1
|
Dewdney B, Hebbard L. A novel role for polymeric immunoglobulin receptor in tumour development: beyond mucosal immunity and into hepatic cancer cell transformation. Hepatobiliary Surg Nutr 2018. [PMID: 29531947 DOI: 10.21037/hbsn.2017.12.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brittany Dewdney
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| |
Collapse
|
2
|
Transcriptome altered by latent human cytomegalovirus infection on THP-1 cells using RNA-seq. Gene 2016; 594:144-150. [PMID: 27623506 PMCID: PMC7126988 DOI: 10.1016/j.gene.2016.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023]
Abstract
Human cytomegalovirus (HCMV) has been recognized as a cause of severe, sometimes life-threatening disease in congenitally infected newborns as well as in immunocompromised individuals. However, the molecular mechanisms of the host-virus interaction remain poorly understood. Here, we profiled the expression of mRNAs and long noncoding RNAs (lncRNAs) in THP-1 cells using the emerging RNA-seq to investigate the transcriptional changes during HCMV latent infection. At 4 days post HCMV infection, a total of 169,008,624 sequence reads and 180,616 transcripts were obtained, respectively. Of these transcripts, 1,354 noncoding genes and 12,952 protein-coding genes were observed in Refseq database. Differential gene expression analysis identified 2,153 differentially expressed genes (DEGs) between HCMV-infected and mock-infected THP-1 cells, including 1,098 up-regulated genes and 1,055 down-regulated genes. These regulated genes were involved in pathways of apoptosis, inflammatory response and cell cycle progression, all of which may be implicated in viral pathogenesis. In addition, 646 lncRNAs (208 known lncRNAs and 438 novel lncRNAs) were upregulated and 424 (140 known and 284 novel) were downregulated in infected THP-1 cells. These findings have provided a dynamic scenario of DE candidate genes and lncRNAs at the virus-host interface and clearly warrant further experimental investigation associated with HCMV infection. Differential gene expression analysis identified 2,153 differentially expressed genes between HCMV-infected cells and mock-infected THP-1 cells. These regulated genes were involved in pathways of apoptosis, inflammatory response and cell cycle progression, all of which may be implicated in viral pathogenesis. lncRNAs may involved in regulation of HCMV latent infection.
Collapse
|
3
|
Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity. J Clin Med 2016; 5:jcm5090076. [PMID: 27589814 PMCID: PMC5039479 DOI: 10.3390/jcm5090076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1’s contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.
Collapse
|
4
|
Transforming growth factor β type II receptor as a marker in diffuse large B cell lymphoma. Tumour Biol 2015; 36:9903-8. [PMID: 26168957 DOI: 10.1007/s13277-015-3700-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to investigate the expression and significance of the transforming growth factor β type II receptor (TGFβRII) in diffuse large B cell lymphoma. All patients were enrolled at the First Affiliated Hospital of Liaoning Medical University between 2001 and 2007. The median follow-up period was 53.3 months. Of the 338 patients studied, 131 (38.76 %) had TGFβRII positive expression on immunohistochemistry. The 5 year survival rate was significantly higher in patients with TGFβRII expression than in those without TGFβRII expression (40.3 vs. 31.6 %, P = 0.041). Multivariate analysis identified TGFβRII expression as an independent predictive parameter for survival, in addition to lactate dehydrogenase, clinical stage, and histologic subtype. TGFβRII expression may be considered a new prognostic factor of diffuse large B cell lymphoma.
