People's Hospital of Lianyungang, Lianyungang, 222000, Jiangsu, China
| | - Yaxin Lou
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Kehua Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China.
| |
Collapse
|
12
|
Peng W, Huan Z, Pei G, Li J, Cao Y, Jiang L, Zhu Y. Silicate bioceramics elicit proliferation and odonto-genic differentiation of human dental pulp cells. Dent Mater J 2021; 41:27-36. [PMID: 34408120 DOI: 10.4012/dmj.2021-042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effects of silicates on the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs) in vitro. HDPCs were cultured in the presence of calcium silicate (CS) extracts, while calcium hydroxide (CH) extracts and culture medium without CH or CS were used as the control groups. The calcium and phosphorus ion concentrations in the CS were similar to those in the control groups, but the concentration of silicon ions in the CS extracts was higher than that in the control groups. HDPCs cultured with CS and CH extracts at dilution of 1/128 proliferated significantly more than those cultured with the control treatments. CS extracts promoted cell migration, enhanced the expression of odontogenic marker genes and conspicuously increased odontogenesis-related protein production and the release of cytokines, suggesting that CS bioactive ceramics possess excellent biocompatibility and bioactivity and have the potential for application as pulp-capping agents.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
| | - Ge Pei
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences.,College of Chemistry and Materials Science, Shanghai Normal University
| | - Jinheng Li
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
| | - Ying Cao
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
| | - Long Jiang
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
| | - Yaqin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
| |
Collapse
|
13
|
Kumar C, Mohana Kumar B, Kurkalli BG, Shetty S, Rao S, Shetty V. Influence of human teeth matrix on the cellular and biological properties of dental pulp stem cells - An in vitro study. J Oral Biol Craniofac Res 2021; 11:552-557. [PMID: 34401228 DOI: 10.1016/j.jobcr.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/10/2021] [Accepted: 07/31/2021] [Indexed: 01/07/2023] Open
Abstract
Background A major challenge in bone tissue regeneration is the use of right combination of stem cells with osteoinductive biomaterials. Hence, the present in vitro study was aimed at evaluating the effect of mineralized teeth matrix (MTM) and demineralized teeth matrix (DTM) on the selected cellular and biological characteristics of human dental pulp stem cells (DPSCs). Methods Established DPSCs were cultured in conditioned media (CM) of MTM and DTM and analyzed on their morphology, proliferation rate, population doubling time (PDT), viability, migration ability, ploidy and expression of cell surface markers, Further, the effect of MTM and DTM on the biocompatibility and osteogenic differentiation ability of DPSCs was evaluated. Results The DPSCs exhibited a fibroblast-like morphology with >80% viability. Cells were highly proliferative with an average PDT of 61 ± 12 h. A greater proliferation of DPSCs in the scratched area was observed when cultured in CM of teeth matrix compared to the cells in basal media. Moreover, no chromosomal abnormalities were induced during the culture of DPSCs. Flow cytometry analysis showed that DPSCs in basal media and CM of MTM and DTM were positive for CD29, CD44, CD73, CD90 (>70%), and negative for CD34 and CD45 (<0.1%). Alizarin red staining showed the higher deposition of mineralized nodules in DPSCs cultured with DTM compared to MTM. Conclusion MTM and DTM-derived CM enhanced the proliferation and selected phenotypic markers expression with no chromosomal abnormalities in DPSCs. In addition, both matrices were biocompatible with DPSCs and increased the osteogenic differentiation through higher nodule formation.
Collapse
Affiliation(s)
- Chethan Kumar
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte 575018, Mangaluru, India
| | - Basavarajappa Mohana Kumar
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte 575018, Mangaluru, India
| | - Basan Gowda Kurkalli
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte 575018, Mangaluru, India
| | - Shishir Shetty
- Department of Conservative Dentistry and Endodontics, A. B. Shetty Memorial Institute of Dental Sciences, Nitte University (Deemed to Be University), Deralakatte 575018, Mangaluru, India
| | - Shama Rao
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte 575018, Mangaluru, India
| | - Veena Shetty
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte 575018, Mangaluru, India
| |
Collapse
|
14
|
Al-Natour B, Rankin R, McKenna R, McMillan H, Zhang SD, About I, Khan AA, Galicia JC, Lundy FT, El-Karim IA. Identification and validation of novel biomarkers and therapeutics for pulpitis using connectivity mapping. Int Endod J 2021; 54:1571-1580. [PMID: 33964033 DOI: 10.1111/iej.13547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
AIM To create an irreversible pulpitis gene signature from microarray data of healthy and inflamed dental pulps, followed by a bioinformatics approach using connectivity mapping to identify therapeutic compounds that could potentially treat pulpitis. METHODOLOGY The Gene Expression Omnibus (GEO) database, an international public repository of genomics data sets, was searched for human microarray datasets assessing pulpitis. An irreversible pulpitis gene expression signature was generated by differential expression analysis. The statistically significant connectivity map (ssCMap) method was used to identify compounds with a highly correlating gene expression pattern. qPCR was used to validate novel pulpitis genes. An ex vivo pulpitis model was used to test the effects of the compounds identified, and the level of inflammatory cytokines was measured with qPCR, ELISA and multiplex array. Means were compared using the t-test or ANOVA with the level of significance set at p ≤ .05. RESULTS Pulpitis gene signatures were created using differential gene expression analysis at cutoff points p = .0001 and .000018. Top upregulated genes were selected as potential pulpitis biomarkers. Among these, IL8, IL6 and MMP9 were previously identified as pulpitis biomarkers. Novel upregulated genes, chemokine (C-C motif) ligand 21 (CCL21), metallothionein 1H (MT1H) and aquaporin 9 (AQP9) were validated in the pulp tissue of teeth clinically diagnosed with irreversible pulpitis using qPCR. ssCMap analysis identified fluvastatin (Statin) and dequalinium chloride (Quaternary ammonium) as compounds with the strongest correlation to the gene signatures (p = .0001). Fluvastatin reduced IL8, IL6, CCL21, AQP9 (p < .001) and MMP9 (p < .05) in the ex vivo pulpitis model, while dequalinium chloride reduced AQP9 (p < .001) but had no significant effect on the other biomarkers. CONCLUSIONS AQP9, MT1H and CCL21 were identified and validated as novel biomarkers for pulpitis. Fluvastatin and dequalinium chloride identified by the ssCMap as potential therapeutics for pulpitis reduced selected pulpitis biomarkers in an ex vivo pulpitis model. In vivo testing of these licenced drugs is warranted.
Collapse
Affiliation(s)
- Banan Al-Natour
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Department of Oral Medicine and Oral Surgery, Jordan University of Science and Technology, Irbid, Jordan
| | - Robby Rankin
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Robyn McKenna
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Hayley McMillan
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Londonderry, UK
| | - Imad About
- Aix-Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Asma A Khan
- Department of Endodontics, Dental School, UT Health San Antonio, San Antonio, TX, USA
| | - Johnah C Galicia
- Department of Restorative Dentistry (Endodontics), University College London Eastman Dental Institute, London, UK
| | - Fionnuala T Lundy
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Ikhlas A El-Karim
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
15
|
Ehlinger C, Mathieu E, Rabineau M, Ball V, Lavalle P, Haikel Y, Vautier D, Kocgozlu L. Insensitivity of dental pulp stem cells migration to substrate stiffness. Biomaterials 2021; 275:120969. [PMID: 34157563 DOI: 10.1016/j.biomaterials.2021.120969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
Dental pulp stem cells (DPSCs) are a promising cell source for regeneration of dental pulp. Migration is a key event but influence of the microenvironment rigidity (5 kPa at the center of dental pulp to 20 GPa for the dentin) is largely unknown. Mechanical signals are transmitted from the extracellular matrix to the cytoskeleton, to the nuclei, and to the chromatin, potentially regulating gene expression. To identify the microenvironmental influence on migration, we analyzed motility on PDMS substrates with stiffness increasing from 1.5 kPa up to 2.5 MPa. We found that migration speed slightly increases as substrate stiffness decreases in correlation with decreasing focal adhesion size. Motility is relatively insensitive to substrate stiffness, even on a bi-rigidity PDMS substrate where DPSCs migrate without preferential direction. Migration is independent of both myosin II activity and YAP translocation after myosin II inhibition. Additionally, inhibition of Arp2/3 complex leads to significant speed decrease for all rigidities, suggesting contribution of the lamellipodia in the migration. Interestingly, the chromatin architecture remains stable after a 7-days exposure on the PDMS substrates for all rigidity. To design scaffold mimicking dental pulp environment, similar DPSCs migration for all rigidity, leaves field open to choose this mechanical parameter.
