1
|
Du H, Zeng P, Liu X, Zhang J, Huang Z. Identifying therapeutic targets for primary ovarian insufficiency through integrated genomic analyses. J Ovarian Res 2024; 17:193. [PMID: 39358799 PMCID: PMC11446024 DOI: 10.1186/s13048-024-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is a disorder characterized by the premature decline in ovarian function, leading to significant fertility and health impacts on women under 40. The unclear etiology of POI hinders the development of effective treatments, highlighting the need for novel therapeutic targets. METHODS This study employed genome-wide association analysis (GWAS) integrated with expression quantitative trait loci (eQTL) data from the GTEx and eQTLGen databases. Mendelian randomization (MR) and colocalization analyses were conducted to investigate causal relationships between genetic variants and POI and to identify potential therapeutic targets. RESULTS We identified 431 genes with available index cis-eQTL signals, of which four (HM13, FANCE, RAB2A, and MLLT10) were significantly associated with POI. Colocalization analysis revealed strong evidence for FANCE and RAB2A, indicating their potential as therapeutic targets. Subsequent druggability assessments identified FANCE and RAB2A as promising candidates for POI treatment, supported by their involvement in DNA repair and autophagy regulation, respectively. CONCLUSIONS Our study establishes a causal link between specific genes and POI, highlighting FANCE and RAB2A as potential drug targets. These findings provide a foundation for future research and therapeutic development, aiming to improve outcomes for women with POI. Validation in further trials is necessary to confirm these potential targets.
Collapse
Affiliation(s)
- Haihong Du
- Department of Gynecology, Meishan Women and Children's Hospital, Meishan, Sichuan, China
| | - Pengfei Zeng
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuyi Liu
- Department of Gynecology, Meishan Women and Children's Hospital, Meishan, Sichuan, China
| | - Jun Zhang
- Department of Traditional Chinese Medicine, Meishan Women and Children's Hospital, Meishan, Sichuan, China
| | - Zhonglu Huang
- Department of Gynecology, Meishan Women and Children's Hospital, Meishan, Sichuan, China.
| |
Collapse
|
2
|
Zhou H, Wang YX, Wu M, Lan X, Xiang D, Cai R, Ma Q, Miao J, Fang X, Wang J, Luo D, He Z, Cui Y, Liang P, Wang Y, Bian XW. FANCD2 deficiency sensitizes SHH medulloblastoma to radiotherapy via ferroptosis. J Pathol 2024; 262:427-440. [PMID: 38229567 DOI: 10.1002/path.6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Zhou
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Min Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Xuanyu Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Junjie Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dan Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| | - Xiu-Wu Bian
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| |
Collapse
|
3
|
Lin B, Li H, Zhang T, Ye X, Yang H, Shen Y. Comprehensive analysis of macrophage-related multigene signature in the tumor microenvironment of head and neck squamous cancer. Aging (Albany NY) 2021; 13:5718-5747. [PMID: 33592580 PMCID: PMC7950226 DOI: 10.18632/aging.202499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/16/2020] [Indexed: 04/13/2023]
Abstract
Macrophages are among the most abundant cells of the tumor microenvironment in head and neck squamous cancer (HNSC). Although the marker gene sets of macrophages have been found, the mechanism by which they affect macrophages and whether they further predict the clinical outcome is unclear. In this study, a univariate COX analysis and a random forest algorithm were used to construct a prognostic model. Differential expression of the key gene, methylation status, function, and signaling pathways were further analyzed. We cross-analyzed multiple databases to detect the relationship between the most critical gene and the infiltration of multiple immune cells, as well as its impact on the prognosis of pan-cancer. FANCE is recognized as hub gene by different algorithms. It was overexpressed in HNSC, and high expression was predictive of better prognosis. It might promote apoptosis through the Wnt/β-catenin pathway. The expression of FANCE is inversely proportional to the infiltration of CD4 + T cells and their subsets, tumor-associated macrophages (TAMs), M2 macrophages, but positively co-expressed with M1 macrophages. In summary, FANCE was identified as the hub gene from the macrophage marker gene set, and it may improve the prognosis of HNSC patients by inhibiting lymphocytes and tumor-associated macrophages infiltration.
Collapse
Affiliation(s)
- Bo Lin
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| | - Hao Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tianwen Zhang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
| | - Xin Ye
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
| | - Hongyu Yang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| | - Yuehong Shen
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel) 2020; 11:E1528. [PMID: 33371494 PMCID: PMC7767525 DOI: 10.3390/genes11121528] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.
Collapse
Affiliation(s)
- Benilde García-de-Teresa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfredo Rodríguez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Bloom JC, Schimenti JC. Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes Dev 2020; 34:1637-1649. [PMID: 33184219 PMCID: PMC7706705 DOI: 10.1101/gad.341602.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
In this study, Bloom and Schimenti examine the response of primordial germ cells to DNA damage. Using both environmental and genetic stresses, the authors reveal the importance of the G1 checkpoint in preventing accumulation of complex mutations in the germline, and the differentiation of the DNA damage response during germ cell development. Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm−/−) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.
Collapse
Affiliation(s)
- Jordana C Bloom
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
Cantor SB, Calvo JA. Fork Protection and Therapy Resistance in Hereditary Breast Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:339-348. [PMID: 29472318 PMCID: PMC6041132 DOI: 10.1101/sqb.2017.82.034413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The BRCA-Fanconi anemia (FA) pathway preserves the genome and suppresses cancer and is a main determinant of chemotherapeutic efficacy. The hereditary breast cancer genes BRCA1 and BRCA2 function in DNA double-strand break repair mediating distinct steps of homologous recombination (HR). More recently, independent of DNA repair, functions in the replication stress response have come to light, providing insight as to how the BRCA-FA pathway also balances genome preservation with proliferation. The BRCA-FA proteins associate with the replisome and contribute to the efficiency and recovery of replication following perturbations that slow or arrest DNA replication. Although the full repertoire of functions in the replication stress response remains to be elucidated, the function of BRCA1 and BRCA2 in protecting stalled replication forks contributes along with HR to the sensitivity of BRCA-associated tumors to chemotherapy. Moreover, chemoresistance evolves from restoration of either HR and/or fork protection. Although mechanisms underlying the restoration of HR have been characterized, it remains less clear how restoration of fork protection is achieved. Here, we outline mechanisms of “rewired” fork protection and chemotherapy resistance in BRCA cancer. We propose that mechanisms are linked to permissive replication that limits fork remodeling and therefore opportunities for fork degradation. Combating this chemoresistance mechanism will require drugs that inactivate replication bypass mechanisms.