Collapse
|
5
|
Merlen G, Gentric G, Celton-Morizur S, Foretz M, Guidotti JE, Fauveau V, Leclerc J, Viollet B, Desdouets C. AMPKα1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression. J Hepatol 2014; 60:152-9. [PMID: 24012615 DOI: 10.1016/j.jhep.2013.08.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status that contributes to restoration of energy homeostasis by slowing down ATP-consuming pathways and activating ATP-producing pathways. Unexpectedly, in different systems, AMPK is also required for proper cell division. In the current study, we evaluated the potential effect of the AMPK catalytic subunit, AMPKα1, on hepatocyte proliferation. METHODS Hepatocyte proliferation was determined in AMPKα1 knockout and wild-type mice in vivo after two thirds partial hepatectomy, and in vitro in primary hepatocyte cultures. The activities of metabolic and cell cycle-related signaling pathways were measured. RESULTS After partial hepatectomy, hepatocytes proliferated rapidly, correlating with increased AMPK phosphorylation. Deletion of AMPKα1 delayed liver regeneration by impacting on G1/S transition phase. The proliferative defect of AMPKα1-deficient hepatocytes was cell autonomous, and independent of energy balance. The priming phase, lipid droplet accumulation, protein anabolic responses and growth factor activation after partial hepatectomy occurred normally in the absence of AMPKα1 activity. By contrast, mRNA and protein expression of cyclin A2, a key driver of S phase progression, were compromised in the absence of AMPK activity. Importantly, AMPKα1 controlled cyclin A2 transcription mainly through the ATF/CREB element. CONCLUSIONS Our study highlights a novel role for AMPKα1 as a positive regulator of hepatocyte division occurring independently of energy balance.
Collapse
Affiliation(s)
- Grégory Merlen
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Géraldine Gentric
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Séverine Celton-Morizur
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques-Emmanuel Guidotti
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Fauveau
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jocelyne Leclerc
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
6
|
Yang L, Liu M, Deng C, Gu Z, Gao Y. Expression of transforming growth factor-β1 (TGF-β1) and E-cadherin in glioma. Tumour Biol 2012; 33:1477-84. [DOI: 10.1007/s13277-012-0398-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/03/2012] [Indexed: 11/28/2022] Open
|
7
|
Go JH. Altered expression of Smad proteins in T or NK-cell lymphomas. Cancer Res Treat 2008; 40:197-201. [PMID: 19688130 DOI: 10.4143/crt.2008.40.4.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/19/2008] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Smad proteins mediate cellular signaling through the transforming growth factor-beta family (TGF-betas). Smads 2 and 3 transmit signals from TGF-beta, and Smad4 is a common mediator, as well. However, little is known concerning the expression patterns of Smads in lymphoid tissue. MATERIALS AND METHODS Immunohistochemistry for Smad3 and Smad4 was performed on paraffin-embedded tissue sections collected from 26 T- or NK-cell lymphomas. RESULTS Nearly all cells in germinal centers were positive for Smad3, and more than 50% of paracortical cells were positive for Smad3 in reactive lymphoid tissue. When Smad4 immunostaining was conducted, nearly all the cells in the germinal centers showed diffuse cytoplasmic staining, and most of them exhibited nuclear positivity, as well. In addition, more than 50% of the cells in the paracortex were positive for Smad4. Furthermore, the Smad3 staining pattern was preserved in all malignant lymphomas, but four of these cases (15%) exhibited decreased expression of Smad4. All lymphoblastic lymphomas showed strong positivity in most of tumor cells, but one unspecified peripheral lymphoma, two nasal NK/T cell lymphomas, and one anaplastic large cell lymphoma were negative for Smad4. CONCLUSIONS These results suggest that TGF-beta-specific Smads may be actively involved in signal transduction in lymphoid organs and that Smad-mediated TGF-beta signaling pathways are operative in malignant lymphoma. In addition, loss of Smad4 expression might be associated with development of some T-cell lymphomas.
Collapse
Affiliation(s)
- Jai Hyang Go
- Department of Pathology, Dankook University College of Medicine, Cheonan, Korea.