Collapse
Affiliation(s)
- Claire Ehlinger
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Eric Mathieu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Morgane Rabineau
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Vincent Ball
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Youssef Haikel
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Dominique Vautier
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| | - Leyla Kocgozlu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| |
Collapse
|
16
|
Sun N, Yin S, Lu Y, Zhang W, Jiang X. Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. J Mater Chem B 2021; 8:5606-5619. [PMID: 32478365 DOI: 10.1039/d0tb00697a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulp treatment techniques such as pulp capping, pulpotomy and pulp regeneration are all based on the principle of preserving vital pulp. However, specific dental restorative materials that can simultaneously protect pulp vitality and repair occlusal morphology have not been developed thus far. Traditional pulp capping materials cannot be used as dental restorative materials due to their long-term solubility and poor mechanical behavior. Titanium (Ti) is used extensively in dentistry and is regarded as a promising material for pulp sealing because of its favorable biocompatibility, processability and mechanical properties. Originally, we proposed the concept of "odontointegration", which represents direct dentin-like mineralization contact between pulp and the surface of the pulp sealing material; herein, we report the fabrication of a novel antibacterial and dentino-inductive material via micro-arc oxidation (MAO), incorporating self-assembled graphene oxide (GO) for Ti surface modification. The hierarchical micro/nanoporous structure of the MAO coating provides a suitable microenvironment for odontogenic differentiation of human dental pulp stem cells, and GO loading contributes to antibacterial activity. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and Raman spectroscopy were employed for structure and elemental analysis. In vitro studies, including cell adhesion, Live/Dead and CCK-8 assays, alkaline phosphatase activity and calcium deposition assay, real-time polymerase chain reaction, western blot analysis and immunofluorescence staining were used to examine cell adhesion, viability, proliferation, mineralization, and odontogenic differentiation ability. Antibacterial properties against Streptococcus mutans were analyzed by SEM, spread plate, Live/Dead and Alamar blue tests. The Ti-MAO-1.0 mg mL-1 GO group exhibited excellent cell adhesion, odontoblast differentiation, mineralization, and antibacterial ability, which are beneficial to odontointegration.
Collapse
Affiliation(s)
- Ningjia Sun
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Shi Yin
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuezhi Lu
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
17
|
Ultrashort Peptide Hydrogels Display Antimicrobial Activity and Enhance Angiogenic Growth Factor Release by Dental Pulp Stem/Stromal Cells. MATERIALS 2021; 14:ma14092237. [PMID: 33925337 PMCID: PMC8123614 DOI: 10.3390/ma14092237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Recent studies on peptide hydrogels have shown that ultrashort peptides (<8 amino acids) can self-assemble into hydrogels. Ultrashort peptides can be designed to incorporate antimicrobial motifs, such as positively charged lysine residues, so that the peptides have inherent antimicrobial characteristics. Antimicrobial hydrogels represent a step change in tissue engineering and merit further investigation, particularly in applications where microbial infection could compromise healing. Herein, we studied the biocompatibility of dental pulp stem/stromal cells (DPSCs) with an ultrashort peptide hydrogel, (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFεKεK-OH), where the epsilon (ε) amino group forms part of the peptide bond rather than the standard amino grouping. We tested the antimicrobial properties of NapFFεKεK-OH in both solution and hydrogel form against Staphylococcus aureus, Enterococcus faecalis and Fusobacterium nucleatum and investigated the DPSC secretome in hydrogel culture. Our results showed NapFFεKεK-OH hydrogels were biocompatible with DPSCs. Peptides in solution form were efficacious against biofilms of S. aureus and E. faecalis, whereas hydrogels demonstrated antimicrobial activity against E. faecalis and F. nucleatum. Using an angiogenic array we showed that DPSCs encapsulated within NapFFεKεK-OH hydrogels produced an angiogenic secretome. These results suggest that NapFFεKεK-OH hydrogels have potential to serve as novel hydrogels in tissue engineering for cell-based pulp regeneration.
Collapse
|
18
|
dos Santos Neto AP, Maia SMAS, Leão JC, Quidute IL, dos Santos Guimarães C, Júnior SA, Álvares PR, Gomes Ribeiro MI, Silva LB. Mechanisms Involved in Apice Closure of Pulpless Teeth – Literature Review. Open Dent J 2021. [DOI: 10.2174/1874210602115010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Unfinished root formation has always offered challenges in endodontics due to technical difficulties and weakened teeth resistance during the lifetime of an individual. Pulp revascularization therapy appeared as a solution for apical closure and root maturation. The existence of oral stem cells involved in the process associated with traditional resident cells requires adequate blood supply given by induced controlled injury deliberately accomplished into the periapical zone.
Objective:
The aim of this work was to research, through literature review, the main mechanisms involved in the process of apical closure through the technique of pulp revascularization.
Conclusion:
Apice closure in pulpless teeth seems to happen as a result of professional intervention and biological activity. The success rate depends on the role of traditional local immune cells and stem cells associated with adequate blood supply to finish root formation.
Collapse
|
19
|
Gu Y, Xie X, Zhuang R, Weir MD, Oates TW, Bai Y, Zhao L, Xu HHK. A Biphasic Calcium Phosphate Cement Enhances Dentin Regeneration by Dental Pulp Stem Cells and Promotes Macrophages M2 Phenotype In Vitro. Tissue Eng Part A 2021; 27:1113-1127. [PMID: 33261521 DOI: 10.1089/ten.tea.2020.0257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Calcium phosphate cement (CPC) is promising for bone and dentin repair and regeneration. However, there has been no report of biphasic CPC for inducing dentin regeneration. The aim of this study was to develop a novel biphasic CPC containing β-tricalcium phosphate (β-TCP), and investigate its effects on odontogenic differentiation of human dental pulp stem cells (hDPSCs) and macrophage polarization. New biphasic CPC was formulated with different ratios of β-TCP to an equimolar mixture of tetracalcium phosphate and dicalcium phosphate anhydrous. Mechanical properties, biocompatibility, and odontogenic differentiation induction ability of the cements and the inflammatory reaction to the cements were examined. A series of CPC containing β-TCP were developed. CPC with 20% β-TCP exhibited homogeneity and injectability, an acceptable setting time, and a twofold increase in compressive strength. Significant increases in hDPSCs' alkaline phosphatase activity, mineral deposit, DMP1 and DSPP gene, and protein expressions were obtained for 20% TCP-CPC, compared with traditional CPC (p < 0.01). The addition of β-TCP did not promote macrophage polarization to the proinflammation phenotype. The addition of 10% and 20% β-TCP promoted macrophage polarization to the anti-inflammatory phenotype. In conclusion, a biphasic β-TCP-modified CPC was developed for the first time, demonstrating substantially increased dentin regeneration capability, while promoting macrophages to an anti-inflammation phenotype. The novel biphasic CPC is promising for tooth tissue engineering and dentin regeneration applications.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Orthodontics and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xianju Xie
- Department of Orthodontics and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Rui Zhuang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Thomas W Oates
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Yuxing Bai
- Department of Orthodontics and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Liang Zhao
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Center for Stem Cell Biology & Regenerative Medicine and University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Modena KCDS, Calvo AM, Sipert CR, Colombini-Ishikiriama BL, Dionísio TJ, Navarro MFDL, Atta MT, Santos CF. Molecular Response of Pulp Fibroblasts after Stimulation with Pulp Capping Materials. Braz Dent J 2020; 31:244-251. [PMID: 32667520 DOI: 10.1590/0103-6440202003523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 05/06/2020] [Indexed: 11/22/2022] Open
Abstract
This in vitro study evaluated cell viability and metabolism, nitric oxide release and production of two chemokines and one cytokine by cultured human dental pulp fibroblasts (HDPF) in contact with two glass ionomer cements (Ketac Molar-KM and Vitrebond-VB), Single Bond (SB) and calcium hydroxide (Dycal-DY). Cultures of HDPF were established by means of an explant technique. The specimens were prepared under sterile conditions and in disks measuring 5 mm x 2 mm obtained from a prefabricated mold and placed on a permeable membrane to avoid direct contact with the cells. Cytotoxicity was assessed by Trypan Blue exclusion method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide release in cell supernatant was detected by the Griess Method whereas stromal derived factor-1 alpha (SDF-1α or CXCL12), chemokine (C-X-C motif) ligand 8 [Interleukin 8 (IL-8 or CXCL8)] and interleukin-6 (IL-6) were detected by ELISA. RT-qPCR was employed for gene expression analysis. Statistical analyses were performed by One-way ANOVA followed by Tukey's post hoc test for materials independent of the time, and Two-way ANOVA followed by Bonferroni correction test for the comparisons between materials and experimental time (p<0.05). Cytotoxic tests showed significant differences only for DY. Protein levels and mRNA expression were significantly increased for IL-8 for both periods of time. IL-6 production increased when fibroblasts were stimulated by KM. SDF-1α protein production and mRNA expression were not affected by any of the materials. There was a decrease in nitrate/nitrite levels only for KM. Although DY caused intense cell death and did not stimulate the production of the inflammatory mediators evaluated in this work, it is known that this event seems to be fundamental for the process of repair of the pulp tissue and formation of mineralized barrier. KM and VB increased production of proteins related to the inflammatory process, thus favoring tissue repair. Therefore, although these glass ionomer cements did not lead to large cell death, they should be used with caution.
