1
|
Cho Endonuclease Functions during DNA Interstrand Cross-Link Repair in Escherichia coli. J Bacteriol 2016; 198:3099-3108. [PMID: 27573016 DOI: 10.1128/jb.00509-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023] Open
Abstract
DNA interstrand cross-links are complex lesions that covalently link both strands of the duplex DNA. Lesion removal is proposed to be initiated via the UvrABC nucleotide excision repair complex; however, less is known about the subsequent steps of this complex repair pathway. In this study, we characterized the contribution of nucleotide excision repair mutants to survival in the presence of psoralen-induced damage. Unexpectedly, we observed that the nucleotide excision repair mutants exhibit differential sensitivity to psoralen-induced damage, with uvrC mutants being less sensitive than either uvrA or uvrB We show that Cho, an alternative endonuclease, acts with UvrAB and is responsible for the reduced hypersensitivity of uvrC mutants. We find that Cho's contribution to survival correlates with the presence of DNA interstrand cross-links, rather than monoadducts, and operates at a step after, or independently from, the initial incision during the global repair of psoralen DNA adducts from the genome. IMPORTANCE DNA interstrand cross-links are complex lesions that covalently bind to both strands of the duplex DNA and whose mechanism of repair remains poorly understood. In this study, we show that Cho, an alternative endonuclease, acts with UvrAB and participates in the repair of DNA interstrand cross-links formed in the presence of photoactivated psoralens. Cho's contribution to survival correlates with the presence of DNA interstrand cross-links and operates at a step after, or independently from, the initial incision during the repair process.
Collapse
|
2
|
Rocca CJ, Soares DG, Bouzid H, Henriques JAP, Larsen AK, Escargueil AE. BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder. Cell Cycle 2016; 14:2080-90. [PMID: 25945522 DOI: 10.1080/15384101.2015.1042632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials.
Collapse
Key Words
- ATR, Ataxia telangiectasia- and RAD3-related
- DNA alkylators
- DNA double strand breaks
- DNA replication
- DSBs, Double Strand Breaks
- FA, Fanconi Anemia
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- HR, Homologous Recombination
- HU, Hydroxyurea
- Homologous recombination
- ICLs, Inter-strand Crosslinks
- NER, Nucleotide Excision Repair
- NHEJ, Non-Homologous End-Joining
- TCR, Transcription-Coupled Repair
- UCN-01, 7-hydroxystaurosporine.
- checkpoint control
Collapse
Affiliation(s)
- Céline J Rocca
- a Laboratory of Cancer Biology and Therapeutics ; Centre de Recherche Saint-Antoine ; Paris , France
| | | | | | | | | | | |
Collapse
|
3
|
Tomida J, Itaya A, Shigechi T, Unno J, Uchida E, Ikura M, Masuda Y, Matsuda S, Adachi J, Kobayashi M, Meetei AR, Maehara Y, Yamamoto KI, Kamiya K, Matsuura A, Matsuda T, Ikura T, Ishiai M, Takata M. A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair. Nucleic Acids Res 2013; 41:6930-41. [PMID: 23723247 PMCID: PMC3737553 DOI: 10.1093/nar/gkt467] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway.