Collapse
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605
| | - Jennifer A Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605
| |
Collapse
|
7
|
Diagnosis of Fanconi Anaemia by ionising radiation- or mitomycin C-induced micronuclei. DNA Repair (Amst) 2017; 61:17-24. [PMID: 29154021 DOI: 10.1016/j.dnarep.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/25/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022]
Abstract
Fanconi Anaemia (FA) is an autosomal recessive disorder characterised by defects in DNA repair, associated with chromosomal instability and cellular hypersensitivity to DNA cross-linking agents such as mitomycin C (MMC). The FA repair pathway involves complex DNA repair mechanisms crucial for genomic stability. Deficiencies in DNA repair genes give rise to chromosomal radiosensitivity. FA patients have shown increased clinical radiosensitivity by exhibiting adverse normal tissue side-effects. The study aimed to investigate chromosomal radiosensitivity of homozygous and heterozygous carriers of FA mutations using three micronucleus (MN) assays. The G0 and S/G2MN assays are cytogenetic assays to evaluate DNA damage induced by ionising radiation in different phases of the cell cycle. The MMC MN assay detects DNA damage induced by a crosslinking agent in the G0 phase. Patients with a clinical diagnosis of FA and their parents were screened for the complete coding region of 20 FA genes. Blood samples of all FA patients and parents were exposed to ionising radiation of 2 and 4Gy. Chromosomal radiosensitivity was evaluated in the G0 and S/G2 phase. Most of our patients were homozygous for the founder mutation FANCG c.637_643delTACCGCC; p.(Tyr213Lysfs*6) while one patient was compound heterozygous for FANCG c.637_643delTACCGCC and FANCG c.1379G > A, p.(Gly460Asp), a novel missense mutation. Another patient was compound heterozygous for two deleterious FANCA mutations. In FA patients, the G0- and S/G2-MN assays show significantly increased chromosomal radiosensitivity and genomic instability. Moreover, chromosomal damage was significantly elevated in MMC treated FA cells. We also observed an increase in chromosomal radiosensitivity and genomic instability in the parents using 3 assays. The effect was significant using the MMC MN assay. The MMC MN assay is advantageous as it is less labour intense, time effective and has potential as a reliable alternative method for detecting FA patients from parents and controls.
Collapse
|
8
|
Overlooked FANCD2 variant encodes a promising, portent tumor suppressor, and alternative polyadenylation contributes to its expression. Oncotarget 2017; 8:22490-22500. [PMID: 28157704 PMCID: PMC5410239 DOI: 10.18632/oncotarget.14989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 01/02/2023] Open
Abstract
Fanconi Anemia (FA) complementation group D2 protein (FANCD2) is the center of the FA tumor suppressor pathway, which has become an important field of investigation in human aging and cancer. Here we report an overlooked central player in the FA pathway, FANCD2 variant 2 (FANCD2-V2), which appears to perform more potent tumor suppressor-function compared to the known variant of FANCD2, namely, FANCD2-V1. Detailed analysis of the FANCD2 gene structure indicated a proximal and distal polyadenylation site (PAS), associated with V2 and V1 transcripts accordingly. RNA polymerase II Chromatin immunoprecipitation (ChIP) targeting the two PAS-regions determined lesser binding of RNA pol II to DNA fragments in the distal PAS region in non-malignant cells compared to malignant cells. Conversely, the opposite occurred in the proximal PAS region. Moreover, RNA immunoprecipitation (RIP) identified that U2 snRNP, a major component of RNA splicing complex that interacts with the 3′end of an intron, showed greater binding to the last intron of the FANCD2-V1 transcript in malignant cells compared to the non-malignant cells. Importantly, our data showed that in human tissue samples, the ratio of V2 /V1 expression in lung, bladder, or ovarian cancer correlates inversely with the tumor stages/grades. Therefore, these findings provide a previously unrecognized central player FANCD2-V2 and thus novel insights into human tumorigenesis, and indicate that V2/V1 can act as an effective biomarker in assisting the recognition of tumor malignance.
Collapse
|
9
|
Nepal M, Che R, Ma C, Zhang J, Fei P. FANCD2 and DNA Damage. Int J Mol Sci 2017; 18:ijms18081804. [PMID: 28825622 PMCID: PMC5578191 DOI: 10.3390/ijms18081804] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
Investigators have dedicated considerable effort to understanding the molecular basis underlying Fanconi Anemia (FA), a rare human genetic disease featuring an extremely high incidence of cancer and many congenital defects. Among those studies, FA group D2 protein (FANCD2) has emerged as the focal point of FA signaling and plays crucial roles in multiple aspects of cellular life, especially in the cellular responses to DNA damage. Here, we discuss the recent and relevant studies to provide an updated review on the roles of FANCD2 in the DNA damage response.
Collapse
Affiliation(s)
- Manoj Nepal
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| | - Raymond Che
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| | - Chi Ma
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Rochester, MN 55905, USA.
| | - Peiwen Fei
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
10
|
Involvement of FANCD2 in Energy Metabolism via ATP5α. Sci Rep 2017; 7:4921. [PMID: 28687786 PMCID: PMC5501830 DOI: 10.1038/s41598-017-05150-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
Growing evidence supports a general hypothesis that aging and cancer are diseases related to energy metabolism. However, the involvement of Fanconi Anemia (FA) signaling, a unique genetic model system for studying human aging or cancer, in energy metabolism remains elusive. Here, we report that FA complementation group D2 protein (FANCD2) functionally impacts mitochondrial ATP production through its interaction with ATP5α, whereas this relationship was not observed in the mutant FANCD2 (K561R)-carrying cells. Moreover, while ATP5α is present within the mitochondria in wild-type cells, it is instead located mostly outside in cells that carry the non-monoubiquitinated FANCD2. In addition, mitochondrial ATP production is significantly reduced in these cells, compared to those cells carrying wtFANCD2. We identified one region (AA42-72) of ATP5α, contributing to the interaction between ATP5α and FANCD2, which was confirmed by protein docking analysis. Further, we demonstrated that mtATP5α (∆AA42-72) showed an aberrant localization, and resulted in a decreased ATP production, similar to what was observed in non-monoubiquitinated FANCD2-carrying cells. Collectively, our study demonstrates a novel role of FANCD2 in governing cellular ATP production, and advances our understanding of how defective FA signaling contributes to aging and cancer at the energy metabolism level.
Collapse
|
11
|
Gorniewska AM, Kluzek K, Gackowska L, Kubiszewska I, Zdzienicka MZ, Bialkowska A. Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination. Mol Med Rep 2017. [PMID: 28627616 PMCID: PMC5561886 DOI: 10.3892/mmr.2017.6781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Repair of DNA interstrand crosslinks (ICLs) predominantly involves the Fanconi anemia (FA) pathway and homologous recombination (HR). The HR repair system eliminates DNA double strand breaks (DSBs) that emerge during ICLs removal. The current study presents a novel cell line, CL-V8B, representing a new complementation group of Chinese hamster cell mutants hypersensitive to DNA crosslinking factors. CL-V8B exhibits increased sensitivity to various DNA-damaging agents, including compounds leading to DSBs formation (bleomycin and 6-thioguanine), and is extremely sensitive to poly (ADP-ribose) polymerase inhibitor (>400-fold), which is typical for HR-defective cells. In addition, this cell line exhibits a reduced number of spontaneous and induced sister chromatid exchanges, which suggests likely impairment of HR in CL-V8B cells. However, in contrast to other known HR mutants, CL-V8B cells do not show defects in Rad51 foci induction, but only slight alterations in the focus formation kinetics. CL-V8B is additionally characterized by a considerable chromosomal instability, as indicated by a high number of spontaneous and MMC-induced chromosomal aberrations, and a twice as large proportion of cells with abnormal centrosomes than that in the wild type cell line. The molecular defect present in CL-V8B does not affect the efficiency and stabilization of replication forks. However, stalling of the forks in response to replication stress is observed relatively rarely, which suggests an impairment of a signaling mechanism. Exposure of CL-V8B to crosslinking agents results in S-phase arrest (as in the wild type cells), but also in larger proportion of G2/M-phase cells and apoptotic cells. CL-V8B exhibits similarities to HR- and/or FA-defective Chinese hamster mutants sensitive to DNA crosslinking agents. However, the unique phenotype of this new mutant implies that it carries a defect of a yet unidentified gene involved in the repair of ICLs.
