1
|
Chen WF, Chi XP, Song HY, Wang HF, Wang Y, Liu ZG, Xu BH. Ame-miR-980-3p participates in autophagy-mediated midgut remodelling in Apis mellifera via targeting Atg2B. INSECT MOLECULAR BIOLOGY 2023; 32:748-760. [PMID: 37658706 DOI: 10.1111/imb.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
Autophagy is a process that serves to degrade damaged proteins and organelles, thereby promoting cell homeostasis, differentiation, development and survival. Many miRNAs have been found to have regulatory roles in autophagy. In insects, it has been shown that autophagy is involved in hormone-regulated programmed cell death during metamorphic midgut remodelling. However, whether this is also true during the remodelling of the honey bee midgut is unclear. In the present study, we explored the relationship between autophagy and midgut remodelling and sought to identify miRNAs involved in this physiological process. We found that autophagy occurred during midgut remodelling and that the inhibition of autophagy resulted in midgut dysplasia in prepupae. Differentially expressed miRNAs enriched in the autophagy signalling pathway during midgut remodelling were identified by small RNA-seq. Ame-miR-980-3p, which targets the autophagy-related gene Atg2B, was screened out. Furthermore, abnormal expression of ame-miR-980-3p in the pupal stage led to the thinning of the midgut wall of newly emerged bees (NE). When ame-miR-980-3p expression was inhibited, the intestinal villi of NE bees became significantly shorter and sparse, and the lipid signal in the peritrophic matrix of Pb almost disappeared, indicating that the adult midgut was underdeveloped and the lipid absorption ability was weakened. Taken together, ame-miR-980-3p targeted Atg2B to participate in the regulation of midgut autophagy in the pupae, and the abnormal expression of ame-miR-980-3p would interfere with cell proliferation and death in the process of midgut remodelling, hinder the formation of adult midgut and eventually lead to adult midgut dysplasia and affect the lipid absorption function of the midgut in Apis mellifera.
Collapse
Affiliation(s)
- Wen-Feng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Xue-Peng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Hong-Yu Song
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Hong-Fang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhen-Guo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
2
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
4
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Dong W, Zhang X, Kong Y, Zhao Z, Mahmoud A, Wu L, Moussian B, Zhang J. CYP311A1 in the anterior midgut is involved in lipid distribution and microvillus integrity in Drosophila melanogaster. Cell Mol Life Sci 2022; 79:261. [PMID: 35478270 PMCID: PMC11072108 DOI: 10.1007/s00018-022-04283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Lipids are either taken up from food sources or produced internally in specialized tissues such as the liver. Among others, both routes of lipid metabolism involve cytochrome P450 monooxygenases (CYPs). We sought to analyze the function of Cyp311a1 that has been shown to be expressed in the midgut of the fruit fly Drosophila melanogaster. Using a GFP-tagged version of CYP311A1 that is expressed under the control of its endogenous promoter, we show that Cyp311a1 localizes to the endoplasmic reticulum in epithelial cells of the anterior midgut. In larvae with reduced Cyp311a1 expression in the anterior midgut, compared to control larvae, the apical plasma membrane of the respective epithelial cells contains less and shorter microvilli. In addition, we observed reduction of neutral lipids in the fat body, the insect liver, and decreased phosphatidylethanolamine (PE) and triacylglycerols (TAG) amounts in the whole body of these larvae. Probably as a consequence, they cease to grow and eventually die. The microvillus defects in larvae with reduced Cyp311a1 expression are restored by supplying PE, a major phospholipid of plasma membranes, to the food. Moreover, the growth arrest phenotype of these larvae is partially rescued. Together, these results suggest that the anterior midgut is an import hub in lipid distribution and that the midgut-specific CYP311A1 contributes to this function by participating in shaping microvilli in a PE-dependent manner.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xubo Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Kong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ali Mahmoud
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, 01307, Dresden, Germany
| | - Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Bernard Moussian