Collapse
Affiliation(s)
- Junya Tomida
- Department of Late Effects Studies, Laboratory of DNA Damage Signaling, Kyoto University, Kyoto 606-8501, Japan, Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 2010; 70:9959-68. [PMID: 20935219 DOI: 10.1158/0008-5472.can-10-1291] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with the rare genetic disease, Fanconi anemia (FA), are highly susceptible to squamous cell carcinomas arising at multiple anatomic sites including the head and neck region. Human papillomaviruses (HPVs), particularly HPV16, are associated with ∼20% of head and neck squamous cell carcinomas (HNSCCs) in the general population. Some but not other investigators have reported that HNSCCs in FA patients are much more frequently positive for HPV. In addition, studies have demonstrated an interaction between the HPV16 E7 oncoprotein and the FA pathway, a DNA damage response pathway deficient in FA patients. On the basis of these studies, it was hypothesized that the FA pathway contributes to repair of DNA damage induced by HPV16 E7, providing one explanation for why FA patients are predisposed to HPV-associated HNSCCs. To determine the importance of the FA pathway in modulating the oncogenic abilities of E7, we crossed K14E7 transgenic (K14E7) and fancD2 knockout mice (FancD2(-/-)) to establish K14E7/FancD2(-/-) and K14E7/FancD2(+/+) mice and monitored their susceptibility to HNSCC when treated with a chemical carcinogen. K14E7/FancD2(-/-) mice had a significantly higher incidence of HNSCC compared with K14E7/FancD2(+/+) mice. This difference correlated with an increased proliferative index and the increase in expression of biomarkers that are used to assess levels of DNA damage. These animal studies support the hypotheses that FA patients have increased susceptibility to HPV-associated cancer and that the FA DNA damage response pathway normally attenuates the oncogenic potential of HPV16 E7.
Collapse
Affiliation(s)
- Jung Wook Park
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Huang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell 2010; 39:259-68. [PMID: 20670894 DOI: 10.1016/j.molcel.2010.07.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/22/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022]
Abstract
Cells from Fanconi anemia (FA) patients are extremely sensitive to DNA interstrand crosslinking (ICL) agents, but the molecular basis of the hypersensitivity remains to be explored. FANCM (FA complementation group M), and its binding partner, FAAP24, anchor the multisubunit FA core complex to chromatin after DNA damage and may contribute to ICL-specific cellular response. Here we show that the FANCM/FAAP24 complex is specifically required for the recruitment of replication protein A (RPA) to ICL-stalled replication forks. ICL-induced RPA foci formation requires the DNA-binding activity of FAAP24 but not the DNA translocase activity of FANCM. Furthermore, FANCM/FAAP24-dependent RPA foci formation is required for efficient ATR-mediated checkpoint activation in response to ICL. Therefore, we propose that FANCM/FAAP24 plays a role in ICL-induced checkpoint activation through regulating RPA recruiment at ICL-stalled replication forks.
Collapse
Affiliation(s)
- Min Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
6
|
Du J, Chen L, Shen J. Identification of FANCA as a protein interacting with centromere-associated protein E. Acta Biochim Biophys Sin (Shanghai) 2009; 41:816-21. [PMID: 19779646 DOI: 10.1093/abbs/gmp074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study sought to isolate and identify proteins that interact with centromere-associated protein E (CENPE), provide new clues for exploring the function of CENP-E in cell cycle control and the pathogenesis of tumor. Yeast two-hybrid screen and regular molecular biologic techniques were undertaken to screen human HeLa cDNA library with the kinetochore binding domain of CENP-E. The bait from the C-terminus of CENP-E was created by subcloning methods to find out optimal candidate proteins that interact with the kinetochore binding domain of CENP-E. Eight novel CENP-E interacting proteins including Homo sapiens Fanconi anemia complementation group A (FANCA) were obtained. In yeast two-hybrid assay, the N-terminal 260 amino acids of FANCA were found to be necessary and sufficient for the interaction with the C-terminus of CENP-E. The interaction was confirmed by in vitro glutathione S-transferase pull-down assay and in vivo coimmunoprecipitation assay. Our finding of the interaction of CENP-E with FANCA demonstrates that CENP-E and FANCA may play important roles in the functional regulation of the mitotic checkpoint signal pathway.
Collapse
Affiliation(s)
- Jian Du
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China.