Collapse
Affiliation(s)
- Aleksandra M Gorniewska
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Katarzyna Kluzek
- Department of Human Molecular Genetics, Adam Mickiewicz University, Poznan 61‑614, Poland
| | - Lidia Gackowska
- Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Izabela Kubiszewska
- Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Malgorzata Z Zdzienicka
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Aneta Bialkowska
- Innovative Medical Forum, Franciszek Lukaszczyk Oncology Center, Bydgoszcz 85‑796, Poland
| |
Collapse
|
12
|
Cho Endonuclease Functions during DNA Interstrand Cross-Link Repair in Escherichia coli. J Bacteriol 2016; 198:3099-3108. [PMID: 27573016 DOI: 10.1128/jb.00509-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023] Open
Abstract
DNA interstrand cross-links are complex lesions that covalently link both strands of the duplex DNA. Lesion removal is proposed to be initiated via the UvrABC nucleotide excision repair complex; however, less is known about the subsequent steps of this complex repair pathway. In this study, we characterized the contribution of nucleotide excision repair mutants to survival in the presence of psoralen-induced damage. Unexpectedly, we observed that the nucleotide excision repair mutants exhibit differential sensitivity to psoralen-induced damage, with uvrC mutants being less sensitive than either uvrA or uvrB We show that Cho, an alternative endonuclease, acts with UvrAB and is responsible for the reduced hypersensitivity of uvrC mutants. We find that Cho's contribution to survival correlates with the presence of DNA interstrand cross-links, rather than monoadducts, and operates at a step after, or independently from, the initial incision during the global repair of psoralen DNA adducts from the genome. IMPORTANCE DNA interstrand cross-links are complex lesions that covalently bind to both strands of the duplex DNA and whose mechanism of repair remains poorly understood. In this study, we show that Cho, an alternative endonuclease, acts with UvrAB and participates in the repair of DNA interstrand cross-links formed in the presence of photoactivated psoralens. Cho's contribution to survival correlates with the presence of DNA interstrand cross-links and operates at a step after, or independently from, the initial incision during the repair process.
Collapse
|
13
|
Rocca CJ, Soares DG, Bouzid H, Henriques JAP, Larsen AK, Escargueil AE. BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder. Cell Cycle 2016; 14:2080-90. [PMID: 25945522 DOI: 10.1080/15384101.2015.1042632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials.
Collapse
Key Words
- ATR, Ataxia telangiectasia- and RAD3-related
- DNA alkylators
- DNA double strand breaks
- DNA replication
- DSBs, Double Strand Breaks
- FA, Fanconi Anemia
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- HR, Homologous Recombination
- HU, Hydroxyurea
- Homologous recombination
- ICLs, Inter-strand Crosslinks
- NER, Nucleotide Excision Repair
- NHEJ, Non-Homologous End-Joining
- TCR, Transcription-Coupled Repair
- UCN-01, 7-hydroxystaurosporine.
- checkpoint control
Collapse
Affiliation(s)
- Céline J Rocca
- a Laboratory of Cancer Biology and Therapeutics ; Centre de Recherche Saint-Antoine ; Paris , France
| | | | | | | | | | | |
Collapse
|
14
|
Shen Y, Zhang J, Yu H, Fei P. Advances in the understanding of Fanconi Anemia Complementation Group D2 Protein (FANCD2) in human cancer. CANCER CELL & MICROENVIRONMENT 2015; 2:e986. [PMID: 26640811 PMCID: PMC4667986 DOI: 10.14800/ccm.986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare human genetic disease, resulting from dysfunction in any of 17 known complementation proteins: FANC-A, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, Q & S, and other unknowns. Besides the severe bone marrow failure, an extremely high incidence of cancer as well as many other clinic symptoms associated with FA patients, FA cells are known of insufficiency in homologous recombination, DNA mismatch repair, nucleotide excision repair, translesion DNA synthesis, and other molecular defects, leading to genome instability. Those similar molecular and cellular/tissue features show that all FA proteins function in one common signaling pathway, namely, the FA pathway. The monoubiquitination of FANCD2 is the central step of the FA pathway activation upon DNA damage or during DNA replication. The molecular functions of FANCD2 emerge as a very attractive filed of investigation in cancer research. Herein, we review the recent progresses in FANCD2 functions at these rapidly progressed aspects.
Collapse
Affiliation(s)
- Yihang Shen
- Divisions of Cancer Biology University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, MN, USA
| | - Herbert Yu
- Divisions of Epidemiology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- Divisions of Cancer Biology University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
15
|
Analysis of a FANCE Splice Isoform in Regard to DNA Repair. J Mol Biol 2015; 427:3056-73. [PMID: 26277624 DOI: 10.1016/j.jmb.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 11/27/2022]
Abstract
The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair.
Collapse
|
16
|
Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang W, Ruiz S, Plongthongkum N, Zhang K, Masuda S, Nivet E, Tsunekawa Y, Soligalla RD, Goebl A, Aizawa E, Kim NY, Kim J, Dubova I, Li Y, Ren R, Benner C, Del Sol A, Bueren J, Trujillo JP, Surralles J, Cappelli E, Dufour C, Esteban CR, Belmonte JCI. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun 2014; 5:4330. [PMID: 24999918 DOI: 10.1038/ncomms5330] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/09/2014] [Indexed: 12/21/2022] Open
Abstract
Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.
Collapse
Affiliation(s)
- Guang-Hui Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.,Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Mo Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jing Qu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.,Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Nuria Montserrat
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Carolina Tarantino
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ying Gu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Fei Yi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Xiuling Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sergio Ruiz
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA
| | - Shigeo Masuda
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Emmanuel Nivet
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Yuji Tsunekawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Rupa Devi Soligalla
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - April Goebl
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Na Young Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jessica Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ilir Dubova
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ying Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chris Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-1511, Luxembourg, Luxembourg
| | - Juan Bueren
- Hematopoiesis and Gene Therapy Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid 28040, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid 28040, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid 28040, Spain
| | - Juan Pablo Trujillo
- Department of Genetics and Microbiology and Center for Biomedical Network Research on Rare Diseases (CIBERER), Universitat Autonoma de Barcelona, Campus de Bellaterra s/n 08193 Bellaterra, Spain
| | - Jordi Surralles
- Department of Genetics and Microbiology and Center for Biomedical Network Research on Rare Diseases (CIBERER), Universitat Autonoma de Barcelona, Campus de Bellaterra s/n 08193 Bellaterra, Spain
| | - Enrico Cappelli
- G. Gaslini Children's Hospital, Largo G. Gaslini 5, 16147 Genova Quarto, Italy
| | - Carlo Dufour
- G. Gaslini Children's Hospital, Largo G. Gaslini 5, 16147 Genova Quarto, Italy
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
17
|
Leskovac A, Petrovic S, Guc-Scekic M, Vujic D, Joksic G. Radiation-induced mitotic catastrophe in FANCD2 primary fibroblasts. Int J Radiat Biol 2014; 90:373-81. [PMID: 24512567 DOI: 10.3109/09553002.2014.892224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE As the Fanconi anemia (FA) pathway is required for appropriate cell cycle progression through mitosis and the completion of cell division, the aim of the present study was to determine the destiny of FA cells after irradiation in vitro and to elucidate any difference in radiosensitivity between FA and control cells. MATERIALS AND METHODS Analyses of phosphorylated histone H2AX (γ-H2AX) foci, micronuclei formation and cell cycle analysis were performed in unirradiated (0 min) and irradiated primary FA fibroblasts and in a control group at different post-irradiation times (30 min, 2 h, 5 h and 24 h). RESULTS The accumulation of γ-H2AX foci in irradiated FA fibroblasts was observed. At 24 h post-irradiation, 57% of FA cells were γ-H2AX foci-positive, significantly higher than in the control (p < 0.01). The cell cycle analysis has shown the transient G2/M arrest in irradiated FA fibroblasts. The portion of cells in the G2/M phase showed initial increase at 30 min post-irradiation and afterwards decreased over time reaching the pretreatment level 24 h after irradiation. Irradiated FA fibroblasts progressed to abnormal mitosis, as is shown by the production of cells with different nuclear morphologies from binucleated to multinucleated surrounded with micronuclei, and also by a high percentage of foci-positive micronuclei. The majority of radiation-induced micronuclei were γ-H2AX foci-positive, indicating that radiation-induced micronuclei contain fragments of damaged chromosomes. In contrast, in the control group, most of the micronuclei were classified as γ-H2AX foci-negative, which indicates that cells with unrepaired damage were blocked before entering mitosis. CONCLUSION The results clearly indicate that mitotic catastrophe might be an important cell-death mechanism involved in the response of FA fibroblasts to ionizing radiation.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade , Belgrade , Serbia
| | | | | | | | | |
Collapse
|
18
|
Pickering A, Zhang J, Panneerselvam J, Fei P. Advances in the understanding of the Fanconi anemia tumor suppressor pathway. Cancer Biol Ther 2013; 14:1089-91. [PMID: 24025411 DOI: 10.4161/cbt.26380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Extremely high cancer incidence in Fanconi anemia (FA) patients has long suggested that the FA signaling pathway is a tumor suppressor pathway. Indeed, our recent findings, for the first time, indicate that the FA pathway plays a significant role in suppressing the development of non-FA human cancer. Also our studies on FA group D2 protein (FANCD2) have, among the first, documented the crosstalks between the FA and Rad6/Rad18 (HHR6) pathways upon DNA damage. In this review, we will discuss how our studies enhance the understanding of the FA tumor suppressor pathway.