| |
Collapse
|
8
|
Katayama K, Yoshioka S, Tsukahara S, Mitsuhashi J, Sugimoto Y. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther 2007; 6:2092-102. [PMID: 17620438 DOI: 10.1158/1535-7163.mct-07-0148] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The multidrug resistance gene 1 (MDR1) product, P-glycoprotein (P-gp), pumps out a variety of anticancer agents from the cell, including anthracyclines, Vinca alkaloids, and taxanes. The expression of P-gp therefore confers resistance to these anticancer agents. In our present study, we found that FTI-277 (a farnesyltransferase inhibitor), U0126 [an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)], and 17-allylamino-17-demethoxygeldanamycin (an inhibitor of heat shock protein 90) reduced the endogenous expression levels of P-gp in the human colorectal cancer cells, HCT-15 and SW620-14. In contrast, inhibitors of phosphatidylinositol 3-OH kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinase, and c-Jun NH(2)-terminal kinase did not affect P-gp expression in these cells. We further found that U0126 down-regulated exogenous P-gp expression in the MDR1-transduced human breast cancer cells, MCF-7/MDR and MDA-MB-231/MDR. However, the MDR1 mRNA levels in these cells were unaffected by this treatment. PD98059 (a MEK inhibitor), ERK small interfering RNA, and p90 ribosomal S6 kinase (RSK) small interfering RNA also suppressed P-gp expression. Conversely, epidermal growth factor and basic fibroblast growth factor enhanced P-gp expression, but the MDR1 mRNA levels were unchanged in epidermal growth factor-stimulated cells. Pulse-chase analysis revealed that U0126 promoted P-gp degradation but did not affect the biosynthesis of this gene product. The pretreatment of cells with U0126 enhanced the paclitaxel-induced cleavage of poly(ADP-ribose) polymerase and paclitaxel sensitivity. Furthermore, U0126-treated cells showed high levels of rhodamine123 uptake. Hence, our present data show that inhibition of the MEK-ERK-RSK pathway down-regulates P-gp expression levels and diminishes the cellular multidrug resistance.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Department of Chemotherapy, Kyoritsu University of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | |
Collapse
|
9
|
Kamiya K, Sakakibara K, Ryer EJ, Hom RP, Leof EB, Kent KC, Liu B. Phosphorylation of the cyclic AMP response element binding protein mediates transforming growth factor beta-induced downregulation of cyclin A in vascular smooth muscle cells. Mol Cell Biol 2007; 27:3489-98. [PMID: 17325033 PMCID: PMC1899963 DOI: 10.1128/mcb.00665-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta), a multifunctional cytokine associated with vascular injury, is a potent inhibitor of cell proliferation. The current results demonstrate that the TGFbeta-induced growth arrest of vascular smooth muscle cells (VSMCs) is associated with cyclin A downregulation. TGFbeta represses the cyclin A gene through a cyclic AMP (cAMP) response element, which complexes with the cAMP response element binding protein (CREB). The CREB-cyclin A promoter interaction is hindered by TGFbeta, preceded by a TGFbeta receptor-dependent CREB phosphorylation. Induction of CREB phosphorylation with forskolin or 6bnz-cAMP mimics TGFbeta's inhibitory effect on cyclin A expression. Conversely, inhibition of CREB phosphorylation with a CREB mutant in which the phosphorylation site at serine 133 was changed to alanine (CREB-S133A) upregulated cyclin A gene expression. Furthermore, the CREB-S133A mutant abolished TGFbeta-induced CREB phosphorylation, cyclin A downregulation, and growth inhibition. Since we have previously shown that the novel PKC isoform protein kinase C delta (PKCdelta) is activated by TGFbeta in VSMCs, we tested the role of this kinase in CREB phosphorylation and cyclin A downregulation. Inhibition of PKCdelta by a dominant-negative mutant or by targeted gene deletion blocked TGFbeta-induced CREB phosphorylation and cyclin A downregulation. Taken together, our data indicate that phosphorylation of CREB stimulated by TGFbeta is a critical step leading to the inhibition of cyclin A expression and, thus, VSMC proliferation.