| | | | | |
Collapse
|
7
|
Ben-Yehoyada M, Wang LC, Kozekov ID, Rizzo CJ, Gottesman ME, Gautier J. Checkpoint signaling from a single DNA interstrand crosslink. Mol Cell 2009; 35:704-15. [PMID: 19748363 DOI: 10.1016/j.molcel.2009.08.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 03/27/2009] [Accepted: 08/25/2009] [Indexed: 11/17/2022]
Abstract
DNA interstrand crosslinks (ICLs) are the most toxic lesions induced by chemotherapeutic agents such as mitomycin C and cisplatin. By covalently linking both DNA strands, ICLs prevent DNA melting, transcription, and replication. Studies on ICL signaling and repair have been limited, because these drugs generate additional DNA lesions that trigger checkpoint signaling. Here, we monitor sensing, signaling from, and repairing of a single site-specific ICL in cell-free extract derived from Xenopus eggs and in mammalian cells. Notably, we demonstrate that ICLs trigger a checkpoint response independently of origin-initiated DNA replication and uncoupling of DNA polymerase and DNA helicase. The Fanconi anemia pathway acts upstream of RPA-ATR-Chk1 to generate the ICL signal. The system also repairs ICLs in a reaction that involves extensive, error-free DNA synthesis. Repair occurs by both origin-dependent and origin-independent mechanisms. Our data suggest that cell sensitivity to crosslinking agents results from both checkpoint and DNA repair defects.
Collapse
Affiliation(s)
- Merav Ben-Yehoyada
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
8
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
9
|
Sobeck A, Stone S, Landais I, de Graaf B, Hoatlin ME. The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways. J Biol Chem 2009; 284:25560-8. [PMID: 19633289 DOI: 10.1074/jbc.m109.007690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genomic stability requires a functional Fanconi anemia (FA) pathway composed of an upstream "core complex" (FA proteins A/B/C/E/F/G/L/M) that mediates monoubiquitination of the downstream targets FANCD2 and FANCI. Unique among FA core complex members, FANCM has processing activities toward replication-associated DNA structures, suggesting a vital role for FANCM during replication. Using Xenopus egg extracts, we analyzed the functions of FANCM in replication and the DNA damage response. xFANCM binds chromatin in a replication-dependent manner and is phosphorylated in response to DNA damage structures. Chromatin binding and DNA damage-induced phosphorylation of xFANCM are mediated in part by the downstream FA pathway protein FANCD2. Moreover, phosphorylation and chromatin recruitment of FANCM is regulated by two mayor players in the DNA damage response: the cell cycle checkpoint kinases ATR and ATM. Our results indicate that functions of FANCM are controlled by FA- and non-FA pathways in the DNA damage response.
Collapse
Affiliation(s)
- Alexandra Sobeck
- Department of Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
10
|
Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009; 668:73-91. [PMID: 19464302 DOI: 10.1016/j.mrfmmm.2009.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/30/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Although still incomplete, we now have a remarkably detailed and nuanced picture of both phenotypic and genotypic components of the FA spectrum. Initially described as a combination of pancytopenia with a limited number of physical anomalies, it was later recognized that additional features were compatible with the FA phenotype, including a form without detectable malformations (Estren-Dameshek variant). The discovery of somatic mosaicism extended the boundaries of the FA phenotype to cases even without any overt hematological manifestations. This clinical heterogeneity was augmented by new conceptualizations. There was the realization of a constant risk for the development of myelodysplasia and certain malignancies, including acute myelogenous leukemia and squamous cell carcinoma, and there was the emergence of a distinctive cellular phenotype. A striking degree of genetic heterogeneity became apparent with the delineation of at least 12 complementation groups and the identification of their underlying genes. Although functional genetic insights have fostered the interpretation of many phenotypic features, surprisingly few stringent genotype-phenotype connections have emerged. In addition to myriad genetic alterations, less predictable influences are likely to modulate the FA phenotype, including modifier genes, environmental factors and chance effects. In reviewing the current status of genotype-phenotype correlations, we arrive at a unifying hypothesis to explain the remarkably wide range of FA phenotypes. Given the large body of evidence that genomic instability is a major underlying mechanism of accelerated ageing phenotypes, we propose that the numerous FA variants can be viewed as differential modulations and compression in time of intrinsic biological ageing.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human and Medical Genetics, University of Wurzburg, Biozentrum, Am Hubland, Wurzburg D-97074, Germany
| | | | | | | |
Collapse
|
11
|
Phelps RA, Gingras H, Hockenbery DM. Loss of FANCC function is associated with failure to inhibit late firing replication origins after DNA cross-linking. Exp Cell Res 2007; 313:2283-92. [PMID: 17490643 DOI: 10.1016/j.yexcr.2007.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 01/06/2023]
Abstract
Fanconi anemia (FA) cells are abnormally sensitive to DNA cross-linking agents with increased levels of apoptosis and chromosomal instability. Defects in eight FA complementation groups inhibit monoubiquitination of FANCD2, and subsequent recruitment of FANCD2 to DNA damage and S-phase-associated nuclear foci. The specific functional defect in repair or response to DNA damage in FA cells remains unknown. Damage-resistant DNA synthesis is present 2.5-5 h after cross-linker treatment of FANCC, FANCA and FANCD2-deficient cells. Analysis of the size distribution of labeled DNA replication strands revealed that diepoxybutane treatment suppressed labeling of early but not late-firing replicons in FANCC-deficient cells. In contrast, normal responses to ionizing radiation were observed in FANCC-deficient cells. Absence of this late S-phase response in FANCC-deficient cells leads to activation of secondary checkpoint responses.