Collapse
Affiliation(s)
- Anna Pickering
- University of Hawaii Cancer Center; University of Hawaii; Honolulu, HI USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | | | - Peiwen Fei
- University of Hawaii Cancer Center; University of Hawaii; Honolulu, HI USA
| |
Collapse
|
19
|
Tomida J, Itaya A, Shigechi T, Unno J, Uchida E, Ikura M, Masuda Y, Matsuda S, Adachi J, Kobayashi M, Meetei AR, Maehara Y, Yamamoto KI, Kamiya K, Matsuura A, Matsuda T, Ikura T, Ishiai M, Takata M. A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair. Nucleic Acids Res 2013; 41:6930-41. [PMID: 23723247 PMCID: PMC3737553 DOI: 10.1093/nar/gkt467] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway.
Collapse
Affiliation(s)
- Junya Tomida
- Department of Late Effects Studies, Laboratory of DNA Damage Signaling, Kyoto University, Kyoto 606-8501, Japan, Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Panneerselvam J, Park HK, Zhang J, Dudimah FD, Zhang P, Wang H, Fei P. FAVL impairment of the Fanconi anemia pathway promotes the development of human bladder cancer. Cell Cycle 2012; 11:2947-55. [PMID: 22828653 PMCID: PMC3419064 DOI: 10.4161/cc.21400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Effectiveness of DNA cross-linking drugs in the treatment of bladder cancer suggests that bladder cancer cells may have harbored an insufficient cellular response to DNA cross-link damage, which will sensitize cells to DNA cross-linking agents. Cell sensitivity benefits from deficient DNA damage responses, which, on the other hand, can cause cancer. Many changed cellular signaling pathways are known to be involved in bladder tumorigenesis; however, DNA cross-link damage response pathway [Fanconi anemia (FA) pathway], whose alterations appear to be a plausible cause of the development of bladder cancer, remains an under-investigated area in bladder cancer research. In this study, we found FAVL (variant of FA protein L--FANCL) was elevated substantially in bladder cancer tissues examined. Ectopic expression of FAVL in bladder cancer cells as well as normal human cells confer an impaired FA pathway and hypersensitivity to Mitomycin C, similar to those found in FA cells, indicating that FAVL elevation may possess the same tumor promotion potential as an impaired FA pathway harbored in FA cells. Indeed, a higher level of FAVL expression can promote the growth of bladder cancer cells in vitro and in vivo, which, at least partly, results from FAVL perturbation of FANCL expression, an essential factor for the activation of the FA pathway. Moreover, a higher level of FAVL expression was found to be associated with chromosomal instability and the invasiveness of bladder cancer cells. Collectively, FAVL elevation can increase the tumorigenic potential of bladder cancer cells, including the invasive potential that confers the development of advanced bladder cancer. These results enhance our understanding the pathogenesis of human bladder cancer, holding a promise to develop additional effective tools to fight human bladder cancer.
Collapse
Affiliation(s)
| | - Hwan Ki Park
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | | | - Piyan Zhang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | - Hong Wang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | - Peiwen Fei
- University of Hawaii Cancer Center; University of Hawaii; Honolulu, HI USA
| |
Collapse
|
21
|
Shukla P, Ghosh K, Vundinti BR. Current and emerging therapeutic strategies for Fanconi anemia. THE HUGO JOURNAL 2012. [PMCID: PMC4685155 DOI: 10.1186/1877-6566-6-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Fanconi Anemia (FA) is a rare disorder with incidence of 1in 350,000 births. It is characterized by progressive bone marrow failure leading to death of many patients in their childhood while development of cancer at later stages of life in some. The treatment of FA is still a medical challenge. Current treatments of FA include androgen administration, hematopoietic growth factors administration and hematopoietic stem cell transplantation (HSCT). Clinical gene therapy trials are still ongoing. The partial success of current therapies has renewed interest in the search for new treatments. Generation of patient-specific induced pluripotent stem (iPS) has shown promising results for cell and gene based therapy. Small molecule interventions have been observed to delay tumor onset in FA. Tumors deficient in FA pathway can be treated by profiling of DNA repair pathway through synthetic lethality mechanism. Targeting toll-like receptor 8 (TLR8) dependent TNFα overexpression is yet another upcoming therapeutic approach to treat FA patients. In conclusion, in the present scenario of treatments available for FA, a proper algorithm of treatment decisions must be followed for better management of FA patients and to ensure their increased survival. Innovative therapeutic approaches that can prevent both anemia and cancer should be developed for more effective treatment of FA.
Collapse
|
22
|
Berquist BR, Wilson DM. Pathways for repairing and tolerating the spectrum of oxidative DNA lesions. Cancer Lett 2012; 327:61-72. [PMID: 22353689 DOI: 10.1016/j.canlet.2012.02.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 01/03/2023]
Abstract
Reactive oxygen species (ROS) arise from both endogenous and exogenous sources. These reactive molecules possess the ability to damage both the DNA nucleobases and the sugar phosphate backbone, leading to a wide spectrum of lesions, including non-bulky (8-oxoguanine and formamidopyrimidine) and bulky (cyclopurine and etheno adducts) base modifications, abasic sites, non-conventional single-strand breaks, protein-DNA adducts, and intra/interstrand DNA crosslinks. Unrepaired oxidative DNA damage can result in bypass mutagenesis during genome copying or gene expression, or blockage of the essential cellular processes of DNA replication or transcription. Such outcomes underlie numerous pathologies, including, but not limited to, carcinogenesis and neurodegeneration, as well as the aging process. Cells have adapted and evolved defense systems against the deleterious effects of ROS, and specifically devote a number of cellular DNA repair and tolerance pathways to combat oxidative DNA damage. Defects in these protective pathways trigger hereditary human diseases that exhibit increased cancer incidence, developmental defects, neurological abnormalities, and/or premature aging. We review herein classic and atypical oxidative DNA lesions, outcomes of encountering these damages during DNA replication and transcription, and the consequences of losing the ability to repair the different forms of oxidative DNA damage. We particularly focus on the hereditary human diseases Xeroderma Pigmentosum, Cockayne Syndrome and Fanconi Anemia, which may involve defects in the efficient repair of oxidative modifications to chromosomal DNA.