- Université Côte d'Azur, Parc Valrose, 06108, Nice Cedex 2, France.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
6
|
Abstract
The Drosophila midgut is mainly composed of highly polarized epithelial cells called enterocytes that establish their apical-basal polarity in a fundamentally different way from other Drosophila epithelia. The roles of polarity factors in the midgut can be studied by generating clones of homozygous mutant cells in the background of wild-type tissue. In this chapter, we will introduce and discuss the procedures for producing positively marked mutant clones in the midgut and describe specific protocols for dissecting, fixing, and immunostaining this tissue.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Song G, Chen F, Chen S, Ye S. Polysaccharides from Premna microphylla turcz ameliorate inflammation via the enhancement of intestinal resistance in host. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114208. [PMID: 34010697 DOI: 10.1016/j.jep.2021.114208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premna microphylla turcz is traditionally used as a folk remedy. Its roots, stems and leaves can be invoked as medicines, which have the functions of detoxification, swelling and hemostasis. It belongs to the Premna in the Verbenaceae and is mainly distributed in the mountains of southeastern China. However, there are few reports of in-depth studies on the anti-inflammatory effects of polysaccharide, which was the main component in Premna microphylla turcz. MATERIALS AND METHODS The flies were fed with standard corn flour-yeast medium to cause inflammation by sodium lauryl sulfate (SDS). The treatment group contained Premna microphylla turcz polysaccharide (pPMTLs) extract. The survival rate was obtained by feeding a vial containing five layers of filter paper, which was infiltrated with the 5% sucrose solution contaminated with SDS or SDS polysaccharide. The microvilli and nucleus of the midgut epithelial cells of different treatments were observed by transmission electron microscope, and the expression of inflammation-related genes was detected by real-time quantitative PCR (qRT-PCR). Finally, 16S rDNA analysis was conducted on the differences in the composition of the intestinal microbes of Drosophila. RESULTS In the current study, we showed that pPMTLs significantly prolonged the life span of SDS-inflamed flies from 5 days to 6 days. And pPMTLs reduced the rupture of microvilli in the midgut and restored the nuclear structure. In addition, pPMTLs significantly improved expression level of immune-related genes in Inflammation Drosophila especially the defensin (4.32 ± 0.75 vs 9.97 ± 0.52 SDS-polysaccharide group: SDS group, p < 0.001). The analysis of intestinal microbiota showed that pPMTLs decreased the relative abundance of Raoultella while Wolbachia increased (p < 0.05). CONCLUSIONS Collectively, our results revealed the potential application of pPMTLs in enhancing inflammation defense, which would be enormous significance for the inflammation-related disorders treatment.
Collapse
Affiliation(s)
- Guanglei Song
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| | - Fangyuan Chen
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| | - Shubo Chen
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| | - Shuhui Ye
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
8
|
Resnik-Docampo M, Cunningham KM, Ruvalcaba SM, Choi C, Sauer V, Jones DL. Neuroglian regulates Drosophila intestinal stem cell proliferation through enhanced signaling via the epidermal growth factor receptor. Stem Cell Reports 2021; 16:1584-1597. [PMID: 33961791 PMCID: PMC8190597 DOI: 10.1016/j.stemcr.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
The Drosophila intestine is an excellent system for elucidating mechanisms regulating stem cell behavior. Here we show that the septate junction (SJ) protein Neuroglian (Nrg) is expressed in intestinal stem cells (ISCs) and enteroblasts (EBs) within the fly intestine. SJs are not present between ISCs and EBs, suggesting Nrg plays a different role in this tissue. We reveal that Nrg is required for ISC proliferation in young flies, and depletion of Nrg from ISCs and EBs suppresses increased ISC proliferation in aged flies. Conversely, overexpression of Nrg in ISC and EBs promotes ISC proliferation, leading to an increase in cells expressing ISC/EB markers; in addition, we observe an increase in epidermal growth factor receptor (Egfr) activation. Genetic epistasis experiments reveal that Nrg acts upstream of Egfr to regulate ISC proliferation. As Nrg function is highly conserved in mammalian systems, our work characterizing the role of Nrg in the intestine has implications for the treatment of intestinal disorders that arise due to altered ISC behavior.