Collapse
Affiliation(s)
- Randall A Phelps
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
12
|
Godthelp BC, van Buul PPW, Jaspers NGJ, Elghalbzouri-Maghrani E, van Duijn-Goedhart A, Arwert F, Joenje H, Zdzienicka MZ. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Mutat Res 2006; 601:191-201. [PMID: 16920162 DOI: 10.1016/j.mrfmmm.2006.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 07/04/2006] [Accepted: 07/11/2006] [Indexed: 01/07/2023]
Abstract
Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (CA), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway.
Collapse
Affiliation(s)
- Barbara C Godthelp
- Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Over the past few years, study of the rare inherited chromosome instability disorder, Fanconi Anemia (FA), has uncovered a novel DNA damage response pathway. Through the cooperation of multiple proteins, this pathway regulates a complicated cellular response to DNA cross-linking agents and other genotoxic stresses. In this article we review recent data identifying new components of the FA pathway that implicate it in several aspects of the DNA damage response, including the direct processing of DNA, translesion synthesis, homologous recombination, and cell cycle regulation. We also discuss new findings that explain how the FA pathway is regulated through the processes of ubiquitination and deubiquitination. We then consider the clinical implications of our current understanding of the FA pathway, particularly in the development and treatment of malignancy in heterozygous carriers of FA mutations or in patients with sporadic cancers. We consider how recent studies of p53-mediated apoptosis and loss of p53 function in models of FA may help explain the clinical features of the disease and finally present a hypothesis to account for the specificity of the FA pathway in the response to DNA cross-links.
Collapse
Affiliation(s)
- Richard D Kennedy
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
14
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
15
|
Abstract
Fanconi anemia (FA), a rare inherited disorder, exhibits a complex phenotype including progressive bone marrow failure, congenital malformations and increased risk of cancers, mainly acute myeloid leukaemia. At the cellular level, FA is characterized by hypersensitivity to DNA cross-linking agents and by high frequencies of induced chromosomal aberrations, a property used for diagnosis. FA results from mutations in one of the eleven FANC (FANCA to FANCJ) genes. Nine of them have been identified. In addition, FANCD1 gene has been shown to be identical to BRCA2, one of the two breast cancer susceptibility genes. Seven of the FANC proteins form a complex, which exists in four different forms depending of its subcellular localisation. Four FANC proteins (D1(BRCA2), D2, I and J) are not associated to the complex. The presence of the nuclear form of the FA core complex is necessary for the mono-ubiquitinylation of FANCD2 protein, a modification required for its re-localization to nuclear foci, likely to be sites of DNA repair. A clue towards understanding the molecular function of the FANC genes comes from the recently identified connection of FANC to the BRCA1, ATM, NBS1 and ATR genes. Two of the FANC proteins (A and D2) directly interact with BRCA1, which in turn interacts with the MRE11/RAD50/NBS1 complex, which is one of the key components in the mechanisms involved in the cellular response to DNA double strand breaks (DSB). Moreover, ATM, a protein kinase that plays a central role in the network of DSB signalling, phosphorylates in vitro and in vivo FANCD2 in response to ionising radiations. Moreover, the NBS1 protein and the monoubiquitinated form of FANCD2 seem to act together in response to DNA crosslinking agents. Taken together with the previously reported impaired DSB and DNA interstrand crosslinks repair in FA cells, the connection of FANC genes to the ATM, ATR, NBS1 and BRCA1 links the FANC genes function to the finely orchestrated network involved in the sensing, signalling and repair of DNA replication-blocking lesions.