Collapse
Affiliation(s)
- Brian R Berquist
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, 77843, United States
| | | |
Collapse
|
23
|
Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 2010; 70:9959-68. [PMID: 20935219 DOI: 10.1158/0008-5472.can-10-1291] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with the rare genetic disease, Fanconi anemia (FA), are highly susceptible to squamous cell carcinomas arising at multiple anatomic sites including the head and neck region. Human papillomaviruses (HPVs), particularly HPV16, are associated with ∼20% of head and neck squamous cell carcinomas (HNSCCs) in the general population. Some but not other investigators have reported that HNSCCs in FA patients are much more frequently positive for HPV. In addition, studies have demonstrated an interaction between the HPV16 E7 oncoprotein and the FA pathway, a DNA damage response pathway deficient in FA patients. On the basis of these studies, it was hypothesized that the FA pathway contributes to repair of DNA damage induced by HPV16 E7, providing one explanation for why FA patients are predisposed to HPV-associated HNSCCs. To determine the importance of the FA pathway in modulating the oncogenic abilities of E7, we crossed K14E7 transgenic (K14E7) and fancD2 knockout mice (FancD2(-/-)) to establish K14E7/FancD2(-/-) and K14E7/FancD2(+/+) mice and monitored their susceptibility to HNSCC when treated with a chemical carcinogen. K14E7/FancD2(-/-) mice had a significantly higher incidence of HNSCC compared with K14E7/FancD2(+/+) mice. This difference correlated with an increased proliferative index and the increase in expression of biomarkers that are used to assess levels of DNA damage. These animal studies support the hypotheses that FA patients have increased susceptibility to HPV-associated cancer and that the FA DNA damage response pathway normally attenuates the oncogenic potential of HPV16 E7.
Collapse
Affiliation(s)
- Jung Wook Park
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Huang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell 2010; 39:259-68. [PMID: 20670894 DOI: 10.1016/j.molcel.2010.07.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/22/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022]
Abstract
Cells from Fanconi anemia (FA) patients are extremely sensitive to DNA interstrand crosslinking (ICL) agents, but the molecular basis of the hypersensitivity remains to be explored. FANCM (FA complementation group M), and its binding partner, FAAP24, anchor the multisubunit FA core complex to chromatin after DNA damage and may contribute to ICL-specific cellular response. Here we show that the FANCM/FAAP24 complex is specifically required for the recruitment of replication protein A (RPA) to ICL-stalled replication forks. ICL-induced RPA foci formation requires the DNA-binding activity of FAAP24 but not the DNA translocase activity of FANCM. Furthermore, FANCM/FAAP24-dependent RPA foci formation is required for efficient ATR-mediated checkpoint activation in response to ICL. Therefore, we propose that FANCM/FAAP24 plays a role in ICL-induced checkpoint activation through regulating RPA recruiment at ICL-stalled replication forks.
Collapse
Affiliation(s)
- Min Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Du J, Chen L, Shen J. Identification of FANCA as a protein interacting with centromere-associated protein E. Acta Biochim Biophys Sin (Shanghai) 2009; 41:816-21. [PMID: 19779646 DOI: 10.1093/abbs/gmp074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study sought to isolate and identify proteins that interact with centromere-associated protein E (CENPE), provide new clues for exploring the function of CENP-E in cell cycle control and the pathogenesis of tumor. Yeast two-hybrid screen and regular molecular biologic techniques were undertaken to screen human HeLa cDNA library with the kinetochore binding domain of CENP-E. The bait from the C-terminus of CENP-E was created by subcloning methods to find out optimal candidate proteins that interact with the kinetochore binding domain of CENP-E. Eight novel CENP-E interacting proteins including Homo sapiens Fanconi anemia complementation group A (FANCA) were obtained. In yeast two-hybrid assay, the N-terminal 260 amino acids of FANCA were found to be necessary and sufficient for the interaction with the C-terminus of CENP-E. The interaction was confirmed by in vitro glutathione S-transferase pull-down assay and in vivo coimmunoprecipitation assay. Our finding of the interaction of CENP-E with FANCA demonstrates that CENP-E and FANCA may play important roles in the functional regulation of the mitotic checkpoint signal pathway.
Collapse
Affiliation(s)
- Jian Du
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China.
| | | | | |
Collapse
|
26
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
27
|
Sobeck A, Stone S, Landais I, de Graaf B, Hoatlin ME. The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways. J Biol Chem 2009; 284:25560-8. [PMID: 19633289 DOI: 10.1074/jbc.m109.007690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genomic stability requires a functional Fanconi anemia (FA) pathway composed of an upstream "core complex" (FA proteins A/B/C/E/F/G/L/M) that mediates monoubiquitination of the downstream targets FANCD2 and FANCI. Unique among FA core complex members, FANCM has processing activities toward replication-associated DNA structures, suggesting a vital role for FANCM during replication. Using Xenopus egg extracts, we analyzed the functions of FANCM in replication and the DNA damage response. xFANCM binds chromatin in a replication-dependent manner and is phosphorylated in response to DNA damage structures. Chromatin binding and DNA damage-induced phosphorylation of xFANCM are mediated in part by the downstream FA pathway protein FANCD2. Moreover, phosphorylation and chromatin recruitment of FANCM is regulated by two mayor players in the DNA damage response: the cell cycle checkpoint kinases ATR and ATM. Our results indicate that functions of FANCM are controlled by FA- and non-FA pathways in the DNA damage response.