Collapse
Affiliation(s)
- Kentaro Kamiya
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 1002, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Cho CH, Seo M, Lee YI, Kim SY, Youn HD, Juhnn YS. Dibutyryl cAMP stimulates the proliferation of SH-SY5Y human neuroblastoma cells by up-regulating Skp2 protein. J Cancer Res Clin Oncol 2006; 133:135-44. [PMID: 17004068 DOI: 10.1007/s00432-006-0153-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 08/02/2006] [Indexed: 01/19/2023]
Abstract
PURPOSE We previously found that the proliferation of SH-SY5Y neuroblastoma cells is stimulated when cAMP is up-regulated by stable expression of stimulatory G protein. Therefore, this study was performed to investigate the mechanism whereby cAMP stimulates the proliferation of SH-SY5Y cells. METHODS To investigate the effect of cAMP on cellular proliferation, SH-SY5Y neuroblastoma cells were treated with dibutyryl cAMP (dbcAMP), and then cell growth, thymidine incorporation and cell cycle phase distribution were analyzed. The expression and the activity of the molecules that regulate cell cycle progression were monitored by Western blot, RT-PCR, and kinase activity assay. RESULTS Treatment with dbcAMP produced a biphasic effect on cellular proliferation; especially treatment with low concentration of dbcAMP (0.5 mM) showed a higher cellular proliferation rate and promoted G1/S transition in cell cycle. The dbcAMP (0.5 mM) treatment increased CDK2 activity, and it significantly decreased p27Kip1 expression with a decreased half-life of p27Kip1 protein. Moreover, dbcAMP (0.5 mM) increased the protein level and the stability of Skp2 with a concomitant decrease in its ubiquitination. CONCLUSIONS cAMP up-regulates Skp2 protein by reducing its degradation probably through decreasing the ubiquitination of Skp2, which might result in accelerated degradation of p27Kip1, increase in CDK2 activity, and stimulation of SH-SY5Y cell proliferation in sequence.
Collapse
Affiliation(s)
- Chin-Ho Cho
- Department of Biochemistry and Molecular Biology, Laboratory of Cellular Signaling, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul, 110-799, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Li Z, Lee MJ, Jeon HJ, Hong CP, Park CY, Chung CH. Effect on Cell Growth, c-mycmRNA Expression and Telomerase Activity by Transforming Growth Factor-β1 in Malignant Lymphoma and Leukemia Cell Line. THE KOREAN JOURNAL OF HEMATOLOGY 2005. [DOI: 10.5045/kjh.2005.40.3.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zhuhu Li
- Department of Pathology, College of Medicine, Chosun University, Gwangju, Korea
| | - Mi-Ja Lee
- Department of Pathology, College of Medicine, Chosun University, Gwangju, Korea
| | - Ho-Jong Jeon
- Department of Pathology, College of Medicine, Chosun University, Gwangju, Korea
| | - Chan-Pyo Hong
- Department of Hematology-Oncology Division of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Chi-Young Park
- Department of Hematology-Oncology Division of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Choon-Hae Chung
- Department of Hematology-Oncology Division of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
12
|
Birchenall-Roberts MC, Fu T, Bang OS, Dambach M, Resau JH, Sadowski CL, Bertolette DC, Lee HJ, Kim SJ, Ruscetti FW. Tuberous Sclerosis Complex 2 Gene Product Interacts with Human SMAD Proteins. J Biol Chem 2004; 279:25605-13. [PMID: 15066998 DOI: 10.1074/jbc.m402790200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tuberin (TSC2) is a tumor suppressor gene. At the cellular level, tuberin is required as a critical regulator of cell growth, neuronal differentiation, and tumor suppression. Here we report a critical role for tuberin in late stage myeloid cell differentiation. Tuberin strongly augments transforming growth factor (TGF)-beta1 signal transduction pathways, including SMAD activation. We also demonstrate that the amino-terminal region of tuberin interacts specifically with the MH2 domain of SMAD2 and SMAD3 proteins to regulate TGF-beta1-responsive genes such as p21(CIP). Inhibition of tuberin expression by Tsc2 antisense greatly reduces the ability of TGF-beta to transcriptionally regulate p21(CIP), p27(KIP), and cyclin A leading to an abrogation of the antiproliferative effects of TGF-beta1. Also, inhibition of tuberin expression during stimulation of monocytic differentiation with vitamin D(3) and TGF-beta1 significantly impaired myeloid cell growth inhibition and differentiation. Together, the data demonstrate the presence of a novel activation process following TGF-beta1 stimulation that requires tuberin-dependent activity.