Collapse
Affiliation(s)
- Karin Cristina da Silva Modena
- Department of Restorative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Adriana Maria Calvo
- Department of Biological Sciences, Bauru School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Carla Renata Sipert
- Department of Restorative Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bella Luna Colombini-Ishikiriama
- Department of Pediatric Dentistry, Orthodontics and Public Health, School of Dentistry, Bauru School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Maria Fidela de Lima Navarro
- Department of Restorative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Maria Teresa Atta
- Department of Restorative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| |
Collapse
|
22
|
Liu J, Que K, Liu Y, Zang C, Wen J. Tumor Necrosis Factor-α Regulates the TRPA1 Expression in Human Odontoblast-Like Cells. J Pain Res 2020; 13:1655-1664. [PMID: 32753941 PMCID: PMC7352379 DOI: 10.2147/jpr.s255288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/19/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is a promiscuous chemical nociceptor involved in the perception of cold hypersensitivity, mechanical hyperalgesia and inflammatory pain in human odontoblasts (HODs). Here, we aimed to study the underlying mechanism in which inflammatory cytokine tumor necrosis factor (TNF)-α regulated the expression of TRPA1 channel at both cellular and subcellular levels. Materials and Methods Immunohistochemistry was used to confirm the expression of TRPA1 channel in HODs. Dental pulp cells were induced and differentiated to HOD-like cells and used in succedent experiments. Real-time quantitative polymerase chain reaction assay and Western blotting were used to examine the expression changes of TRPA1 channel with the presence and absence of TNF-α and TNF receptor (TNFR) inhibitor, R 7050. Finally, immunoelectron microscopy (IEM) and quantitative analysis were performed to directly display the TNF-α-regulated distribution change of TRPA1 channel in HOD-like cells. Results TRPA1 channel was positively expressed in the cell bodies and processes of HODs. The expression TRPA1 channel was significantly up-regulated by high concentration of TNF-α, which could be suppressed by R 7050. Under IEM, TNF-α treatment could increase the expression of TRPA1 in the ER membrane, cytoplasm and mitochondria. Conclusion Our study demonstrated that TRPA1 expression in HOD-like cells was evidently upregulated by TNF-α, presumably via TNFR1. TNF-α induced significant increasement in the intracellular distributions of TRPA1 proteins, with increases in the cytoplasm, ER membrane, and mitochondria, to actively participate in noxious external stimuli perception and transduction of hyperalgesia.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Kehua Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yangqiu Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chengcheng Zang
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Wen
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China.,Lotus Dental Clinic, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
23
|
Cheng Q, Lin J, Chen Q, Zheng L, Tang Y, Wang F, Huang X, Zhang Y, Li S, Yang Z, Zhou P, He TC, Luo W, Zhang H. Role of Special AT-Rich Sequence-Binding Protein 2 in the Osteogenesis of Human Dental Mesenchymal Stem Cells. Stem Cells Dev 2020; 29:1059-1072. [PMID: 32484035 DOI: 10.1089/scd.2020.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dental mesenchymal stem cells (MSCs) are recognized as a critical factor in repair of defective craniofacial bone owing to the multiple differentiation potential, the ability to regenerate distinct tissues, and the advantage that they can be easily obtained by relatively noninvasive procedures. Special AT-rich sequence-binding protein 2 (SATB2) is a nuclear matrix protein, involved in chromatin remodeling and transcriptional regulation, and has been reported to be as a positive regulator of osteoblast differentiation, bone formation, and bone regeneration in MSCs. In this study, we systematically investigated the capability of SATB2 to promote the osteogenic differentiation of periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and stem cells from human exfoliated deciduous teeth (SHED). RNA-seq analysis and quantitative real-time PCR (RT-PCR) revealed that genes regulating osteogenic differentiation were differentially expressed among three cell types and SATB2 was found to be expressed at a relatively high level. When the three cell types overexpressed SATB2 with AdSATB2 infection, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantification tended to increase with an increasing infection rate. It showed opposite results after infection with AdsiSATB2. RNA-seq analysis indicated that the expression of downstream osteogenic genes was affected by AdSATB2 infection and quantitative RT-PCR confirmed that nine osteogenic genes (Spp1, Sema7a, Atf4, Ibsp, Col1a1, Sp7, Igfbp3, Dlx3, and Alpl) were upregulated, to various extents, following SATB2 overexpression. In addition, quantitative PCR results indicated that SATB2 affected the expression of MSC markers. These results suggested an important role of SATB2 in the osteogenesis of PDLSCs, DPSCs, and SHED. Further research is warranted to investigate SATB2-mediated regulation of osteogenic differentiation and to evaluate the therapeutic use of SATB2 for the regeneration of defective craniofacial bone tissue.
Collapse
Affiliation(s)
- Qianyu Cheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Juhong Lin
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Yingying Tang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tong-Chuan He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B. Cytotoxicity and Bioactivity of Dental Pulp-Capping Agents towards Human Tooth-Pulp Cells: A Systematic Review of In-Vitro Studies and Meta-Analysis of Randomized and Controlled Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2670. [PMID: 32545425 PMCID: PMC7345102 DOI: 10.3390/ma13122670] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in)directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.