Collapse
Affiliation(s)
- Alexandra Sobeck
- Department of Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
28
|
Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009; 668:73-91. [PMID: 19464302 DOI: 10.1016/j.mrfmmm.2009.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/30/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Although still incomplete, we now have a remarkably detailed and nuanced picture of both phenotypic and genotypic components of the FA spectrum. Initially described as a combination of pancytopenia with a limited number of physical anomalies, it was later recognized that additional features were compatible with the FA phenotype, including a form without detectable malformations (Estren-Dameshek variant). The discovery of somatic mosaicism extended the boundaries of the FA phenotype to cases even without any overt hematological manifestations. This clinical heterogeneity was augmented by new conceptualizations. There was the realization of a constant risk for the development of myelodysplasia and certain malignancies, including acute myelogenous leukemia and squamous cell carcinoma, and there was the emergence of a distinctive cellular phenotype. A striking degree of genetic heterogeneity became apparent with the delineation of at least 12 complementation groups and the identification of their underlying genes. Although functional genetic insights have fostered the interpretation of many phenotypic features, surprisingly few stringent genotype-phenotype connections have emerged. In addition to myriad genetic alterations, less predictable influences are likely to modulate the FA phenotype, including modifier genes, environmental factors and chance effects. In reviewing the current status of genotype-phenotype correlations, we arrive at a unifying hypothesis to explain the remarkably wide range of FA phenotypes. Given the large body of evidence that genomic instability is a major underlying mechanism of accelerated ageing phenotypes, we propose that the numerous FA variants can be viewed as differential modulations and compression in time of intrinsic biological ageing.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human and Medical Genetics, University of Wurzburg, Biozentrum, Am Hubland, Wurzburg D-97074, Germany
| | | | | | | |
Collapse
|
29
|
Bae JB, Mukhopadhyay SS, Liu L, Zhang N, Tan J, Akhter S, Liu X, Shen X, Li L, Legerski RJ. Snm1B/Apollo mediates replication fork collapse and S Phase checkpoint activation in response to DNA interstrand cross-links. Oncogene 2008; 27:5045-56. [PMID: 18469862 PMCID: PMC2805112 DOI: 10.1038/onc.2008.139] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/10/2008] [Accepted: 03/31/2008] [Indexed: 12/13/2022]
Abstract
The removal of DNA interstrand cross-links (ICLs) has proven to be notoriously complicated due to the involvement of multiple pathways of DNA repair, which include the Fanconi anemia/BRCA pathway, homologous recombination and components of the nucleotide excision and mismatch repair pathways. Members of the SNM1 gene family have also been shown to have a role in mediating cellular resistance to ICLs, although their precise function has remained elusive. Here, we show that knockdown of Snm1B/Apollo in human cells results in hypersensitivity to mitomycin C (MMC), but not to IR. We also show that Snm1B-deficient cells exhibit a defective S phase checkpoint in response to MMC, but not to IR, and this finding may account for the specific sensitivity to the cross-linking drug. Interestingly, although previous studies have largely implicated ATR as the major kinase activated in response to ICLs, we show that it is activation of the ATM-mediated checkpoint that is defective in Snm1B-deficient cells. The requirement for Snm1B in ATM checkpoint activation specifically after ICL damage is correlated with its role in promoting double-strand break formation, and thus replication fork collapse. Consistent with this result Snm1B was found to interact directly with Mus81-Eme1, an endonuclease previously implicated in fork collapse. In addition, we also show that Snm1B interacts with the Mre11-Rad50-Nbs1 (MRN) complex and with FancD2 further substantiating its role as a checkpoint/DNA repair protein.
Collapse
Affiliation(s)
- Jae-Bum Bae
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sudit S. Mukhopadhyay
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Lingling Liu
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Nianxiang Zhang
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Jeff Tan
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Shamimi Akhter
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiaojun Liu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Randy J. Legerski
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
30
|
Litman R, Gupta R, Brosh RM, Cantor SB. BRCA-FA pathway as a target for anti-tumor drugs. Anticancer Agents Med Chem 2008; 8:426-30. [PMID: 18473727 DOI: 10.2174/187152008784220285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Promising research on DNA repair signaling pathways predicts a new age of anti-tumor drugs. This research was initiated through the discovery and characterization of proteins that functioned together in signaling pathways to sense, respond, and repair DNA damage. It was realized that tumor cells often lacked distinct DNA repair pathways, but simultaneously relied heavily on compensating pathways. More recently, researchers have begun to manipulate these compensating pathways to reign in and kill tumor cells. In a striking example it was shown that tumors derived from mutations in the DNA repair genes, of BRCA-FA pathway, were selectively sensitive to inhibition of the base excision repair pathway. These findings suggest that tumors derived from defects in DNA repair genes will be easier to treat clinically, providing a streamlined and targeted therapy that spares healthy cells. In the future, identifying patients with susceptible tumors and discovering additional DNA repair targets amenable to anti-tumor drugs will have a major impact on the course of cancer treatment.
Collapse
Affiliation(s)
- Rachel Litman
- Department of Cancer Biology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
31
|
Peng M, Litman R, Xie J, Sharma S, Brosh RM, Cantor SB. The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J 2007; 26:3238-49. [PMID: 17581638 PMCID: PMC1914102 DOI: 10.1038/sj.emboj.7601754] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/16/2007] [Indexed: 01/02/2023] Open
Abstract
FANCJ also called BACH1/BRIP1 was first linked to hereditary breast cancer through its direct interaction with BRCA1. FANCJ was also recently identified as a Fanconi anemia (FA) gene product, establishing FANCJ as an essential tumor suppressor. Similar to other FA cells, FANCJ-null (FA-J) cells accumulate 4N DNA content in response to DNA interstrand crosslinks (ICLs). This accumulation is corrected by reintroduction of wild-type FANCJ. Here, we show that FANCJ interacts with the mismatch repair complex MutLalpha, composed of PMS2 and MLH1. Specifically, FANCJ directly interacts with MLH1 independent of BRCA1, through its helicase domain. Genetic studies reveal that FANCJ helicase activity and MLH1 binding, but not BRCA1 binding, are essential to correct the FA-J cells' ICL-induced 4N DNA accumulation and sensitivity to ICLs. These results suggest that the FANCJ/MutLalpha interaction, but not FANCJ/BRCA1 interaction, is essential for establishment of a normal ICL-induced response. The functional role of the FANCJ/MutLalpha complex demonstrates a novel link between FA and MMR, and predicts a broader role for FANCJ in DNA damage signaling independent of BRCA1.
Collapse
Affiliation(s)
- Min Peng
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Rachel Litman
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Jenny Xie
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
- Department of Cancer Biology, UMASS Medical School, 364 Plantation Street, LRB 415, Worcester, MA 01605, USA. Tel.: +1 508 856 4421; Fax: +1 508 856 1310; E-mail:
| |
Collapse
|
32
|
Rousset S, Nocentini S, Rouillard D, Baroche C, Moustacchi E. Mitochondrial Alterations in Fanconi Anemia Fibroblasts Following Ultraviolet A or Psoralen Photoactivation¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750159maifaf2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Phelps RA, Gingras H, Hockenbery DM. Loss of FANCC function is associated with failure to inhibit late firing replication origins after DNA cross-linking. Exp Cell Res 2007; 313:2283-92. [PMID: 17490643 DOI: 10.1016/j.yexcr.2007.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 01/06/2023]
Abstract
Fanconi anemia (FA) cells are abnormally sensitive to DNA cross-linking agents with increased levels of apoptosis and chromosomal instability. Defects in eight FA complementation groups inhibit monoubiquitination of FANCD2, and subsequent recruitment of FANCD2 to DNA damage and S-phase-associated nuclear foci. The specific functional defect in repair or response to DNA damage in FA cells remains unknown. Damage-resistant DNA synthesis is present 2.5-5 h after cross-linker treatment of FANCC, FANCA and FANCD2-deficient cells. Analysis of the size distribution of labeled DNA replication strands revealed that diepoxybutane treatment suppressed labeling of early but not late-firing replicons in FANCC-deficient cells. In contrast, normal responses to ionizing radiation were observed in FANCC-deficient cells. Absence of this late S-phase response in FANCC-deficient cells leads to activation of secondary checkpoint responses.
Collapse
Affiliation(s)
- Randall A Phelps
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
34
|
Lee KY, Yang I, Park JE, Baek OR, Chung KY, Koo HS. Developmental stage- and DNA damage-specific functions of C. elegans FANCD2. Biochem Biophys Res Commun 2006; 352:479-85. [PMID: 17126808 DOI: 10.1016/j.bbrc.2006.11.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 02/04/2023]
Abstract
In this study, we set out to investigate the role of Fanconi anemia complementation group D2 protein (FANCD2) in developmental stage-specific DNA damage responses in Caenorhabditis elegans. A mutant C. elegans strain containing a deletion in the gene encoding the FANCD2 homolog, FCD-2, exhibited egg-laying defects, precocious oogenesis, and partial defects in fertilization. The mutant strain also had a lower hatching rate than the wild-type after gamma-irradiation of embryos, but not after the irradiation of pachytene stage germ cells. This mutation sensitized pachytene stage germ cells to the genotoxic effects of photoactivated psoralen, as seen by a greatly reduced hatching rate and increased chromosomal aberrations. This mutation also enhanced physiological M-phase arrest and apoptosis. Taken together, our data reveal that the C. elegans FANCD2 homolog participates in the repair of spontaneous DNA damage and DNA crosslinks, not only in proliferating cells but also in pachytene stage cells, and it may have an additional role in double-stranded DNA break repair during embryogenesis.