Collapse
|
13
|
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17:1263-93. [PMID: 12835716 DOI: 10.1038/sj.leu.2402945] [Citation(s) in RCA: 533] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.
Collapse
Affiliation(s)
- F Chang
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Park KK, Rue SW, Lee IS, Kim HC, Lee IK, Ahn JD, Kim HS, Yu TS, Kwak JY, Heintz NH, Magae J, Chang YC. Modulation of Sp1-dependent transcription by a cis-acting E2F element in dhfr promoter. Biochem Biophys Res Commun 2003; 306:239-243. [PMID: 12788094 DOI: 10.1016/s0006-291x(03)00941-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dihydrofolate reductase (dhfr) promoter contains cis-acting elements for Sp1 and E2F. Here we examined the cooperative regulation of dhfr gene transcription by Sp1 and E2F in human osteosarcoma cells, U2OS. Trichostatin A, an inhibitor of histone deacetylases, markedly stimulated dhfr promoter activity, a response that was enhanced by the deletion of an E2F element. In contrast, deletion of the dhfr Sp1 binding sites completely abolished promoter stimulation by trichostatin A. Cotransfection assays showed that activation of dhfr transcription by expression of E2F1/DP1 requires the reiterated Sp1 elements, whereas activation by Sp1 was enhanced by the deletion of the E2F element. Expression of HDAC1 with Sp1 suppressed promoter activity and suppression was not alleviated by coexpression of E2F1/DP1. These results suggest that HDAC1 acts through Sp1 to repress dhfr promoter activity, and that the E2F element modulates the activity of Sp1 at the dhfr promoter through a cis-acting mechanism.
Collapse
Affiliation(s)
- Kwan-Kyu Park
- Kidney Institute, Keimyung University School of Medicine, 700-712, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y. Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 2003; 13:773-80. [PMID: 12727897 PMCID: PMC430898 DOI: 10.1101/gr.947203] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 02/25/2003] [Indexed: 11/24/2022]
Abstract
Dissection of regulatory networks that control gene transcription is one of the greatest challenges of functional genomics. Using human genomic sequences, models for binding sites of known transcription factors, and gene expression data, we demonstrate that the reverse engineering approach, which infers regulatory mechanisms from gene expression patterns, can reveal transcriptional networks in human cells. To date, such methodologies were successfully demonstrated only in prokaryotes and low eukaryotes. We developed computational methods for identifying putative binding sites of transcription factors and for evaluating the statistical significance of their prevalence in a given set of promoters. Focusing on transcriptional mechanisms that control cell cycle progression, our computational analyses revealed eight transcription factors whose binding sites are significantly overrepresented in promoters of genes whose expression is cell-cycle-dependent. The enrichment of some of these factors is specific to certain phases of the cell cycle. In addition, several pairs of these transcription factors show a significant co-occurrence rate in cell-cycle-regulated promoters. Each such pair indicates functional cooperation between its members in regulating the transcriptional program associated with cell cycle progression. The methods presented here are general and can be applied to the analysis of transcriptional networks controlling any biological process.