Collapse
Affiliation(s)
- Mariano S. Pedano
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Xin Li
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-Cho, Takamaysu, Kagawa 761-0395, Japan;
- Department of Pathology & Experimental Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kirsten Van Landuyt
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| |
Collapse
|
25
|
Gopinath VK, Soumya S, Jayakumar MN. Osteogenic and odontogenic differentiation potential of dental pulp stem cells isolated from inflamed dental pulp tissues (I-DPSCs) by two different methods. Acta Odontol Scand 2020; 78:281-289. [PMID: 31855089 DOI: 10.1080/00016357.2019.1702716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: The objective of the present study is to isolate stem cells from inflamed dental pulp tissues (I-DPSCs) and study the characteristic such as surface markers, osteo/odontogenic differentiation potential between the outgrowth (OG) and enzymatic digestion (COL) methods.Materials and methods: I-DPSCs harvested by both methods were analysed for Mesenchymal Stem Cell marker expression by flow cytometry. The metabolic activity of the isolated cells was assessed by MTT assay. The Alkaline Phosphatase (ALP) and Alizarin red staining was done to analyse the osteogenic potential of isolated cells. The osteo/odontogenic differentiation was done by checking the expression of Dentine Matrix Protein 1 (DMP1), Dentine Sialophosphoprotein (DSPP), ALP and Bone Gamma-Carboxyglutamate Protein (BGLAP) by Real time PCR.Results: The isolated cells were positive for MSC markers such as CD-90, CD-105 and CD-73 and negative for CD-14, CD-45 and STRO-1. MTT assay indicated that the I-DPSCs from OG method showed higher metabolic activity than cells from COL. However, the osteo/odontogenic differentiation was in favour of cells isolated by COL method.Conclusion: Although the cell metabolic rate was more in OG, the osteo/odontogenic differentiation was higher in COL, suggesting that the isolation method and culture conditions do affect the differentiation capacity of isolated cells.
Collapse
Affiliation(s)
- Vellore Kannan Gopinath
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - S. Soumya
- The Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
26
|
Fabrication of Dentin-Pulp-Like Organoids Using Dental-Pulp Stem Cells. Cells 2020; 9:cells9030642. [PMID: 32155898 PMCID: PMC7140482 DOI: 10.3390/cells9030642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
We developed a novel dentin-pulp-like organoid. It has both stem-cell and odontoblast characteristics using a mesenchymal cell lineage of human dental-pulp stem cells (hDPSCs). The mixture of hDPSCs and Matrigel was transferred into the maintenance medium (MM) and divided into four different groups according to how long they were maintained in the odontogenic differentiation medium (ODM). All organoids were harvested at 21 days and analyzed to find the optimal differentiation condition. To assess the re-fabrication of dentin-pulp-like organoid, after dissociation of the organoids, it was successfully regenerated. Additionally, its biological activity was confirmed by analyzing changes of relevant gene expression and performing a histology analysis after adding Biodentine® into the ODM. The organoid was cultured for 11 days in the ODM (ODM 11) had the most features of both stem cells and differentiated cells (odontoblasts) as confirmed by relevant gene expression and histology analyses. Micro-computed tomography and an electron microscope also showed mineralization and odontoblastic differentiation. Finally, ODM 11 demonstrated a biologically active response to Biodentine® treatment. In conclusion, for the first time, we report the fabrication of a dentin-pulp-like organoid using mesenchymal stem cells. This organoid has potential as a future therapeutic strategy for tooth regeneration.
Collapse
|
27
|
Jang HJ, Lee EC, Kwon GJ, Seo YK. The effect of coated nano-hydroxyapatite concentration on scaffolds for osteogenesis. J Biomater Appl 2019; 34:827-839. [PMID: 31526073 DOI: 10.1177/0885328219875275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hyun Jun Jang
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| | - Eun Cheol Lee
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| | | | - Young Kwon Seo
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| |
Collapse
|
28
|
Tian X, Wang Q, Wu J, Han Q, Shen L, Wei C, Song H, Li M, Fang Y, Wang X, Sun Q. Interaction of Nel-like molecule 1 with apoptosis related protein 3 with its influence on human dental pulp cells proliferation and differentiation into odontoblasts. Biochem Biophys Res Commun 2019; 518:246-252. [PMID: 31416616 DOI: 10.1016/j.bbrc.2019.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Nel-like molecule 1 (Nell-1) is an essential positive regulator of tooth development and odontoblast differentiation. However, its precise mechanism remains undetermined. This study aims to explore the possible receptor or binding protein of Nell-1. Results showed that Nell-1 and Apoptosis related protein 3(APR3) expression levels were high in odontoblasts and inversely correlated. Endogenous Nell-1 co-immunoprecipitated with APR3, and this co-IP was reciprocal. Double immunofluorescence staining revealed that Nell-1 and APR3 colocalized on the nuclear envelope of human dental pulp cells. Nell-1 inhibited the proliferation of these cells co-infected with APR3 through Cyclin D1 downregulation. The interaction of Nell-1 with APR3 stimulated alkaline phosphatase (ALP) activity and promoted the expression and mineralization of DSPP, ALP, OPN, and BSP. The shRNA of APR3 decreased cell differentiation and mineralization. Nell-1 could reciprocally interact with APR3 and stimulate the differentiation and mineralization of human dental pulp cells. Future studies should explore the potential functional connection and the molar mechanism of such interaction.
Collapse
Affiliation(s)
- Xiufen Tian
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China; Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Qiang Wang
- Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Jiameng Wu
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Qi Han
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Lili Shen
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Chengshi Wei
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Hao Song
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Mengyue Li
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Yixuan Fang
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Xiaoying Wang
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China.
| | - Qinfeng Sun
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China.
| |
Collapse
|
29
|
Winning L, El Karim IA, Lundy FT. A Comparative Analysis of the Osteogenic Potential of Dental Mesenchymal Stem Cells. Stem Cells Dev 2019; 28:1050-1058. [DOI: 10.1089/scd.2019.0023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lewis Winning
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Ikhlas A. El Karim
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Fionnuala T. Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
30
|
Liu J, Du J, Chen X, Yang L, Zhao W, Song M, Wang Z, Wang Y. The Effects of Mitogen-activated Protein Kinase Signaling Pathways on Lipopolysaccharide-mediated Osteo/Odontogenic Differentiation of Stem Cells from the Apical Papilla. J Endod 2019; 45:161-167. [PMID: 30711172 DOI: 10.1016/j.joen.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/16/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Odontogenic differentiation of human stem cells from the apical papilla (SCAPs) is a prerequisite step in the root development of immature permanent teeth. However, little is known about the effects of an inflammatory environment on osteo/odontogenic differentiation of SCAPs. The purpose of this study was to investigate the effects of lipopolysaccharide (LPS) on the proliferation and osteo/odontogenic differentiation of SCAPs and the role of mitogen-activated protein kinase (MAPK) signaling pathways in LPS-mediated osteo/odontogenic differentiation of SCAPs. METHODS SCAPs of human third permanent molars were cultured. Cell viability was analyzed. Alkaline phosphatase activity and mineralization ability were investigated. Gene expression of osteo/odontogenic differentiation and MAPK signaling pathways was evaluated during osteo/odontogenic differentiation of SCAPs. RESULTS In the 0.1 μg/mL LPS-treated group, cell proliferation, alkaline phosphatase activity, and mineralization of SCAPs were up-regulated. Real-time quantitative polymerase chain reaction revealed that dentin sialophosphoprotein, runt-related transcription factor 2, and bone sialoprotein were increased. However, we did not detect any change of osteocalcin expression. In addition, the expression of p-ERK and p-p38 in SCAPs was enhanced by LPS treatment, whereas the inhibition of ERK and p38 MAPK pathways markedly suppressed the differentiation of LPS-treated SCAPs. CONCLUSIONS Our findings showed that LPS at the appropriate concentration promoted the proliferation and osteo/odontogenic differentiation of SCAPs. ERK and p38 MAPK signaling pathways are involved in LPS-mediated osteo/odontogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Junqing Liu
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Jing Du
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Xinyu Chen
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China; Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Lin Yang
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China; Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Wei Zhao
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Mengxiao Song
- Department of Pathology, School and Hospital of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Zhifeng Wang
- Department of Pediatrics, School and Hospital of Stomatology, Shandong University, Jinan, China
| | - Yan Wang
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
31
|
Samiei M, Ahmadian E, Eftekhari A, Eghbal MA, Rezaie F, Vinken M. Cell junctions and oral health. EXCLI JOURNAL 2019; 18:317-330. [PMID: 31338005 PMCID: PMC6635732 DOI: 10.17179/excli2019-1370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
The oral cavity and its appendices are exposed to considerable environmental and mechanical stress. Cell junctions play a pivotal role in this context. Among those, gap junctions permit the exchange of compounds between cells, thereby controlling processes such as cell growth and differentiation. Tight junctions restrict paracellular transportation and inhibit movement of integral membrane proteins between the different plasma membrane poles. Adherens junctions attach cells one to another and provide a solid backbone for resisting to mechanistical stress. The integrity of oral mucosa, normal tooth development and saliva secretion depend on the proper function of all these types of cell junctions. Furthermore, deregulation of junctional proteins and/or mutations in their genes can alter tissue functioning and may result in various human disorders, including dental and periodontal problems, salivary gland malfunction, hereditary and infectious diseases as well as tumorigenesis. The present manuscript reviews the role of cell junctions in the (patho)physiology of the oral cavity and its appendices, including salivary glands.