Collapse
Affiliation(s)
- Kyong Yun Lee
- Department of Biochemistry, College of Science, Yonsei University, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
35
|
Godthelp BC, van Buul PPW, Jaspers NGJ, Elghalbzouri-Maghrani E, van Duijn-Goedhart A, Arwert F, Joenje H, Zdzienicka MZ. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Mutat Res 2006; 601:191-201. [PMID: 16920162 DOI: 10.1016/j.mrfmmm.2006.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 07/04/2006] [Accepted: 07/11/2006] [Indexed: 01/07/2023]
Abstract
Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (CA), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway.
Collapse
Affiliation(s)
- Barbara C Godthelp
- Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Over the past few years, study of the rare inherited chromosome instability disorder, Fanconi Anemia (FA), has uncovered a novel DNA damage response pathway. Through the cooperation of multiple proteins, this pathway regulates a complicated cellular response to DNA cross-linking agents and other genotoxic stresses. In this article we review recent data identifying new components of the FA pathway that implicate it in several aspects of the DNA damage response, including the direct processing of DNA, translesion synthesis, homologous recombination, and cell cycle regulation. We also discuss new findings that explain how the FA pathway is regulated through the processes of ubiquitination and deubiquitination. We then consider the clinical implications of our current understanding of the FA pathway, particularly in the development and treatment of malignancy in heterozygous carriers of FA mutations or in patients with sporadic cancers. We consider how recent studies of p53-mediated apoptosis and loss of p53 function in models of FA may help explain the clinical features of the disease and finally present a hypothesis to account for the specificity of the FA pathway in the response to DNA cross-links.
Collapse
Affiliation(s)
- Richard D Kennedy
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
37
|
Abstract
Fanconi anemia is characterized by hypersensitivity to DNA interstrand crosslinks (ICLs) and susceptibility to tumor formation. Despite the identification of numerous Fanconi anemia (FANC) genes, the mechanism by which proteins encoded by these genes protect a cell from DNA interstrand crosslinks remains unclear. The recent discovery of two DNA helicases that, when defective, cause Fanconi anemia tips the balance in favor of the direct involvement of the FANC proteins in DNA repair and the bypass of DNA lesions.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Center for Biomedical Genetics, Medical Genetic Center, Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
38
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
Fanconi anemia (FA), a rare inherited disorder, exhibits a complex phenotype including progressive bone marrow failure, congenital malformations and increased risk of cancers, mainly acute myeloid leukaemia. At the cellular level, FA is characterized by hypersensitivity to DNA cross-linking agents and by high frequencies of induced chromosomal aberrations, a property used for diagnosis. FA results from mutations in one of the eleven FANC (FANCA to FANCJ) genes. Nine of them have been identified. In addition, FANCD1 gene has been shown to be identical to BRCA2, one of the two breast cancer susceptibility genes. Seven of the FANC proteins form a complex, which exists in four different forms depending of its subcellular localisation. Four FANC proteins (D1(BRCA2), D2, I and J) are not associated to the complex. The presence of the nuclear form of the FA core complex is necessary for the mono-ubiquitinylation of FANCD2 protein, a modification required for its re-localization to nuclear foci, likely to be sites of DNA repair. A clue towards understanding the molecular function of the FANC genes comes from the recently identified connection of FANC to the BRCA1, ATM, NBS1 and ATR genes. Two of the FANC proteins (A and D2) directly interact with BRCA1, which in turn interacts with the MRE11/RAD50/NBS1 complex, which is one of the key components in the mechanisms involved in the cellular response to DNA double strand breaks (DSB). Moreover, ATM, a protein kinase that plays a central role in the network of DSB signalling, phosphorylates in vitro and in vivo FANCD2 in response to ionising radiations. Moreover, the NBS1 protein and the monoubiquitinated form of FANCD2 seem to act together in response to DNA crosslinking agents. Taken together with the previously reported impaired DSB and DNA interstrand crosslinks repair in FA cells, the connection of FANC genes to the ATM, ATR, NBS1 and BRCA1 links the FANC genes function to the finely orchestrated network involved in the sensing, signalling and repair of DNA replication-blocking lesions.
Collapse
Affiliation(s)
- Dora Papadopoulo
- Institut Curie, Section de recherche, UMR 218 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
40
|
Yun J, Zhong Q, Kwak JY, Lee WH. Hypersensitivity of Brca1-deficient MEF to the DNA interstrand crosslinking agent mitomycin C is associated with defect in homologous recombination repair and aberrant S-phase arrest. Oncogene 2005; 24:4009-16. [PMID: 15782115 DOI: 10.1038/sj.onc.1208575] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypersensitivity of Brca1-deficient cells to interstrand crosslinking (ICL) agents such as cisplatin and mitomycin C (MMC) implicates an important role for Brca1 in cellular response to the ICL DNA damage repair. However, the detailed mechanism of how Brca1 is involved in the ICL response remains unclear. In this study, we analysed the cellular response to MMC treatment using isogenic mouse embryonic fibroblasts (MEFs) including wild type, p53-/- and p53-/-Brca1-/-. Marked hypersensitivity of p53-/- Brca1-/- MEFs to MMC was found, and the reconstitution of Brca1 expression in these cells restored resistance to MMC. Upon MMC treatment, wild-type MEF was temporarily arrested at G2/M phase but subsequently resumed a normal cell cycle progression. In contrast, Brca1-deficient MEF exhibited a marked time-dependent accumulation of cells arrested at S phase and a prolonged increase in the G2/M population, followed by extensive cell deaths. Importantly, DNA damage-induced Rad51 foci were not formed in these cells, suggesting a defect in homologous recombination. Such defects are fully rescued by reconstitution of Brca1 expression in Brca1-deficient MEF, suggesting that Brca1 directly plays an essential role in ICL repair, which depends on homologous recombination during S phase.
Collapse
Affiliation(s)
- Jeanho Yun
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, South Korea
| | | | | | | |
Collapse
|
41
|
Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:128-142. [PMID: 15668941 DOI: 10.1002/em.20109] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCCFA= FANCA/B/C/E/F/G/L). In turn, NCCFA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
42
|
Yamamoto K, Hirano S, Ishiai M, Morishima K, Kitao H, Namikoshi K, Kimura M, Matsushita N, Arakawa H, Buerstedde JM, Komatsu K, Thompson LH, Takata M. Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol Cell Biol 2005; 25:34-43. [PMID: 15601828 PMCID: PMC538764 DOI: 10.1128/mcb.25.1.34-43.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies show overlap between Fanconi anemia (FA) proteins and those involved in DNA repair mediated by homologous recombination (HR). However, the mechanism by which FA proteins affect HR is unclear. FA proteins (FancA/C/E/F/G/L) form a multiprotein complex, which is responsible for DNA damage-induced FancD2 monoubiquitination, a key event for cellular resistance to DNA damage. Here, we show that FANCD2-disrupted DT40 chicken B-cell line is defective in HR-mediated DNA double-strand break (DSB) repair, as well as gene conversion at the immunoglobulin light-chain locus, an event also mediated by HR. Gene conversions occurring in mutant cells were associated with decreased nontemplated mutations. In contrast to these defects, we also found increased spontaneous sister chromatid exchange (SCE) and intact Rad51 foci formation after DNA damage. Thus, we propose that FancD2 promotes a subpathway of HR that normally mediates gene conversion by a mechanism that avoids crossing over and hence SCEs.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Freie BW, Ciccone SLM, Li X, Plett PA, Orschell CM, Srour EF, Hanenberg H, Schindler D, Lee SH, Clapp DW. A role for the Fanconi anemia C protein in maintaining the DNA damage-induced G2 checkpoint. J Biol Chem 2004; 279:50986-93. [PMID: 15377654 DOI: 10.1074/jbc.m407160200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.