Collapse
Affiliation(s)
- Martin Resnik-Docampo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathleen M Cunningham
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Mateo Ruvalcaba
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Charles Choi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vivien Sauer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Izumi Y, Furuse K, Furuse M. Septate junctions regulate gut homeostasis through regulation of stem cell proliferation and enterocyte behavior in Drosophila. J Cell Sci 2019; 132:jcs.232108. [DOI: 10.1242/jcs.232108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022] Open
Abstract
Smooth septate junctions (sSJs) contribute to the epithelial barrier, which restricts leakage of solutes through the paracellular route of epithelial cells in the Drosophila midgut. We previously identified three sSJ-associated membrane proteins, Ssk, Mesh, and Tsp2A, and showed that these proteins were required for sSJ formation and intestinal barrier function in the larval midgut. Here, we investigated the roles of sSJs in the Drosophila adult midgut. Depletion of any of the sSJ-proteins from enterocytes resulted in remarkably shortened lifespan and intestinal barrier dysfunction in flies. Interestingly, the sSJ-protein-deficient flies showed intestinal hypertrophy accompanied by accumulation of morphologically abnormal enterocytes. The phenotype was associated with increased stem cell proliferation and activation of the MAP kinase and Jak-Stat pathways in stem cells. Loss of cytokines Unpaired2 and Unpaired3, which are involved in Jak-Stat pathway activation, reduced the intestinal hypertrophy, but not the increased stem cell proliferation, in flies lacking Mesh. The present findings suggest that SJs play a crucial role in maintaining tissue homeostasis through regulation of stem cell proliferation and enterocyte behavior in the Drosophila adult midgut.
Collapse
Affiliation(s)
- Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan
| |
Collapse
|
10
|
Chen J, Sayadian AC, Lowe N, Lovegrove HE, St Johnston D. An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biol 2018; 16:e3000041. [PMID: 30339698 PMCID: PMC6209374 DOI: 10.1371/journal.pbio.3000041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Apical-basal polarity is essential for the formation and function of epithelial tissues, whereas loss of polarity is a hallmark of tumours. Studies in Drosophila have identified conserved polarity factors that define the apical (Crumbs, Stardust, Par-6, atypical protein kinase C [aPKC]), junctional (Bazooka [Baz]/Par-3), and basolateral (Scribbled [Scrib], Discs large [Dlg], Lethal [2] giant larvae [Lgl]) domains of epithelial cells. Because these conserved factors mark equivalent domains in diverse types of vertebrate and invertebrate epithelia, it is generally assumed that this system underlies polarity in all epithelia. Here, we show that this is not the case, as none of these canonical factors are required for the polarisation of the endodermal epithelium of the Drosophila adult midgut. Furthermore, like vertebrate epithelia but not other Drosophila epithelia, the midgut epithelium forms occluding junctions above adherens junctions (AJs) and requires the integrin adhesion complex for polarity. Thus, Drosophila contains two types of epithelia that polarise by fundamentally different mechanisms. This diversity of epithelial types may reflect their different developmental origins, junctional arrangement, or whether they polarise in an apical-basal direction or vice versa. Since knock-outs of canonical polarity factors in vertebrates often have little or no effect on epithelial polarity and the Drosophila midgut shares several common features with vertebrate epithelia, this diversity of polarity mechanisms is likely to be conserved in other animals.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aram-Christopher Sayadian
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nick Lowe
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Holly E. Lovegrove
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Xu C, Ericsson M, Perrimon N. Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the Drosophila midgut. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 11:24-31. [PMID: 31595264 PMCID: PMC6781628 DOI: 10.1016/j.coisb.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the aims of systems biology is to model and discover properties of cells, tissues and organisms functioning as a system. In recent years, studies in the adult Drosophila gut have provided a wealth of information on the cell types and their functions, and the signaling pathways involved in the complex interactions between proliferating and differentiated cells in the context of homeostasis and pathology. Here, we document and discuss how high-resolution ultrastructure studies of organelle morphology have much to contribute to our understanding of how the gut functions as an integrated system.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Harvard Medical School, Goldenson 323, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
12
|