Collapse
Affiliation(s)
- Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Pharmacology and Toxicology department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Eghbal
- Drug Applied Research Center and Pharmacology and Toxicology department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshte Rezaie
- General Practitioner, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
32
|
Investigating unset endodontic sealers' eugenol and hydrocortisone roles in modulating the initial steps of inflammation. Clin Oral Investig 2019; 24:639-647. [PMID: 31115691 DOI: 10.1007/s00784-019-02957-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Endodontic treatment success is achieved not only when the cement provides a hermetic seal but also when the injured periapical tissue is regenerated. However, an exaggerated inflammatory reaction hinders tissue regeneration and it has been shown that dental materials affect the inflammatory response through modulation of cytokine secretion. This work was set to investigate the effects of the presence of hydrocortisone in zinc oxide eugenol sealers (Endomethasone N) on modulating the initial steps of inflammation in vitro. MATERIAL AND METHODS Hydrocortisone and eugenol leaching from Endomethasone N and Pulp Canal Sealer (PCS) were quantified by ELISA and spectrofluorometry, respectively. The effects of Endomethasone N and Pulp Canal Sealer were studied on lipopolysaccharides (LPS)-stimulated human periodontal ligament (hPDL) cells. Cytokine (IL-6, TNF-α) secretion from cells was quantified by ELISA. Inflammatory cell (THP-1) adhesion to activated endothelial cells, their migration and activation were studied in vitro. RESULTS Endomethasone N decreased secretion of IL-6 and TNF-α from hPDL cells. THP-1 adhesion to activated endothelial cells (HUVECs) and migration significantly decreased with Endomethasone N while no effect was observed with PCS. Activation of THP-1 decreased with both materials' extracts but was significantly lower with Endomethasone N than with PCS. CONCLUSION These results performed in vitro show that Endomethasone N anti-inflammatory effects are due to the presence of hydrocortisone. CLINICAL RELEVANCE Endomethasone N has potential local anti-inflammatory effects which appear to be due to its hydrocortisone rather than eugenol content. Decreasing the inflammatory response is a pre-requisite to initiate the periapical healing.
Collapse
|
33
|
Martín-de-Llano JJ, Mata M, Peydró S, Peydró A, Carda C. Dentin tubule orientation determines odontoblastic differentiation in vitro: A morphological study. PLoS One 2019; 14:e0215780. [PMID: 31071116 PMCID: PMC6508697 DOI: 10.1371/journal.pone.0215780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Odontoblasts are post-mitotic cells responsible for maintenance of the dentin, and are therefore important for dental health. In some cases, irreversible pulpitis leads to necrosis and consequently death of odontoblasts. Regenerative endodontics (RE) uses the concept of tissue engineering to restore the root canals to a healthy state, allowing for continued development of the root and surrounding tissue. Human dental pulp stem cells (hDPSCs) have been successfully used in RE to restore odontoblast function. Surface microgeometry is one of the most important factors involved in the induction of differentiation of hDPSCs into odontoblast-like cells. Although different authors have demonstrated the importance of a dentin-like surface with accessible dentin tubules to induce differentiation of hDPSCs, the ultrastructural characteristics of the cells and the secreted extracellular matrix have not been studied in depth. Here, we used an acellular dentin scaffold containing dentin tubules in different spatial geometries, which regulated their accessibility to cells. hDPSCs were cultured on the scaffolds for up to 6 weeks. Systematic characterization of differentiated cells was performed using both optical (hematoxylin and eosin, Masson trichrome, and immunohistochemical determination of dentin sialoprotein [DSSP]) and transmission electron microscopy. The results presented here indicated that cells grown on the dentin surface containing accessible dentin tubules developed a characteristic odontoblastic phenotype, with cellular processes similar to native odontoblasts. The cell organization and characteristics of secreted extracellular matrix were also similar to those of native dentin tissue. Cells grown on non-accessible dentin tubule surfaces secreted a more abundant and dense extracellular matrix, and developed a different phenotype consisting of secretory flat cells organized in layers. Cells grown far from the scaffold, i.e., directly on the culture well surface, developed a secretory phenotype probably influenced by biochemical factors released by the dentin scaffold or differentiated cells. The results presented here support the use of hDPSCs to regenerate dentin and show the utility of scaffold microgeometry for determining the differentiation and secretory phenotype of cultured cells.
Collapse
Affiliation(s)
- José Javier Martín-de-Llano
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Manuel Mata
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| | - Santiago Peydró
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Amando Peydró
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Carmen Carda
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain
| |
Collapse
|
34
|
Relaño-Ginés A, Lehmann S, Deville de Périère D, Hirtz C. Dental stem cells as a promising source for cell therapies in neurological diseases. Crit Rev Clin Lab Sci 2019; 56:170-181. [DOI: 10.1080/10408363.2019.1571478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aroa Relaño-Ginés
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Dominique Deville de Périère
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
35
|
A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci Rep 2019; 9:1761. [PMID: 30741963 PMCID: PMC6370862 DOI: 10.1038/s41598-018-37981-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Human teeth contain a variety of mesenchymal stem cell populations that could be used for cell-based regenerative therapies. However, the isolation and potential use of these cells in the clinics require the extraction of functional teeth, a process that may represent a significant barrier to such treatments. Fibroblasts are highly accessible and might represent a viable alternative to dental stem cells. We thus investigated and compared the in vitro differentiation potential of human dental pulp stem cells (hDPSCs), gingival fibroblasts (hGFs) and foreskin fibroblasts (hFFs). These cell populations were cultured in osteogenic and adipogenic differentiation media, followed by Alizarin Red S and Oil Red O staining to visualize cytodifferentiation. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was performed to assess the expression of markers specific for stem cells (NANOG, OCT-4), osteogenic (RUNX2, ALP, SP7/OSX) and adipogenic (PPAR-γ2, LPL) differentiation. While fibroblasts are more prone towards adipogenic differentiation, hDPSCs exhibit a higher osteogenic potential. These results indicate that although fibroblasts possess a certain mineralization capability, hDPSCs represent the most appropriate cell population for regenerative purposes involving bone and dental tissues.