Collapse
Affiliation(s)
- Dora Papadopoulo
- Institut Curie, Section de recherche, UMR 218 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
16
|
Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:128-142. [PMID: 15668941 DOI: 10.1002/em.20109] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCCFA= FANCA/B/C/E/F/G/L). In turn, NCCFA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
17
|
Yamamoto K, Hirano S, Ishiai M, Morishima K, Kitao H, Namikoshi K, Kimura M, Matsushita N, Arakawa H, Buerstedde JM, Komatsu K, Thompson LH, Takata M. Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol Cell Biol 2005; 25:34-43. [PMID: 15601828 PMCID: PMC538764 DOI: 10.1128/mcb.25.1.34-43.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies show overlap between Fanconi anemia (FA) proteins and those involved in DNA repair mediated by homologous recombination (HR). However, the mechanism by which FA proteins affect HR is unclear. FA proteins (FancA/C/E/F/G/L) form a multiprotein complex, which is responsible for DNA damage-induced FancD2 monoubiquitination, a key event for cellular resistance to DNA damage. Here, we show that FANCD2-disrupted DT40 chicken B-cell line is defective in HR-mediated DNA double-strand break (DSB) repair, as well as gene conversion at the immunoglobulin light-chain locus, an event also mediated by HR. Gene conversions occurring in mutant cells were associated with decreased nontemplated mutations. In contrast to these defects, we also found increased spontaneous sister chromatid exchange (SCE) and intact Rad51 foci formation after DNA damage. Thus, we propose that FancD2 promotes a subpathway of HR that normally mediates gene conversion by a mechanism that avoids crossing over and hence SCEs.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Freie BW, Ciccone SLM, Li X, Plett PA, Orschell CM, Srour EF, Hanenberg H, Schindler D, Lee SH, Clapp DW. A role for the Fanconi anemia C protein in maintaining the DNA damage-induced G2 checkpoint. J Biol Chem 2004; 279:50986-93. [PMID: 15377654 DOI: 10.1074/jbc.m407160200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.
Collapse
Affiliation(s)
- Brian W Freie
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Fanconi anaemia (FA) is an autosomal recessive chromosomal instability disorder, which is characterized by congenital abnormalities, defective haemopoiesis and a high risk of developing acute myeloid leukaemia and certain solid tumours. It can be caused by mutations in at least eight different genes. Molecular studies have established that a common pathway exists, both between the FA proteins and other proteins involved in DNA damage repair such as NBS1, ATM, BRCA1 and BRCA2. This review summarizes the general clinical and specific haematological features and the current management of FA. Recent molecular advances will also be discussed in the context of the cellular and clinical FA phenotype, with particular emphasis on the haematological aspects of the condition.
Collapse
|
20
|
Affiliation(s)
- Ashok R Venkitaraman
- University of Cambridge, CR UK Department of Oncology and the Medical Research Council Cancer Cell Unit, Hills Road, Cambridge CB2 2XZ, UK.