Renard E, Leys SP, Wörheide G, Borchiellini C. Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics: The disconnect between gene content and body plan evolution. Bioessays 2018; 40:e1700237. [PMID: 30070368 DOI: 10.1002/bies.201700237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.,Aix Marseille Univ., CNRS, UMR 7288, IBDM, Marseille, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| | - Carole Borchiellini
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
13
|
Resnik-Docampo M, Sauer V, Schinaman JM, Clark RI, Walker DW, Jones DL. Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in Drosophila. Fly (Austin) 2018; 12:34-40. [PMID: 29455581 PMCID: PMC5927685 DOI: 10.1080/19336934.2018.1441651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Maladaptive changes in the intestinal flora, typically referred to as bacterial dysbiosis, have been linked to intestinal aging phenotypes, including an increase in intestinal stem cell (ISC) proliferation, activation of inflammatory pathways, and increased intestinal permeability1,2. However, the causal relationships between these phenotypes are only beginning to be unravelled. We recently characterized the age-related changes that occur to septate junctions (SJ) between adjacent, absorptive enterocytes (EC) in the fly intestine. Changes could be observed in the overall level of SJ proteins, as well as the localization of a subset of SJ proteins. Such age-related changes were particularly noticeable at tricellular junctions (TCJ)3. Acute loss of the Drosophila TCJ protein Gliotactin (Gli) in ECs led to rapid activation of stress signalling in stem cells and an increase in ISC proliferation, even under axenic conditions; a gradual disruption of the intestinal barrier was also observed. The uncoupling of changes in bacteria from alterations in ISC behaviour and loss of barrier integrity has allowed us to begin to explore the interrelationship of these intestinal aging phenotypes in more detail and has shed light on the importance of the proteins that contribute to maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Martin Resnik-Docampo
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
| | - Vivien Sauer
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
| | - Joseph M. Schinaman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Rebecca I. Clark
- School of Biological and Biomedical Sciences, Durham University, Durham , UK
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - D. Leanne Jones
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti. J Comp Physiol B 2016; 186:589-602. [DOI: 10.1007/s00360-016-0979-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/06/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
|
15
|
Izumi Y, Furuse M. Molecular organization and function of invertebrate occluding junctions. Semin Cell Dev Biol 2014; 36:186-93. [PMID: 25239398 DOI: 10.1016/j.semcdb.2014.09.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
Septate junctions (SJs) are specialized intercellular junctions that function as permeability barriers to restrict the free diffusion of solutes through the paracellular routes in invertebrate epithelia. SJs are subdivided into several morphological types that vary among different animal phyla. In several phyla, different types of SJ have been described in different epithelia within an individual. Arthropods have two types of SJs: pleated SJs (pSJs) and smooth SJs (sSJs), found in ectodermally and endodermally derived epithelia, respectively. Several lines of Drosophila research have identified and characterized a large number of pSJ-associated proteins. Two sSJ-specific proteins have been recently reported. Molecular dissection of SJs in Drosophila and animals in other phyla will lead to a better understanding of the functional differences among SJ types and of evolutionary aspects of these permeability barriers.
Collapse
Affiliation(s)
- Yasushi Izumi
- Division of Cell Biology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Mikio Furuse
- Division of Cell Biology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
16
|
Buchon N, Osman D, David FPA, Fang HY, Boquete JP, Deplancke B, Lemaitre B. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 2013; 3:1725-38. [PMID: 23643535 DOI: 10.1016/j.celrep.2013.04.001] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 11/15/2022] Open
Abstract
Although the gut is a central organ of Eumetazoans and is essential for organismal health, our understanding of its morphological and molecular determinants remains rudimentary. Here, we provide a comprehensive atlas of Drosophila adult midgut. Specifically, we uncover a fine-grained regional organization consisting of 14 subregions with distinct morphological, histological, and genetic properties. We also show that Drosophila intestinal regionalization is defined after adult emergence, remains stable throughout life, and reestablishes following acute tissue damage. Additionally, we show that this midgut compartmentalization is achieved through the interplay between pan-midgut and regionalized transcription factors, in concert with spatial activities of morphogens. Interestingly, disruption of the midgut compartmentalization leads to a loss of intestinal homeostasis characterized by an increase in stem cell proliferation and aberrant immune responses. Our integrative analysis of Drosophila midgut compartmentalization provides insights into the conserved mechanisms underlying intestinal regionalization in metazoans.