Collapse
|
36
|
Chmilewsky F, Liang R, Kanazawa M, About I, Cooper LF, George A. C5L2 Regulates DMP1 Expression during Odontoblastic Differentiation. J Dent Res 2019; 98:597-604. [PMID: 30702959 DOI: 10.1177/0022034518820461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The presence of stem cells within the dental-pulp tissue as well as their differentiation into a new generation of functional odontoblast-like cells constitutes an important step of the dentin-pulp regeneration. Recent investigations demonstrated that the complement system activation participates in 2 critical steps of dentin-pulp regeneration: pulp progenitor's recruitment and pulp nerve sprouting. Surprisingly, its implication in odontoblastic differentiation has not been addressed yet. Since the complement receptor C5a receptor-like 2 (C5L2) is expressed by different stem cells, the aim of this study is to investigate if the dental pulp stem cells express C5L2 and if this receptor participates in odontoblastic differentiation. Immunohistochemistry performed on human third molar pulp sections showed a perivascular co-localization of the mesenchymal stem cell markers STRO1 and C5L2. In vitro immunofluorescent staining confirmed that hDPSCs express C5L2. Furthermore, we determined by real-time polymerase chain reaction that the expression of C5L2 is highly modulated in human dental pulp stem cells (hDPSCs) undergoing odontoblastic differentiation. Moreover, we showed that this odontogenesis-regulated expression of C5L2 is specifically potentiated by the proinflammatory cytokine TNFα. Using a C5L2-siRNA silencing strategy, we provide direct evidence that C5L2 constitutes a negative regulator of the dentinogenic marker DMP1 (dentin matrix protein 1) expression by hDPSCs. Our findings suggest a direct correlation between the odontoblastic differentiation and the level of C5L2 expression in hDPSCs and identify C5L2 as a negative regulator of DMP1 expression by hDPSCs during the odontoblastic differentiation and inflammation processes. This work is the first to demonstrate the involvement of C5L2 in the biological function of stem cells, provides an important knowledge in understanding odontoblastic differentiation of dental pulp stem cells, and may be useful in future dentin-pulp engineering strategies.
Collapse
Affiliation(s)
- F Chmilewsky
- 1 Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - R Liang
- 1 Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - M Kanazawa
- 1 Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - I About
- 2 Department of Oral Biology, Aix Marseille Université, Marseille, France
| | - L F Cooper
- 1 Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A George
- 1 Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Apel C, Buttler P, Salber J, Dhanasingh A, Neuss S. Differential mineralization of human dental pulp stem cells on diverse polymers. ACTA ACUST UNITED AC 2019; 63:261-269. [PMID: 28157689 DOI: 10.1515/bmt-2016-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023]
Abstract
In tissue engineering, biomaterials are used as scaffolds for spatial distribution of specific cell types. Biomaterials can potentially influence cell proliferation and extracellular matrix formation, both in positive and negative ways. The aim of the present study was to investigate and compare mineralized matrix production of human dental pulp stem cells (DPSC), cultured on 17 different well-characterized polymers. Osteogenic differentiation of DPSC was induced for 21 days on biomaterials using dexamethasone, L-ascorbic-acid-2-phosphate, and sodium β-glycerophosphate. Success of differentiation was analyzed by quantitative RealTime PCR, alkaline phosphatase (ALP) activity, and visualization of calcium accumulations by alizarin red staining with subsequent quantification by colorimetric method. All of the tested biomaterials of an established biomaterial bank enabled a mineralized matrix formation of the DPSC after osteoinductive stimulation. Mineralization on poly(tetrafluoro ethylene) (PTFE), poly(dimethyl siloxane) (PDMS), Texin, LT706, poly(epsilon-caprolactone) (PCL), polyesteramide type-C (PEA-C), hyaluronic acid, and fibrin was significantly enhanced (p<0.05) compared to standard tissue culture polystyrene (TCPS) as control. In particular, PEA-C, hyaluronic acid, and fibrin promoted superior mineralization values. These results were confirmed by ALP activity on the same materials. Different biomaterials differentially influence the differentiation and mineralized matrix formation of human DPSC. Based on the present results, promising biomaterial candidates for bone-related tissue engineering applications in combination with DPSC can be selected.
Collapse
Affiliation(s)
- Christian Apel
- Department of Biohybrid and Medical Textiles, Institute of Applied Medical Engineering, Helmholtz-Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Patricia Buttler
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Jochen Salber
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr Universität Bochum, Bochum, Germany
| | - Anandhan Dhanasingh
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sabine Neuss
- Institute of Pathology, RWTH Aachen University, Aachen, Germany.,Helmholtz Institute of Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
The Impact of Hybrid Nano-Materials in Tooth Tissue Restoration. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2018. [DOI: 10.4028/www.scientific.net/jbbbe.39.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tooth loss due to dental diseases, caries, and other related pathological conditions has plagued people and is the most prevalent cause of human organ failure. Billions of people have suffered from losing teeth and dental diseases so that generating natural dental tissues are more appreciated than artificial tooth implantation. The aspiration among the dentists to restore this loss biologically is the genesis of the tooth regeneration. Current trends initiate tissue engineering with a concept of functional restoration of tissue and organ defects by the triad of biomaterial scaffolds, growth factors, and stem cells (Rosa et al. 2012). This paper, therefore, focuses on the significance of nanostructured hybrid materials in the tooth regeneration through tissue engineering. For this purpose, literature was examined and studies on nanomorphological features of stem cells, dental tissues found within the oral area, the signaling molecules utilized in the tissue engineering, and the hybrid scaffolds that guide reconstructions of periodontal tissues were selected for the review. The nanodentistry has been potential, undoubtedly, to achieve almost perfect dental health in the nearest future. However, the success will largely be determined by human requirements and resource supply (technology, economy, and time). Finally, the future and actual potentials of nanotechnologies pertaining tissue engineering will be applied in dentistry (Mitziadis, Woloszyk, & Jimenez-Rojo, 2012).Keywords: Stem cells; scaffolds; nanomaterials; hybrid materials, tissue engineering; dentistry; signaling molecules.
Collapse
|
39
|
Biological interactions of a calcium silicate based cement (Biodentine™) with Stem Cells from Human Exfoliated Deciduous teeth. Dent Mater 2018; 34:1797-1813. [PMID: 30316525 DOI: 10.1016/j.dental.2018.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the biological interactions of a calcium silicate based cement (Biodentine™) with Stem Cells from Human Exfoliated Deciduous teeth (SHED), focusing on viability/proliferation, odontogenic differentiation, biomineralization and elemental release/exchange. METHODS Biodentine™ specimens were used directly or for eluate preparation at serial dilutions (1:1-1:64). SHED cultures were established from deciduous teeth of healthy children. Viability/proliferation and morphological characteristics were evaluated by live/dead fluorescent staining, MTT assay and Scanning Electron Microscopy. Odontogenic differentiation by qRT-PCR, biomineralization by Alizarin red S staining, while ion elution by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). RESULTS SHED effectively attached within the crystalline surface of Biodentine™ specimens acquiring a spindle-shaped phenotype. Statistically significant stimulation of cell proliferation was induced at day 3 by eluates in dilutions from 1:16 to 1:64. Differential, concentration- and time-dependent expression patterns of odontogenic genes were observed under non-inductive and inductive (osteogenic) conditions, with significant up-regulation of DSPP and Runx2 at higher dilutions and a peak in expression of BMP-2, BGLAP and MSX-2 at 1:8 dilution on day 7. Progressive increase in mineralized tissue formation was observed with increasing dilutions of Biodentine™ eluates. ICP-OES indicated that Biodentine™ absorbed Ca, Mg and P ions from culture medium, while releasing Si and Sr ions from its backbone. SIGNIFICANCE Biodentine™ interacts through elemental release/uptake with the cellular microenvironment, triggering odontogenic differentiation and biomineralization in a concentration-dependent manner. These results reveal a promising strategy for application of the calcium silicate based cement (Biodentine™) for vital pulp therapies of deciduous teeth in Paediatric Dentistry.