| |
Collapse
|
21
|
Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004; 23:1178-87. [PMID: 14988723 PMCID: PMC380971 DOI: 10.1038/sj.emboj.7600113] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 01/12/2004] [Indexed: 02/07/2023] Open
Abstract
The genetic syndrome Fanconi anemia (FA) is characterized by aplastic anemia, cancer predisposition and hypersensitivity to DNA interstrand crosslinks (ICLs). FA proteins (FANCs) are thought to work in pathway(s) essential for dealing with crosslinked DNA. FANCs interact with other proteins involved in both DNA repair and S-phase checkpoint such as BRCA1, ATM and the RAD50/MRE11/NBS1 (RMN) complex. We deciphered the previously undefined pathway(s) leading to the ICLs-induced S-phase checkpoint and the role of FANCs in this process. We found that ICLs activate a branched pathway downstream of the ATR kinase: one branch depending on CHK1 activity and the other on the FANCs-RMN complex. The transient slow-down of DNA synthesis was abolished in cells lacking ATR, whereas CHK1-siRNA-treated cells, NBS1 or FA cells showed partial S-phase arrest. CHK1 RNAi in NBS1 or FA cells abolished the S-phase checkpoint, suggesting that CHK1 and FANCs/NBS1 proteins work on parallel pathways. Furthermore, we found that ICLs trigger ATR-dependent FANCD2 phosphorylation and FANCD2/ATR colocalization. This study demonstrates a novel relationship between the FA pathway(s) and the ATR kinase.
Collapse
Affiliation(s)
- Pietro Pichierri
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| | - Filippo Rosselli
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| |
Collapse
|
22
|
Houghtaling S, Timmers C, Noll M, Finegold MJ, Jones SN, Meyn MS, Grompe M. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 2003; 17:2021-35. [PMID: 12893777 PMCID: PMC196256 DOI: 10.1101/gad.1103403] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/06/2003] [Indexed: 12/25/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by hypersensitivity to DNA damage, bone marrow failure, congenital defects, and cancer. To further investigate the in vivo function of the FA pathway, mice with a targeted deletion in the distally acting FA gene Fancd2 were created. Similar to human FA patients and other FA mouse models, Fancd2 mutant mice exhibited cellular sensitivity to DNA interstrand cross-links and germ cell loss. In addition, chromosome mispairing was seen in male meiosis. However, Fancd2 mutant mice also displayed phenotypes not observed in other mice with disruptions of proximal FA genes. These include microphthalmia, perinatal lethality, and epithelial cancers, similar to mice with Brca2/Fancd1 hypomorphic mutations. These additional phenotypes were not caused by defects in the ATM-mediated S-phase checkpoint, which was intact in primary Fancd2 mutant fibroblasts. The phenotypic overlap between Fancd2-null and Brca2/Fancd1 hypomorphic mice is consistent with a common function for both proteins in the same pathway, regulating genomic stability.
Collapse
Affiliation(s)
- Scott Houghtaling
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Deviren A, Yalman N, Hacihanefioglu S. Differential diagnosis of Fanconi anemia by nitrogen mustard and diepoxybutane. Ann Hematol 2003; 82:223-7. [PMID: 12707724 DOI: 10.1007/s00277-003-0614-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 01/04/2003] [Indexed: 10/25/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive inherited disorder which is associated with a variety of congenital anomalies. These include morphometric abnormalities involving mainly the head and face, skeletal malformations particularly of the radial ray, growth retardation, abnormal skin pigmentation, deafness, and renal, ocular, genital, and cardiac defects. The cardinal clinical feature is a severe progressive pancytopenia. The overall aim of our study was to compare two different alkylating agents that would permit rapid and unequivocal detection of FA. A total of 271 patients underwent nitrogen mustard (NTM) and diepoxybutane (DEB) tests in our laboratory; baseline chromosomal breakage was studied for all of them. After the results of the chromosomal breakage studies, 72 patients were diagnosed as affected and 136 patients as unaffected by FA. We also studied 63 family members of FA patients. According to our study, NTM seems more specific to identify chromosomal breakages in FA parents than DEB.