Collapse
Affiliation(s)
- Nicolas Buchon
- Global Health Institute, School of Life Sciences, Station 19, EPFL, 1015 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Goulas S, Conder R, Knoblich J. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 2013; 11:529-40. [PMID: 23040479 PMCID: PMC3465556 DOI: 10.1016/j.stem.2012.06.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 03/09/2012] [Accepted: 06/07/2012] [Indexed: 01/25/2023]
Abstract
The adult Drosophila midgut is maintained by intestinal stem cells (ISCs) that generate both self-renewing and differentiating daughter cells. How this asymmetry is generated is currently unclear. Here, we demonstrate that asymmetric ISC division is established by a unique combination of extracellular and intracellular polarity mechanisms. We show that Integrin-dependent adhesion to the basement membrane induces cell-intrinsic polarity and results in the asymmetric segregation of the Par proteins Par-3, Par-6, and aPKC into the apical daughter cell. Cell-specific knockdown and overexpression experiments suggest that increased activity of aPKC enhances Delta/Notch signaling in one of the two daughter cells to induce terminal differentiation. Perturbing this mechanism or altering the orientation of ISC division results in the formation of intestinal tumors. Our data indicate that mechanisms for intrinsically asymmetric cell division can be adapted to allow for the flexibility in lineage decisions that is required in adult stem cells.
Collapse
Affiliation(s)
- Spyros Goulas
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ryan Conder
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Juergen A. Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Corresponding author
| |
Collapse
|
18
|
Abstract
Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as well as experimental work on choanocyte morphology and function. Special attention is given to pinacocyte epithelia, cell junctions, and the molecules present in sponge epithelia. Studies describing the role of the pinacoderm in sensing, coordination, and secretion are reviewed. A wealth of recent work describes gene presence and expression patterns in sponge tissues during development, and we review this in the context of the previous descriptions of sponge morphology and physiology. A final section addresses recent findings of genes involved in the immune response. This review is far from exhaustive but intends rather to revisit for non-specialists key aspects of sponge morphology and physiology in light of new molecular data as a means to better understand and interpret sponge form and function today.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
19
|
Izumi Y, Yanagihashi Y, Furuse M. A novel protein complex, mesh-ssk, is required for septate junction formation in drosophila midgut. J Cell Sci 2012; 125:4923-33. [DOI: 10.1242/jcs.112243] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Septate junctions (SJs) are specialized intercellular junctions that restrict the free diffusion of solutes through the paracellular route in invertebrate epithelia. In arthropods, two morphologically different types of SJs have been reported: pleated SJs and smooth SJs (sSJs), which are found in ectodermally and endodermally derived epithelia, respectively. However, the molecular and functional differences between these SJ types have not been elucidated. Here we report that a novel sSJ-specific component, a single-pass transmembrane protein, termed ‘Mesh’ is highly concentrated in Drosophila sSJs. Compromised mesh expression causes defects in the organization of sSJs, in the localizations of other sSJ proteins, and in the barrier function of the midgut. Ectopic expression of Mesh in cultured cells induces cell-cell adhesion. Mesh forms a complex with Ssk, another sSJ-specific protein, and these proteins are mutually interdependent for their localization. Thus, a novel protein complex comprising Mesh and Ssk plays a significant role in sSJ formation and in intestinal barrier function in Drosophila.
Collapse
|
20
|
Yanagihashi Y, Usui T, Izumi Y, Yonemura S, Sumida M, Tsukita S, Uemura T, Furuse M. A novel smooth septate junction-associated membrane protein, Snakeskin, is required for intestinal barrier function in Drosophila. J Cell Sci 2012; 125:1980-90. [DOI: 10.1242/jcs.096800] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Septate junctions (SJs) are the membrane specializations observed between epithelial cells in invertebrates. SJs play a crucial role in epithelial barrier function by restricting free diffusion of solutes through the intercellular space. In arthropod species, two morphologically different types of SJs have been described: pleated septate junctions (pSJs) and smooth septate junctions (sSJs), which are specific to ectodermal and endodermal epithelia, respectively. In contrast to the recent understanding of pSJ-related proteins, the molecular constituents of sSJs are mostly unknown. Here we report a novel sSJ-specific membrane protein, designated ‘Snakeskin’ (Ssk). Ssk is highly concentrated in sSJs in the Drosophila midgut and Malpighian tubules. Lack of Ssk expression is embryonically lethal in Drosophila and results in defective sSJ formation accompanied by abnormal morphology of midgut epithelial cells. We also show that the barrier function of the midgut to a fluorescent tracer is impaired in Ssk-knockdown larvae. These results suggest that Ssk is required for the intestinal barrier function in Drosophila.