Collapse
|
40
|
Giraud T, Jeanneau C, Bergmann M, Laurent P, About I. Tricalcium Silicate Capping Materials Modulate Pulp Healing and Inflammatory Activity In Vitro. J Endod 2018; 44:1686-1691. [PMID: 30217466 DOI: 10.1016/j.joen.2018.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION On stimulation by lipoteichoic acid or by a physical injury, fibroblasts have been shown to play a major role in the initiation of the pulp inflammatory reaction and healing through secretion of complement proteins and growth factors. The application of direct pulp-capping materials on these cells may interfere with the inflammatory and the healing processes within the pulp's inextensible environment. This work was designed to study in vitro the effects of silicate-based materials on pulp fibroblast modulation of the initial steps of pulp inflammation and healing. METHODS The effects of Biodentine, TheraCal, and Xeno III eluates were studied on lipoteichoic acid-stimulated and physically injured fibroblasts. Cytokine secretion (interleukin 6, vascular endothelial growth factor, fibroblast growth factor-2, and transforming growth factor-β1) was quantified by enzyme-linked immunosorbent assay. Inflammatory THP-1 adhesion to endothelial cells and their migration and activation were studied in vitro. Human pulp fibroblast proliferation was investigated with the MTT test, and their migration to the injury site was studied with the scratch healing assay. RESULTS Interleukin 6 and vascular endothelial growth factor secretion increased with all materials but to a lesser extent with Biodentine. Fibroblast growth factor-2 and transforming growth factor-β1 secretion was significantly higher with Biodentine than with all other materials. THP-1 cell adhesion to endothelial cells and their activation were reduced by Biodentine and TheraCal. However, their migration decreased only with Biodentine. Fibroblast proliferation significantly increased with Biodentine but significantly decreased with Xeno III after day 6. Finally, only Biodentine induced fibroblast migration to the injury site in the scratch assay. CONCLUSIONS These results confirm that pulp-capping materials affect the early steps of pulp inflammation and healing. They show that Biodentine had the highest pulp healing and anti-inflammatory potential when compared with the resin-containing materials. This highlights the interest of the material choice for direct pulp-capping.
Collapse
Affiliation(s)
- Thomas Giraud
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, France
| | | | - Madison Bergmann
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Patrick Laurent
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.
| |
Collapse
|
41
|
Yuan M, Zhan Y, Hu W, Li Y, Xie X, Miao N, Jin H, Zhang B. Aspirin promotes osteogenic differentiation of human dental pulp stem cells. Int J Mol Med 2018; 42:1967-1976. [PMID: 30085338 PMCID: PMC6108875 DOI: 10.3892/ijmm.2018.3801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) possess self‑renewal and osteogenic differentiation properties, and have been used for orofacial bone regeneration and periodontal treatment. Aspirin has been demonstrated to enhance the regeneration of bone marrow mesenchymal stem cells (MSCs); however, the impact of aspirin on the osteogenic differentiation of hDPSCs remains unknown. In the present study, hDPSCs were characterized by flow cytometry, while their clonogenic potential and multipotency were assessed using alizarin red, Oil red O and alcian blue staining. The effect of aspirin on hDPSC viability was assessed using Cell Counting Kit‑8 assay. Osteogenic capacity was examined by alkaline phosphatase activity, alizarin red staining, reverse transcription‑polymerase chain reaction and western blotting. Furthermore, in vivo cranial defects were established in Sprague‑Dawley rats to evaluate the effect of aspirin on hDPSC‑based bone regeneration. Anorganic bovine bone was used as a bone replacement material and as the carrier for hDPSCs. New bone formation was observed through radiographic and histological analysis. The study demonstrated that hDPSCs expressed MSC markers and possessed multipotency in vitro. Aspirin was non‑toxic to hDPSCs at a concentration of ≤100 µg/ml and enhanced the osteogenesis of hDPSCs in vitro. Aspirin significantly increased hDPSC‑based bone formation in the rat cranial defect model at 8 or 12 weeks post‑implantation (P<0.05). The data suggested that aspirin promotes the osteogenic potential of hDPSCs in vitro and in vivo. Overall, the present study indicated that aspirin improves the bone regeneration capacity of hDPSCs.
Collapse
Affiliation(s)
- Mengtong Yuan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yuanbo Zhan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Weiping Hu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaohua Xie
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Nan Miao
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
42
|
Chmilewsky F, About I, Cooper LF, Chung SH. C5L2 Silencing in Human Pulp Fibroblasts Enhances Nerve Outgrowth Under Lipoteichoic Acid Stimulation. J Endod 2018; 44:1396-1401. [PMID: 30032862 DOI: 10.1016/j.joen.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION We recently reported that caries-associated C5a receptor (C5aR) expression and activation result in up-regulation of brain-derived neurotropic factor secretion by pulp fibroblasts inducing prominent neurite outgrowth toward the carious site. Our data further showed a negative regulation of this brain-derived neurotropic factor secretion by C5L2, another C5aR. C5L2 was considered a nonfunctional receptor and thus has received much less attention than C5aR. The aim of this study was to identify the role of C5L2 in pulp fibroblast-mediated neurite outgrowth. METHODS In this study, lipoteichoic acid (LTA) was used to mimic dental caries-like inflammation. To evaluate the role of C5L2 in pulp neurite outgrowth, human pulp fibroblasts were C5L2 small interfering RNA silenced and cocultured with human neurons in a nerve growth assay system. RESULTS C5L2 silencing drastically increased the neurite outgrowth toward the LTA-stimulated pulp fibroblasts. The number of neurites detected was increased in the LTA-treated pulp fibroblasts. CONCLUSIONS Our results show that C5L2 constitutes a negative regulator of the neurite outgrowth under LTA stimulation. Of the events occurring during dentin-pulp regeneration, nerve regeneration is the key factor for maintaining tooth viability after infection or injury. Our study provides a foundation for creating therapeutic tools that target pulp fibroblasts during pulp/nerve regeneration.
Collapse
Affiliation(s)
- Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Imad About
- Department of Oral Biology, Aix Marseille University, Marseille, France
| | - Lyndon F Cooper
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
43
|
Qian H, Huang Q, Chen YX, Liu Q, Fang JX, Ye MW. Caspase‑9 was involved in cell apoptosis in human dental pulp stem cells from deciduous teeth. Mol Med Rep 2018; 18:1067-1073. [PMID: 29845240 DOI: 10.3892/mmr.2018.9046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/22/2018] [Indexed: 11/05/2022] Open
Abstract
As one type of adult stem cells (ASCs), human dental pulp stem cells (HDPSCs) have several properties, including high proliferation rate, self‑renewal capability, and multi‑lineage differentiation. However, the apoptotic mechanism underlying the development of dental pulp cells remains unclear. In the present study, a significant increase of apoptosis was observed in HDPSCs from the deciduous teeth compared with that from adult permanent teeth. In addition, the occurrence of cytochrome c expression and mitochondrial‑mediated apoptosis pathway activity in HDPSCs were confirmed by quantitative polymerase chain reaction, and western blotting. Although caspase‑8 and caspase‑9 showed higher expression in deciduous teeth than in adult permanent teeth, only the knockdown of caspase‑9 via RNA interference in HDPSC cells exhibited a significant reduction in apoptosis, and caspase‑3 expression and activity. All these results revealed that caspase‑9 and activated caspase‑3 predominantly regulates cell apoptosis in HDPSCs from deciduous teeth.
Collapse
Affiliation(s)
- Hong Qian
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qun Huang
- Department of Dentistry, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511442, P.R. China
| | - Yu-Xiang Chen
- Department of Dentistry, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511442, P.R. China
| | - Qiong Liu
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jing-Xian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Man-Wen Ye
- Department of Dentistry, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511442, P.R. China
| |
Collapse
|
44
|
Neunzehn J, Pötschke S, Hannig C, Wiesmann HP, Weber MT. Odontoblast-like differentiation and mineral formation of pulpsphere derived cells on human root canal dentin in vitro. Head Face Med 2017; 13:23. [PMID: 29221472 PMCID: PMC5723081 DOI: 10.1186/s13005-017-0156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The revitalization or regeneration of the dental pulp is a preferable goal in current endodontic research. In this study, human dental pulp cell (DPC) spheres were applied to human root canal samples to evaluate their potential adoption for physiological tissue-like regeneration of the dental root canal by odontoblastic differentiation as well as cell-induced mineral formation. METHODS DPC were cultivated into three-dimensional cell spheres and seeded on human root canal specimens. The evaluation of sphere formation, tissue-like behavior and differentiation as well as mineral formation of the cells was carried out with the aid of optical light microscopy, immunohistochemical staining and scanning electron microscopy (SEM). RESULTS Spheres and cells migrated out of the spheres showed an intense cell-cell- and cell-dentin-contact with the formation of extra cellular matrix. In addition, the ingrowth of cell processes into dentinal tubules and the interaction of cell processes with the tubule walls were detected by SEM-imaging. Immunohistochemical staining of the odontoblast specific matrix proteins, dentin matrix protein-1, and dentin sialoprotein revealed an odontoblast-like cell differentiation in contact with the dentin surface. This differentiation was confirmed by SEM-imaging of cells with an odontoblast specific phenotype and cell induced mineral formation. CONCLUSIONS The results of the present study reveal the high potential of pulp cells organized in spheres for dental tissue engineering. The odontoblast-like differentiation and the cell induced mineral formation display the possibility of a complete or partial "dentinal filling" of the root canal and the opportunity to combine this method with other current strategies.