Collapse
Affiliation(s)
- A Deviren
- Istanbul University, Cerrahpasa Medical Faculty, Genetics Department, Baharlibahce Sokak Kibris Apt No:17 Daire:14, 34740 Bakirkoy-Istanbul, Turkey.
| | | | | |
Collapse
|
24
|
Abstract
Fanconi anaemia (FA) is a rare genetic cancer-susceptibility syndrome that is characterized by congenital abnormalities, bone-marrow failure and cellular sensitivity to DNA crosslinking agents. Seven FA-associated genes have recently been cloned, and their products were found to interact with well-known DNA-damage-response proteins, including BRCA1, ATM and NBS1. The FA proteins could therefore be involved in the cell-cycle checkpoint and DNA-repair pathways. Recent studies implicate the FA proteins in the process of repairing chromosome defects that occur during homologous recombination, and disruption of the FA genes results in chromosome instability--a common feature of many human cancers.
Collapse
Affiliation(s)
- Alan D D'Andrea
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
25
|
Abstract
Fanconi anaemia (FA) is an autosomal recessive disease characterised by congenital abnormalities, defective haemopoiesis, and a high risk of developing acute myeloid leukaemia and certain solid tumours. Chromosomal instability, especially on exposure to alkylating agents, may be shown in affected subjects and is the basis for a diagnostic test. FA can be caused by mutations in at least seven different genes. Interaction pathways have been established, both between the FA proteins and other proteins involved in DNA damage repair, such as ATM, BRCA1 and BRCA2, thereby providing a link with other disorders in which defective DNA damage repair is a feature. This review summarises the clinical features of FA and the natural history of the disease, discusses diagnosis and management, and puts the recent molecular advances into the context of the cellular and clinical FA phenotype.
Collapse
Affiliation(s)
- M D Tischkowitz
- Division of Medical and Molecular Genetics, GKT School of Medicine, 8th Floor, Guy's Tower, Guy's Hospital, St Thomas' Street, London SE1 9RT, UK.
| | | |
Collapse
|
26
|
Waisfisz Q, Miyazato A, de Winter JP, Liu JM, Joenje H. Analysis of baseline and cisplatin-inducible gene expression in Fanconi anemia cells using oligonucleotide-based microarrays. BMC BLOOD DISORDERS 2002; 2:5. [PMID: 12450415 PMCID: PMC138804 DOI: 10.1186/1471-2326-2-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 11/26/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND: Patients with Fanconi anemia (FA) suffer from multiple defects, most notably of the hematological compartment (bone marrow failure), and susceptibility to cancer. Cells from FA patients show increased spontaneous chromosomal damage, which is aggravated by exposure to low concentrations of DNA cross-linking agents such as mitomycin C or cisplatin. Five of the identified FA proteins form a nuclear core complex. However, the molecular function of these proteins remains obscure. METHODS: Oligonucleotide microarrays were used to compare the expression of approximately 12,000 genes from FA cells with matched controls. Expression profiles were studied in lymphoblastoid cell lines derived from three different FA patients, one from the FA-A and two from the FA-C complementation groups. The isogenic control cell lines were obtained by either transfecting the cells with vectors expressing the complementing cDNAs or by using a spontaneous revertant cell line derived from the same patient. In addition, we analyzed expression profiles from two cell line couples at several time points after a 1-hour pulse treatment with a discriminating dose of cisplatin. RESULTS: Analysis of the expression profiles showed differences in expression of a number of genes, many of which have unknown function or are difficult to relate to the FA defect. However, from a selected number of proteins involved in cell cycle regulation, DNA repair and chromatin structure, Western blot analysis showed that p21waf1/Cip1 was significantly upregulated after low dose cisplatin treatment in FA cells specifically (as well as being expressed at elevated levels in untreated FA cells). CONCLUSIONS: The observed increase in expression of p21waf1/Cip1 after treatment of FA cells with crosslinkers suggests that the sustained elevated levels of p21waf1/Cip1 in untreated FA cells detected by Western blot analysis likely reflect increased spontaneous damage in these cells.