Collapse
Affiliation(s)
- Ran Elkon
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics, Sackler School of Medicine, and School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
16
|
Ho CL, Sheu LF, Li CY. Immunohistochemical expression of angiogenic cytokines and their receptors in reactive benign lymph nodes and non-Hodgkin lymphoma. Ann Diagn Pathol 2003; 7:1-8. [PMID: 12616467 DOI: 10.1053/adpa.2003.50000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiogenic cytokines regulate B-cell lymphopoiesis and are related to prognosis in B-cell lymphoproliferative disorders. Transforming growth factor-beta (TGF-beta) inhibits mature B-cell proliferation and immunoglobulin production. Increased levels of serum vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are associated with poor prognosis in non-Hodgkin lymphoma (NHL). To understand the expression of angiogenic cytokines at different stages of B-cell differentiation in lymph nodes, we examined the immunohistochemical expression of TGF-beta, VEGF, bFGF, and their receptors in five patients with reactive benign lymphadenopathy and 12 patients with B-cell NHL (mantle cell lymphoma, 4; small cleaved cell follicular lymphoma, 5; lymphoplasmacytic lymphoma, 3). In benign lymph nodes, TGF-beta1, TGF-beta2, and TGFbetaRII were positive in prefollicular mantle cells, follicular center cells, and postfollicular plasma cells. Basic FGF, FGF-R1, and FGF-R4 were positive in large follicular center cells and postfollicular plasma cells. Vascular endothelial growth factor was positive in large follicular center cells and postfollicular plasma cells. In NHL, TGF-beta and its receptors were weakly positive in small cleaved cell follicular lymphoma; VEGF was strongly positive in lymphoplasmacytic lymphoma and weakly positive in mantle cell lymphoma. Basic FGF and its receptors were negative in NHL; however, FGF-R4 was positive in some cases of small cleaved cell follicular lymphoma. Our findings suggest that TGF-beta, bFGF, and their receptors have opposite roles in B-cell differentiation and maturation in benign lymph nodes. Transforming growth factor-beta and its receptors have an important role in germinal center development; loss of their activity could be associated with abnormal clonal proliferation of NHL.
Collapse
Affiliation(s)
- Ching-Liang Ho
- Division of Hematopathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
17
|
Abstract
TGF-beta insensitivity has been reported in some malignant lymphomas showing loss of TGF-beta receptor expression. This loss of TGF-beta sensitivity is thought to have removed the immunosuppressive properties of TGF-beta, thus enhancing cell proliferation and resulting in the development of malignant lymphoma. In this study, we performed immunohistochemical stains for TGF-beta1, TGF-beta RI and TGF-beta RII in primary gastric B-cell lymphomas in order to ascertain their possible roles in lymphomagenesis. A total of twenty cases of gastric lymphoma were included. All cases of low- and high-grade lymphomas were negative or weakly positive for TGF-beta1. Reactive lymphoid cells, including the germinal center, were also negative for TGF-beta1. In contrast, reactive germinal centers showed moderate to strong cytoplasmic or membranous staining for TGF-beta RI and TGF-beta RII. In malignant lymphomas, TGF-beta RI expression was maintained in all cases of low- and high-grade lymphomas. In contrast, TGF-beta RII expression was decreased in all low- and high-grade lymphoma cells. These findings suggest that the loss of TGF-beta RII expression may be involved in the lymphomagenesis of the stomach.
Collapse
Affiliation(s)
- Jai Hyang Go
- Department of Pathology, Dankook University College of Medicine, Chungnam, Korea.
| |
Collapse
|
18
|
Tvrdík D, Djaborkhel R, Nagy A, Eckschlager T, Raska I, Müller J. Cyclin D-cdk6 complex is targeted by p21(WAF) in growth-arrested lymphoma cells. J Struct Biol 2002; 140:49-56. [PMID: 12490153 DOI: 10.1016/s1047-8477(02)00535-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Normal human B lymphocytes are sensitive to the growth-inhibitory action of transforming growth factor beta1 (TGFbeta1) whereas malignant B lymphoma cells are mostly resistant to TGFbeta1 effects. We examined the phosphorylation status of retinoblastoma protein and the activity of G(1) cyclin-dependent kinases (cdk) in TGFbeta1-sensitive malignant follicular lymphoma cells during the TGFbeta1 treatment. The kinase activity of cdk2, cdk4, and cdk6 was significantly reduced and hypophosphorylation of pRb on serine 795 (S795) and threonine 373 (T373) was observed. We examined the composition of cdk complexes and the level of cdk inhibitors to explain the inhibitory action of TGFbeta1 toward cdk activity. Both cdk4 and cdk6 were notably dissociated from cyclin D cofactors, while cyclin E-cdk2 complexes remained coupled in TGFbeta1-treated cells. TGFbeta1-induced growth arrest was associated with notably increased binding of p21(WAF1) to cdk4 and cdk6. No induction of cdk-inhibitor molecules of INK family was observed in TGFbeta1-treated DoHH2 cells. As shown, TGFbeta1-induced growth arrest of malignant B cells was associated with the activation of CIP/KIP family members of cdk inhibitors.