Collapse
Affiliation(s)
- Jörg Neunzehn
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, Budapester Strasse 27, D-01069, Dresden, Germany.
| | - Sandra Pötschke
- Clinic for Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Christian Hannig
- Clinic for Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Hans-Peter Wiesmann
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, Budapester Strasse 27, D-01069, Dresden, Germany
| | - Marie-Theres Weber
- Clinic for Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| |
Collapse
|
45
|
Jeanneau C, Laurent P, Rombouts C, Giraud T, About I. Light-cured Tricalcium Silicate Toxicity to the Dental Pulp. J Endod 2017; 43:2074-2080. [PMID: 29032813 DOI: 10.1016/j.joen.2017.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Numerous studies reported dentin bridge formation after pulp capping with tricalcium silicates. By contrast, pulp capping with resins leads to pulp toxicity and inflammation. Hybrid materials made up of tricalcium silicates and resins have also been developed to be used in direct pulp capping. This work was designed to study the consequences of adding resins to tricalcium silicates by investigating TheraCal (BISCO, Lançon De Provence, France) and Biodentine (Septodont, Saint Maur des Fosses, France) interactions with the dental pulp. METHODS Media conditioned with the biomaterials were used to analyze pulp fibroblast proliferation using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test and proinflammatory cytokine interleukin 8 (IL-8) secretion using the enzyme-linked immunosorbent assay. The effects of conditioned media on dentin sialoprotein (DSP) and nestin expression by dental pulp stem cells (DPSCs) were investigated by immunofluorescence. The materials' interactions with the vital pulp were investigated using the entire tooth culture model. RESULTS TheraCal-conditioned media significantly decreased pulp fibroblast proliferation, whereas no effect was observed with Biodentine. When DPSCs were cultured with Biodentine-conditioned media, immunofluorescence showed an increased expression of DSP and nestin. This expression was lower with TheraCal, which significantly induced proinflammatory IL-8 release both in cultured fibroblasts and entire tooth cultures. This IL-8 secretion increase was not observed with Biodentine. Entire tooth culture histology showed a higher mineralization with Biodentine, whereas significant tissue disorganization was observed with TheraCal. CONCLUSIONS Within the limits of these preclinical results, resin-containing TheraCal cannot be recommended for direct pulp capping.
Collapse
Affiliation(s)
| | - Patrick Laurent
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; Assistance Publique-Hôpitaux de Marseille (APHM), Hôpital Timone, Service d'Odontologie, Marseille, France
| | | | - Thomas Giraud
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; Assistance Publique-Hôpitaux de Marseille (APHM), Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.
| |
Collapse
|
46
|
Expression and distribution of three transient receptor potential vanilloid(TRPV) channel proteins in human odontoblast-like cells. J Mol Histol 2017; 48:367-377. [PMID: 28905239 DOI: 10.1007/s10735-017-9735-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Odontoblasts have been suggested to contribute to nociceptive sensation in the tooth via expression of the transient receptor potential (TRP) channels. The TRP channels as a family of nonselective cation permeable channels play an important role in sensory transduction of human. In this study, we examined the expression of transient receptor potential vanilloid-1 (TRPV1), transient receptor potential vanilloid-2 (TRPV2) and transient receptor potential vanilloid-3 (TRPV3) channels in native human odontoblasts (HODs) and long-term cultured human dental pulp cells with odontoblast phenotyoe (LHOPs) obtained from healthy wisdom teeth with the use of immunohistochemistry (IHC), immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR),western blotting (WB) and immunoelectron microscopy (IEM) assay. LHOPs samples were made into ultrathin sections, mounted on nickel grids, floated of three TRPV antibodies conjugated with 10 nm colloidal gold particles and observed under IEM at 60,000 magnifications. The relative intracellular distributions of these three channels were analyzed quantitatively on IEM images using a robust sampling, stereological estimation and statistical evaluation method. The results of IHC and IF convinced that TRPV1, TRPV2 and TRPV3 channels were expressed in native HODs and (LHOPs). The result of qRT-PCR and WB confirmed that the gene and protein expression of TRPV1, TRPV2, and TRPV3 channels and TRPV1 mRNA are more abundantly expressed than TRPV2 and TRPV3 in HODs (P < 0.05). Quantitative analysis of IEM images showed that the relative intracellular distributions of these three channels are similar, and TRPV1, TRPV2 and TRPV3 proteins were preferential labeled in human odontoblast processes, mitochondria, and endoplasmic reticulum. Thus, HODs could play an important role in mediating pulp thermo-sensation due to the expression of these three TRPV channels. The difference of relative intracellular distributions of three channels suggests that special structures such as processes may have an important role to sensing of the outer stimuli first.
Collapse
|
47
|
Potential Therapeutic Strategy of Targeting Pulp Fibroblasts in Dentin-Pulp Regeneration. J Endod 2017; 43:S17-S24. [DOI: 10.1016/j.joen.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Senoo K, Yamashiro K, Yamamoto T, Myokai F, Kawamura M, Takashiba S. Expression of optineurin isolated from rat-injured dental pulp and the effects on inflammatory signals in normal rat kidney cells. Odontology 2017; 106:135-144. [DOI: 10.1007/s10266-017-0314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/04/2017] [Indexed: 01/14/2023]
|
49
|
Hashemi-Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA. Tissue engineering: Dentin - pulp complex regeneration approaches (A review). Tissue Cell 2017; 49:552-564. [PMID: 28764928 DOI: 10.1016/j.tice.2017.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/04/2023]
Abstract
Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field.
Collapse
Affiliation(s)
- Batool Hashemi-Beni
- Torabinejad Dentistry Research Center and Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Khoroushi
- Dental Materials Research Center and Department of Operative and Art, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Foroughi
- Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Khademi
- Torabinejad Dentistry Research Center and Department of Endodonics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
NURR1 Downregulation Favors Osteoblastic Differentiation of MSCs. Stem Cells Int 2017; 2017:7617048. [PMID: 28769982 PMCID: PMC5523352 DOI: 10.1155/2017/7617048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in human dental tissues. Dental pulp stem cells (DPSCs) were classified within MSC family, are multipotent, can be isolated from adult teeth, and have been shown to differentiate, under particular conditions, into various cell types including osteoblasts. In this work, we investigated how the differentiation process of DPSCs toward osteoblasts is controlled. Recent literature data attributed to the nuclear receptor related 1 (NURR1), a still unclarified role in osteoblast differentiation, while NURR1 is primarily involved in dopaminergic neuron differentiation and activity. Thus, in order to verify if NURR1 had a role in DPSC osteoblastic differentiation, we silenced it during all the processes and compared the expression of the main osteoblastic markers with control cultures. Our results showed that the inhibition of NURR1 significantly increased the expression of osteoblast markers collagen I and alkaline phosphatase. Further, in long time cultures, the mineral matrix deposition was strongly enhanced in NURR1-silenced cultures. These results suggest that NURR1 plays a key role in switching DPSC differentiation toward osteoblasts rather than neuronal or even other cell lines. In conclusion, DPSCs represent a source of osteoblast-like cells and downregulation of NURR1 strongly prompted their differentiation toward the osteoblastogenesis process.
Collapse
|