1
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
2
|
The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model. PLoS One 2016; 11:e0161693. [PMID: 27551730 PMCID: PMC4994951 DOI: 10.1371/journal.pone.0161693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders.
Collapse
|
3
|
Abstract
Duchenne muscular dystrophy is a devastating muscular dystrophy of childhood. Mutations in the dystrophin gene destroy the link between the internal muscle filaments and the extracellular matrix, resulting in severe muscle weakness and progressive muscle wasting. There is currently no cure and, whilst palliative treatment has improved, affected boys are normally confined to a wheelchair by 12 years of age and die from respiratory or cardiac complications in their twenties or thirties. Therapies currently being developed include mutation-specific treatments, DNA- and cell-based therapies, and drugs which aim to modulate cellular pathways or gene expression. This review aims to provide an overview of the different therapeutic approaches aimed at reconstructing the dystrophin-associated protein complex, including restoration of dystrophin expression and upregulation of the functional homologue, utrophin.
Collapse
Affiliation(s)
- Rebecca J Fairclough
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford UK
| | | | | |
Collapse
|
4
|
Palmieri B, Tremblay JP, Daniele L. Past, present and future of myoblast transplantation in the treatment of Duchenne muscular dystrophy. Pediatr Transplant 2010; 14:813-9. [PMID: 20963914 DOI: 10.1111/j.1399-3046.2010.01377.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DMD is a genetic X-linked recessive disease that affects approximately one in 3500 male births. Boys with DMD have progressive and predictable muscle destruction because of the absence of Dys, a protein present under the muscle fiber membrane. Dys deficiency induces contraction-related membrane damages, activation of inflammatory-necrosis-fibrosis up to the cardiac-diaphragmatic failure and death. This review supports the therapeutic role of MT associated with immunosuppression in DMD patients, describing the history and the rationale of such approach. The authors underline the importance to evaluate a protocol of myoblast intradermal multi-injection to apply in young DMD patients
Collapse
Affiliation(s)
- Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy.
| | | | | |
Collapse
|
5
|
Schabort EJ, Myburgh KH, Wiehe JM, Torzewski J, Niesler CU. Potential Myogenic Stem Cell Populations: Sources, Plasticity, and Application for Cardiac Repair. Stem Cells Dev 2009; 18:813-30. [DOI: 10.1089/scd.2008.0387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Elske J. Schabort
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Juliane M. Wiehe
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Jan Torzewski
- Cardiovascular Unit, Oberallgäu Kliniken GmbH, Immenstadt, Germany
| | - Carola U. Niesler
- Department of Biochemistry, School of Biochemistry, Genetics, Microbiology, and Plant Pathology, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
6
|
Meregalli M, Farini A, Torrente Y. Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin Biol Ther 2008; 8:1051-61. [DOI: 10.1517/14712598.8.8.1051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Benchaouir R, Meregalli M, Farini A, D'Antona G, Belicchi M, Goyenvalle A, Battistelli M, Bresolin N, Bottinelli R, Garcia L, Torrente Y. Restoration of Human Dystrophin Following Transplantation of Exon-Skipping-Engineered DMD Patient Stem Cells into Dystrophic Mice. Cell Stem Cell 2007; 1:646-57. [DOI: 10.1016/j.stem.2007.09.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/28/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
|
8
|
Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc Natl Acad Sci U S A 2007; 104:16552-7. [PMID: 17940048 DOI: 10.1073/pnas.0708145104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MyoD is a myogenic master transcription factor that plays an essential role in muscle satellite cell (muscle stem cell) differentiation. To further investigate the function of MyoD in satellite cells, we examined the transplantation of satellite cell-derived myoblasts lacking the MyoD gene into regenerating skeletal muscle. After injection into injured muscle, MyoD(-/-) myoblasts engrafted with significantly higher efficiency compared with wild-type myoblasts. In addition, MyoD(-/-) myoblast-derived satellite cells were detected underneath the basal lamina of muscle fibers, indicating the self-renewal property of MyoD(-/-) myoblasts. To gain insights into MyoD gene deficiency in muscle stem cells, we investigated the pathways regulated by MyoD by GeneChip microarray analysis of gene expression in wild-type and MyoD(-/-) myoblasts. MyoD deficiency led to down-regulation of many muscle-specific genes and up-regulation of some stem cell markers. Importantly, in MyoD(-/-) myoblasts, many antiapoptotic genes were up-regulated, whereas genes known to execute apoptosis were down-regulated. Consistent with these gene expression profiles, MyoD(-/-) myoblasts were revealed to possess remarkable resistance to apoptosis and increased survival compared with wild-type myoblasts. Forced expression of MyoD or the proapoptotic protein Puma increased cell death in MyoD(-/-) myoblasts. Therefore, MyoD(-/-) myoblasts may preserve stem cell characteristics, including their resistance to apoptosis, expression of stem cell markers, and efficient engraftment and contribution to satellite cells after transplantation. Furthermore, our data offer evidence for improved therapeutic stem cell transplantation for muscular dystrophy, in which suppression of MyoD in myogenic progenitors would be beneficial to therapy by providing a selective advantage for the expansion of stem cells.