Collapse
|
21
|
Leys SP, Riesgo A. Epithelia, an evolutionary novelty of metazoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 318:438-47. [PMID: 22057924 DOI: 10.1002/jez.b.21442] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/06/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
At the point in animal evolution when cells began to adhere to each other they presumably initially functioned as colonies. The formation of an epithelium that enclosed and controlled an internal milieu would have been the first event to distinguish an individual animal from a colony. To better understand when the first epithelium arose and what its characteristics were, we evaluate the morphological, functional, and molecular characters of epithelia in sponges, considered here the extant representatives of the first metazoans. In particular, we show new claudin-like sequences from sponges align most closely with sequences from Drosophila that have a barrier function in septate junctions. We also show that type IV collagen, the main component of the basement membrane (BM), is present in calcareous sponges, and we confirm the presence of type IV-like collagen (spongin short chain collagen) in other sponges. Though in sponges as in other metazoans the epithelium has grades of specialization with varying complexity of junctions and the BM, the main character of a functional epithelium, the ability to seal and control the ionic composition of the internal milieu, is a property of even the simplest sponge epithelium, and therefore the first metazoans likely also had epithelia with these characteristics, which we consider a "true" epithelium.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
22
|
Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc Natl Acad Sci U S A 2011; 108:18702-7. [PMID: 22049341 DOI: 10.1073/pnas.1109348108] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Drosophila adult midgut intestinal stem cells (ISCs) maintain tissue homeostasis by producing progeny that replace dying enterocytes and enteroendocrine cells. ISCs adjust their rates of proliferation in response to enterocyte turnover through a positive feedback loop initiated by secreted enterocyte-derived ligands. However, less is known about whether ISC proliferation is affected by growth of the progeny as they differentiate. Here we show that nutrient deprivation and reduced insulin signaling results in production of growth-delayed enterocytes and prolonged contact between ISCs and newly formed daughters. Premature disruption of cell contact between ISCs and their progeny leads to increased ISC proliferation and rescues proliferation defects in insulin receptor mutants and nutrient-deprived animals. These results suggest that ISCs can indirectly sense changes in nutrient and insulin levels through contact with their daughters and reveal a mechanism that could link physiological changes in tissue growth to stem cell proliferation.
Collapse
|
23
|
Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 2011; 4:21-30. [PMID: 21183483 PMCID: PMC3014343 DOI: 10.1242/dmm.003970] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent findings concerning Drosophila melanogaster intestinal pathology suggest that this model is well suited for the study of intestinal stem cell physiology during aging, stress and infection. Despite the physiological divergence between vertebrates and insects, the modeling of human intestinal diseases is possible in Drosophila because of the high degree of conservation between Drosophila and mammals with respect to the signaling pathways that control intestinal development, regeneration and disease. Furthermore, the genetic amenability of Drosophila makes it an advantageous model species. The well-studied intestinal stem cell lineage, as well as the tools available for its manipulation in vivo, provide a promising framework that can be used to elucidate many aspects of human intestinal pathology. In this Perspective, we discuss recent advances in the study of Drosophila intestinal infection and pathology, and briefly review the parallels and differences between human and Drosophila intestinal regeneration and disease.
Collapse
Affiliation(s)
- Yiorgos Apidianakis
- Department of Surgery, Massachusetts General Hospital, 50 Blossom Street, Their 340, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
Buchon N, Broderick NA, Kuraishi T, Lemaitre B. Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 2010; 8:152. [PMID: 21176204 PMCID: PMC3022776 DOI: 10.1186/1741-7007-8-152] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/22/2010] [Indexed: 12/30/2022] Open
Abstract
Background Gut homeostasis is central to whole organism health, and its disruption is associated with a broad range of pathologies. Following damage, complex physiological events are required in the gut to maintain proper homeostasis. Previously, we demonstrated that ingestion of a nonlethal pathogen, Erwinia carotovora carotovora 15, induces a massive increase in stem cell proliferation in the gut of Drosophila. However, the precise cellular events that occur following infection have not been quantitatively described, nor do we understand the interaction between multiple pathways that have been implicated in epithelium renewal. Results To understand the process of infection and epithelium renewal in more detail, we performed a quantitative analysis of several cellular and morphological characteristics of the gut. We observed that the gut of adult Drosophila undergoes a dynamic remodeling in response to bacterial infection. This remodeling coordinates the synthesis of new enterocytes, their proper morphogenesis and the elimination of damaged cells through delamination and anoikis. We demonstrate that one signaling pathway, the epidermal growth factor receptor (EGFR) pathway, is key to controlling each of these steps through distinct functions in intestinal stem cells and enterocytes. The EGFR pathway is activated by the EGF ligands, Spitz, Keren and Vein, the latter being induced in the surrounding visceral muscles in part under the control of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Additionally, the EGFR pathway synergizes with the JAK/STAT pathway in stem cells to promote their proliferation. Finally, we show that the EGFR pathway contributes to gut morphogenesis through its activity in enterocytes and is required to properly coordinate the delamination and anoikis of damaged cells. This function of the EGFR pathway in enterocytes is key to maintaining homeostasis, as flies lacking EGFR are highly susceptible to infection. Conclusions This study demonstrates that restoration of normal gut morphology following bacterial infection is a more complex phenomenon than previously described. Maintenance of gut homeostasis requires the coordination of stem cell proliferation and differentiation, with the incorporation and morphogenesis of new cells and the expulsion of damaged enterocytes. We show that one signaling pathway, the EGFR pathway, is central to all these stages, and its activation at multiple steps could synchronize the complex cellular events leading to gut repair and homeostasis.