Collapse
Affiliation(s)
- Quinten Waisfisz
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Akira Miyazato
- The Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Johan P de Winter
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Johnson M Liu
- The Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Hans Joenje
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 2002; 100:2414-20. [PMID: 12239151 DOI: 10.1182/blood-2002-01-0278] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and defective cell-cycle progression. Six FA genes (corresponding to subtypes A, C, D2, E, F, and G) have been cloned, and the encoded FA proteins interact in a common pathway. DNA damage activates this pathway, leading to monoubiquitination of the downstream FANCD2 protein and targeting to nuclear foci containing BRCA1. In the current study, we demonstrate that FANCD2 also undergoes monoubiquitination during S phase of the cell cycle. Monoubiquitinated FANCD2 colocalizes with BRCA1 and RAD51 in S-phase-specific nuclear foci. Monoubiquitination of FANCD2 is required for normal cell-cycle progression following cellular exposure to mitomycin C. Our data indicate that the monoubiquitination of FANCD2 is highly regulated, and they suggest that FANCD2/BRCA1 complexes and FANCD2/RAD51 complexes participate in an S-phase-specific cellular process, such as DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Toshiyasu Taniguchi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Fanconi anemia (FA) is a rare autosomal recessive chromosomal breakage disorder characterized by the childhood onset of aplastic anemia, developmental defects, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. FA patients can be divided into at least 8 complementation groups (FA-A, FA-B, FA-C, FA-D1, FA-D2, FA-E, FA-F, and FA-G). FA proteins encoded by 6 cloned FA genes (FANCA, FANCC, FANCD2, FANCE, FANCF, and FANCG) cooperate in a common pathway, culminating in the monoubiquitination of FANCD2 protein and colocalization of FANCD2 and BRCA1 proteins in nuclear foci. These BRCA1 foci have been implicated in the process of homologous recombination-mediated DNA repair. In this review, we will summarize the current progress in the field of FA research and highlight some of the potential functions of the FA pathway in DNA-damage response.
Collapse
Affiliation(s)
- Toshiyasu Taniguchi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
29
|
Akkari YM, Bateman RL, Reifsteck CA, D'Andrea AD, Olson SB, Grompe M. The 4N cell cycle delay in Fanconi anemia reflects growth arrest in late S phase. Mol Genet Metab 2001; 74:403-12. [PMID: 11749045 DOI: 10.1006/mgme.2001.3259] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is a human genetic disorder characterized by hypersensitivity to DNA crosslinking agents. Its cellular phenotypes include increased chromosome breakage and a marked cell-cycle delay with 4N DNA content after introduction of interstrand DNA crosslinks (ICL). To further understand the nature of this delay previously described as a G2/M arrest, we introduced ICL specifically during G2 and monitored the cells for passage into mitosis. Our results showed that, even at the highest doses, postreplication ICL produced neither G2/M arrest nor chromosome breakage in FA-A or FA-C cells. This suggests that, similar to wild-type cells, DNA replication is required to trigger both responses. Therefore, the 4N cell DNA content observed in FA cells after ICL treatment also represents incomplete DNA replication and arrest in late S phase. FA fibroblasts from complementation groups A and C were able to recover from the ICL-induced cell-cycle arrest, but took approximately 3 times longer than controls. These results indicate that the FA pathway is required for the efficient resolution of ICL-induced S-phase arrest.
Collapse
Affiliation(s)
- Y M Akkari
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road L103, Portland, Oregon 97201, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.
Collapse
Affiliation(s)
- M L Dronkert
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
31
|
Abstract
The past few years have witnessed a considerable expansion in our understanding of the pathways that maintain chromosome stability in dividing cells through the identification of genes that are mutated in certain human chromosome instability disorders. Cells that are derived from patients with Fanconi anaemia (FA) show spontaneous chromosomal instability and mutagen hypersensitivity, but FA poses a unique challenge as the nature of the DNA-damage-response pathway thought to be affected by the disease has long been a mystery. However, the recent cloning of most of the FA-associated genes, and the characterization of their protein products, has provided tantalizing clues as to the molecular basis of this disease.
Collapse
Affiliation(s)
- H Joenje
- Department of Clinical Genetics and Human Genetics, and Oncology Research Institute, Free University Medical Centre, Van der Boechorststraat 7, NL-1081 BT, Amsterdam, The Netherlands.
| | | |
Collapse
|