Collapse
Affiliation(s)
- D Tvrdík
- Laboratory of Gene Expression, 1st Faculty of Medicine, Charles University, Albertov 4, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
19
|
Kim G, Jun JB, Elkon KB. Necessary role of phosphatidylinositol 3-kinase in transforming growth factor beta-mediated activation of Akt in normal and rheumatoid arthritis synovial fibroblasts. ARTHRITIS AND RHEUMATISM 2002; 46:1504-11. [PMID: 12115180 DOI: 10.1002/art.10314] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Rheumatoid arthritis is a disease that, pathologically, is characterized by the progressive growth and invasion of the synovial pannus into the surrounding cartilage and bone. Many cytokines, including transforming growth factor beta1 (TGFbeta1), have been implicated in this process, but their mode of action is incompletely understood. The goal of the present study was to better understand the downstream signaling pathways of TGFbeta in fibroblasts. METHODS The role of phosphatidylinositol 3-kinase (PI 3-kinase) was determined by chemical inhibition with LY294002 or wortmannin. Activation of protein kinase B (Akt), c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs) was evaluated by Western blot analysis using phospho-specific antibodies. RESULTS Exposure of fibroblasts to TGFbeta rapidly induced activation of a kinase, Akt, that is known to inhibit apoptosis by a variety of pathways. Activation of Akt was blocked by the specific PI 3-kinase inhibitor, LY294002, indicating that TGFbeta-mediated phosphorylation of Akt was dependent on PI 3-kinase activation. This activation pathway was relatively selective for Akt, since inhibition of PI 3-kinase failed to substantially modify activation of ERKs or JNKs in synovial fibroblasts. Inhibition of the PI 3-kinase/Akt pathway resulted in impaired proliferation of synovial fibroblasts and partial attenuation of the protective effect of TGFbeta on Fas-mediated apoptosis. CONCLUSION TGFbeta exerts its growth and antiapoptotic effects on fibroblasts, at least in part, by activation of the PI 3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Giok Kim
- Division of Rheumatology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
20
|
Nakato H, Fox B, Selleck SB. dally, a Drosophila member of the glypican family of integral membrane proteoglycans, affects cell cycle progression and morphogenesis via a Cyclin A-mediated process. J Cell Sci 2002; 115:123-30. [PMID: 11801730 DOI: 10.1242/jcs.115.1.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
division abnormally delayed (dally) encodes an integral membrane proteoglycan of the glypican family that affects a number of patterning events during both embryonic and larval development. Earlier studies demonstrated that Dally regulates cellular responses to Wingless (Wg) and Decapentaplegic (Dpp) in a tissue-specific manner, consistent with its proposed role as a growth factor co-receptor. dally mutants also display cell cycle progression defects in specific sets of dividing cells in the developing optic lobe and retina. The affected cells in the retina and lamina show delays in completion of the G2-M segment of the cell cycle. We have investigated the molecular basis of dally-mediated cell division defects by examining the genetic interactions between dally and known cell cycle regulators.
Reductions in cyclin A but not cyclin B or string expression, suppress dally cell division defects in the optic lobe. cycA mutations also dominantly rescue many dally adult morphological defects including lethality, phenotypes that are unaffected by reducing cycB function. dally mutants show abnormal Cyclin A expression in the dividing cells affected, with appreciable levels of Cyclin A remaining in late prophase and metaphase, stages where Cyclin A is normally absent. Given that Dally is known to regulate the activity of secreted growth factors our findings suggest that extracellular cues influence the degradation of Cyclin A in a manner that controls cell cycle progression and ultimately, cell division patterning.
Collapse
Affiliation(s)
- Hiroshi Nakato
- Department of Molecular and Cellular Biology, and The Arizona Cancer Center, Salmon Building, Rm 0975, 1515 N. Campbell Avenue, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|