Collapse
Affiliation(s)
- Nicolas Buchon
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
25
|
Bland ML, Lee RJ, Magallanes JM, Foskett JK, Birnbaum MJ. AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut. Dev Biol 2010; 344:293-303. [PMID: 20478298 PMCID: PMC2909368 DOI: 10.1016/j.ydbio.2010.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
Abstract
The larval phase of the Drosophila life cycle is characterized by constant food intake, resulting in a two hundred-fold increase in mass over four days. Here we show that the conserved energy sensor AMPK is essential for nutrient intake in Drosophila. Mutants lacking dAMPKalpha are small, with low triglyceride levels, small fat body cells and early pupal lethality. Using mosaic analysis, we find that dAMPKalpha functions as a nonautonomous regulator of cell growth. Nutrient absorption is impaired in dAMPKalpha mutants, and this defect stems not from altered gut epithelial cell polarity but from impaired peristaltic activity. Expression of a wild-type dAMPKalpha transgene or an activated version of the AMPK target myosin regulatory light chain (MRLC) in the dAMPKalpha mutant visceral musculature restores gut function and growth. These data suggest strongly that AMPK regulates visceral smooth muscle function through phosphorylation of MRLC. Furthermore, our data show that in Drosophila, AMPK performs an essential cell-nonautonomous function, serving the needs of the organism by promoting activity of the visceral musculature and, consequently, nutrient intake.
Collapse
Affiliation(s)
- Michelle L. Bland
- Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert J. Lee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Julie M. Magallanes
- Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104
| | - J. Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Morris J. Birnbaum
- Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
26
|
Abstract
Cell polarity, the generation of cellular asymmetries, is necessary for diverse processes in animal cells, such as cell migration, asymmetric cell division, epithelial barrier function, and morphogenesis. Common mechanisms generate and transduce cell polarity in different cells, but cell type-specific processes are equally important. In this review, we highlight the similarities and differences between the polarity mechanisms in eggs and epithelia. We also highlight the prospects for future studies on how cortical polarity interfaces with other cellular processes, such as morphogenesis, exocytosis, and lipid signaling, and how defects in polarity contribute to tumor formation.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
27
|
Abstract
The apical plasma membrane of epithelia presents the interface between organs and the external environment. It has biochemical activities distinct from those of the basal and lateral plasma membranes, as it accommodates the production and assembly of ordered apical matrices involved in organ protection and physiology and determines the microenvironment in the apical extracellular milieu. Here, we emphasise the importance of the apical plasma membrane in tissue differentiation, by mainly focussing on the embryo of the fruit fly Drosophila melanogaster, and discuss the principal organisation of the apical plasma membrane into repetitive subdomains of specific topologies and activities essential for epithelial function.