Collapse
|
9
|
Péault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 2007; 15:867-77. [PMID: 17387336 DOI: 10.1038/mt.sj.6300145] [Citation(s) in RCA: 413] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Satellite cells are dormant progenitors located at the periphery of skeletal myofibers that can be triggered to proliferate for both self-renewal and differentiation into myogenic cells. In addition to anatomic location, satellite cells are typified by markers such as M-cadherin, Pax7, Myf5, and neural cell adhesion molecule-1. The Pax3 and Pax7 transcription factors play essential roles in the early specification, migration, and myogenic differentiation of satellite cells. In addition to muscle-committed satellite cells, multi-lineage stem cells encountered in embryonic, as well as adult, tissues exhibit myogenic potential in experimental conditions. These multi-lineage stem cells include side-population cells, muscle-derived stem cells (MDSCs), and mesoangioblasts. Although the ontogenic derivation, identity, and localization of these non-conventional myogenic cells remain elusive, recent results suggest their ultimate origin in blood vessel walls. Indeed, purified pericytes and endothelium-related cells demonstrate high myogenic potential in culture and in vivo. Allogeneic myoblasts transplanted into Duchenne muscular dystrophy (DMD) patients have been, in early trials, largely inefficient owing to immune rejection, rapid death, and limited intramuscular migration--all obstacles that are now being alleviated, at least in part, by more efficient immunosuppression and escalated cell doses. As an alternative to myoblast transplantation, stem cells such as mesoangioblasts and CD133+ progenitors administered through blood circulation have recently shown great potential to regenerate dystrophic muscle.
Collapse
Affiliation(s)
- Bruno Péault
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arnold AS, Laporte V, Dumont S, Appert-Collin A, Erbacher P, Coupin G, Levy R, Poindron P, Gies JP. Comparing reagents for efficient transfection of human primary myoblasts: FuGENE 6, Effectene and ExGen 500. Fundam Clin Pharmacol 2006; 20:81-9. [PMID: 16448398 DOI: 10.1111/j.1472-8206.2005.00344.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study compared three different synthetic reagents (FuGENE 6, Effectene and ExGen 500) for the transfection of human primary myoblasts. We examined the efficiency, cytotoxicity and size of the complexes formed in the presence of different amounts of vector and DNA and with variable amounts of serum. Transfection rates were relatively high for primary cells, especially with FuGENE 6 (20%), which appeared to be the best transfection reagent for these cells, even in the presence of 10% serum. Cultured human myoblasts are an interesting tool for studying neuromuscular diseases and are potentially useful for myoblast transfer therapy studies. Moreover, the efficiency of these transfection reagents in a medium containing 10% serum is promising for possible gene therapy protocols for muscle diseases.
Collapse
Affiliation(s)
- Anne-Sophie Arnold
- Laboratoire Commun, LC 001 CNRS, Faculté de Pharmacie, Université Louis Pasteur Strasbourg-I, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jockusch H, Voigt S. Migration of adult myogenic precursor cells as revealed by GFP/nLacZ labelling of mouse transplantation chimeras. J Cell Sci 2003; 116:1611-6. [PMID: 12640044 DOI: 10.1242/jcs.00364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the migratory behaviour of adult muscle precursor cells in the mouse into and from skeletal muscle grafts using green fluorescent protein (GFP) and nuclear LacZ transgenes as complementary and double markers of the cell's origin. Owing to the small molecular mass and extreme solubility of GFP, this label provided a drastically increased sensitivity for detection compared with the markers that had been used previously. During the first six weeks after the operation, the graft/host border was well defined, with only occasional local intermingling and co-fusion of host and donor myogenic cells. Seven to eleven weeks after the operation we found that the host myogenic cells had migrated into the graft, and graft myogenic cells had migrated into the adjacent host muscle, with integration of donor nuclei into pre-existing myotubes or muscle fibres. There was no indication of an origin of, or target for, these myogenic cells besides neighbouring muscles. Our observations indicate migration of these cells through solid muscle tissue, over a distance of several millimetres. The migratory activity of adult myogenic precursor cells can be stimulated by traumatic events in either the target muscle or the muscle of origin.
Collapse
Affiliation(s)
- Harald Jockusch
- Developmental Biology and Molecular Pathology, W7, University of Bielefeld, D-33501 Bielefeld, Germany.
| | | |
Collapse
|