Collapse
Affiliation(s)
- Brian W Freie
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Fanconi anaemia (FA) is an autosomal recessive chromosomal instability disorder, which is characterized by congenital abnormalities, defective haemopoiesis and a high risk of developing acute myeloid leukaemia and certain solid tumours. It can be caused by mutations in at least eight different genes. Molecular studies have established that a common pathway exists, both between the FA proteins and other proteins involved in DNA damage repair such as NBS1, ATM, BRCA1 and BRCA2. This review summarizes the general clinical and specific haematological features and the current management of FA. Recent molecular advances will also be discussed in the context of the cellular and clinical FA phenotype, with particular emphasis on the haematological aspects of the condition.
Collapse
|
45
|
Affiliation(s)
- Ashok R Venkitaraman
- University of Cambridge, CR UK Department of Oncology and the Medical Research Council Cancer Cell Unit, Hills Road, Cambridge CB2 2XZ, UK.
| |
Collapse
|
46
|
Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004; 23:1178-87. [PMID: 14988723 PMCID: PMC380971 DOI: 10.1038/sj.emboj.7600113] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 01/12/2004] [Indexed: 02/07/2023] Open
Abstract
The genetic syndrome Fanconi anemia (FA) is characterized by aplastic anemia, cancer predisposition and hypersensitivity to DNA interstrand crosslinks (ICLs). FA proteins (FANCs) are thought to work in pathway(s) essential for dealing with crosslinked DNA. FANCs interact with other proteins involved in both DNA repair and S-phase checkpoint such as BRCA1, ATM and the RAD50/MRE11/NBS1 (RMN) complex. We deciphered the previously undefined pathway(s) leading to the ICLs-induced S-phase checkpoint and the role of FANCs in this process. We found that ICLs activate a branched pathway downstream of the ATR kinase: one branch depending on CHK1 activity and the other on the FANCs-RMN complex. The transient slow-down of DNA synthesis was abolished in cells lacking ATR, whereas CHK1-siRNA-treated cells, NBS1 or FA cells showed partial S-phase arrest. CHK1 RNAi in NBS1 or FA cells abolished the S-phase checkpoint, suggesting that CHK1 and FANCs/NBS1 proteins work on parallel pathways. Furthermore, we found that ICLs trigger ATR-dependent FANCD2 phosphorylation and FANCD2/ATR colocalization. This study demonstrates a novel relationship between the FA pathway(s) and the ATR kinase.
Collapse
Affiliation(s)
- Pietro Pichierri
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| | - Filippo Rosselli
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| |
Collapse
|
47
|
Houghtaling S, Timmers C, Noll M, Finegold MJ, Jones SN, Meyn MS, Grompe M. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 2003; 17:2021-35. [PMID: 12893777 PMCID: PMC196256 DOI: 10.1101/gad.1103403] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/06/2003] [Indexed: 12/25/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by hypersensitivity to DNA damage, bone marrow failure, congenital defects, and cancer. To further investigate the in vivo function of the FA pathway, mice with a targeted deletion in the distally acting FA gene Fancd2 were created. Similar to human FA patients and other FA mouse models, Fancd2 mutant mice exhibited cellular sensitivity to DNA interstrand cross-links and germ cell loss. In addition, chromosome mispairing was seen in male meiosis. However, Fancd2 mutant mice also displayed phenotypes not observed in other mice with disruptions of proximal FA genes. These include microphthalmia, perinatal lethality, and epithelial cancers, similar to mice with Brca2/Fancd1 hypomorphic mutations. These additional phenotypes were not caused by defects in the ATM-mediated S-phase checkpoint, which was intact in primary Fancd2 mutant fibroblasts. The phenotypic overlap between Fancd2-null and Brca2/Fancd1 hypomorphic mice is consistent with a common function for both proteins in the same pathway, regulating genomic stability.
Collapse
Affiliation(s)
- Scott Houghtaling
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Deviren A, Yalman N, Hacihanefioglu S. Differential diagnosis of Fanconi anemia by nitrogen mustard and diepoxybutane. Ann Hematol 2003; 82:223-7. [PMID: 12707724 DOI: 10.1007/s00277-003-0614-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 01/04/2003] [Indexed: 10/25/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive inherited disorder which is associated with a variety of congenital anomalies. These include morphometric abnormalities involving mainly the head and face, skeletal malformations particularly of the radial ray, growth retardation, abnormal skin pigmentation, deafness, and renal, ocular, genital, and cardiac defects. The cardinal clinical feature is a severe progressive pancytopenia. The overall aim of our study was to compare two different alkylating agents that would permit rapid and unequivocal detection of FA. A total of 271 patients underwent nitrogen mustard (NTM) and diepoxybutane (DEB) tests in our laboratory; baseline chromosomal breakage was studied for all of them. After the results of the chromosomal breakage studies, 72 patients were diagnosed as affected and 136 patients as unaffected by FA. We also studied 63 family members of FA patients. According to our study, NTM seems more specific to identify chromosomal breakages in FA parents than DEB.
Collapse
Affiliation(s)
- A Deviren
- Istanbul University, Cerrahpasa Medical Faculty, Genetics Department, Baharlibahce Sokak Kibris Apt No:17 Daire:14, 34740 Bakirkoy-Istanbul, Turkey.
| | | | | |
Collapse
|
49
|
Abstract
Fanconi anaemia (FA) is a rare genetic cancer-susceptibility syndrome that is characterized by congenital abnormalities, bone-marrow failure and cellular sensitivity to DNA crosslinking agents. Seven FA-associated genes have recently been cloned, and their products were found to interact with well-known DNA-damage-response proteins, including BRCA1, ATM and NBS1. The FA proteins could therefore be involved in the cell-cycle checkpoint and DNA-repair pathways. Recent studies implicate the FA proteins in the process of repairing chromosome defects that occur during homologous recombination, and disruption of the FA genes results in chromosome instability--a common feature of many human cancers.
Collapse
Affiliation(s)
- Alan D D'Andrea
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
50
|
Abstract
Fanconi anaemia (FA) is an autosomal recessive disease characterised by congenital abnormalities, defective haemopoiesis, and a high risk of developing acute myeloid leukaemia and certain solid tumours. Chromosomal instability, especially on exposure to alkylating agents, may be shown in affected subjects and is the basis for a diagnostic test. FA can be caused by mutations in at least seven different genes. Interaction pathways have been established, both between the FA proteins and other proteins involved in DNA damage repair, such as ATM, BRCA1 and BRCA2, thereby providing a link with other disorders in which defective DNA damage repair is a feature. This review summarises the clinical features of FA and the natural history of the disease, discusses diagnosis and management, and puts the recent molecular advances into the context of the cellular and clinical FA phenotype.
Collapse
Affiliation(s)
- M D Tischkowitz
- Division of Medical and Molecular Genetics, GKT School of Medicine, 8th Floor, Guy's Tower, Guy's Hospital, St Thomas' Street, London SE1 9RT, UK.
| | | |
Collapse
|