Collapse
|
28
|
Shanbhag S, Tripathi S. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. ACTA ACUST UNITED AC 2009; 212:1731-44. [PMID: 19448082 DOI: 10.1242/jeb.029306] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is a resurgence of interest in the Drosophila midgut on account of its potential value in understanding the structure, development and function of digestive organs and related epithelia. The recent identification of regenerative or stem cells in the adult gut of Drosophila has opened up new avenues for understanding development and turnover of cells in insect and mammalian gastrointestinal tracts. Conversely, the physiology of the Drosophila gut is less well understood as it is a difficult epithelial preparation to study under controlled conditions. Recent progress in microperfusion of individual segments of the Drosophila midgut, in both larval and adult forms, has enabled ultrastructural and electrophysiological study and preliminary characterization of cellular transport processes in the epithelium. As larvae are more active feeders, the transport rates are higher than in adults. The larval midgut has at least three segments: an anterior neutral zone, a short and narrow acid-secreting middle segment and a long and wider posterior segment (which is the best studied) that secretes base (probably HCO(3)(-)) into the lumen. The posterior midgut has a lumen-negative transepithelial potential (35-45 mV) and a high resistance (800-1400 Omega.cm(2)) that correlates with little or no lateral intercellular volume. The primary transport system driving base secretion into the lumen appears to be a bafilomycin-A(1)-sensitive, electrogenic H(+) V-ATPase located on the basal membrane, which extrudes acid into the haemolymph, as inferred from the extracellular pH gradients detected adjacent to the basal membrane. The adult midgut is also segmented (as inferred from longitudinal gradients of pH dye-indicators in the lumen) into anterior, middle and posterior regions. The anterior segment is probably absorptive. The middle midgut secretes acid (pH<4.0), a process dependent on a carbonic-anhydrase-catalysed H(+) pool. Cells of the middle segment are alternately absorptive (apically amplified by approximately 9-fold, basally amplified by >90-fold) and secretory (apically amplified by >90-fold and basally by approximately 10-fold). Posterior segment cells have an extensively dilated basal extracellular labyrinth, with a volume larger than that of anterior segment cells, indicating more fluid reabsorption in the posterior segment. The luminal pH of anterior and posterior adult midgut is 7-9. These findings in the larval and adult midgut open up the possibility of determining the role of plasma membrane transporters and channels involved in driving not only H(+) fluxes but also secondary fluxes of other solutes and water in Drosophila.
Collapse
Affiliation(s)
- Shubha Shanbhag
- Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | | |
Collapse
|
29
|
Ohlstein B, Spradling A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 2006; 439:470-4. [PMID: 16340960 DOI: 10.1038/nature04333] [Citation(s) in RCA: 820] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 09/22/2005] [Indexed: 11/08/2022]
Abstract
Vertebrate and invertebrate digestive systems show extensive similarities in their development, cellular makeup and genetic control. The Drosophila midgut is typical: enterocytes make up the majority of the intestinal epithelial monolayer, but are interspersed with hormone-producing enteroendocrine cells. Human (and mouse) intestinal cells are continuously replenished by stem cells, the misregulation of which may underlie some common digestive diseases and cancer. In contrast, stem cells have not been described in the intestines of flies, and Drosophila intestinal cells have been thought to be relatively stable. Here we use lineage labelling to show that adult Drosophila posterior midgut cells are continuously replenished by a distinctive population of intestinal stem cells (ISCs). As in vertebrates, ISCs are multipotent, and Notch signalling is required to produce an appropriate fraction of enteroendocrine cells. Notch is also required for the differentiation of ISC daughter cells, a role that has not been addressed in vertebrates. Unlike previously characterized stem cells, which reside in niches containing a specific partner stromal cell, ISCs adjoin only the basement membrane, differentiated enterocytes and their most recent daughters. The identification of Drosophila intestinal stem cells with striking similarities to their vertebrate counterparts will facilitate the genetic analysis of normal and abnormal intestinal function.
Collapse
Affiliation(s)
- Benjamin Ohlstein
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
30
|
Osouda S, Nakamura Y, de Saint Phalle B, McConnell M, Horigome T, Sugiyama S, Fisher PA, Furukawa K. Null mutants of Drosophila B-type lamin Dm(0) show aberrant tissue differentiation rather than obvious nuclear shape distortion or specific defects during cell proliferation. Dev Biol 2005; 284:219-32. [PMID: 15996653 DOI: 10.1016/j.ydbio.2005.05.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/16/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
To elucidate the function of metazoan B-type lamins during development, new null mutations of the Drosophila B-type lamin gene, lamDm(0), were analyzed in parallel with the misg(sz18) mutation, a lamDm(0) allele reported previously. Although in all these mutants, lamin Dm(0) protein was undetectable in neuroblasts and imaginal disc cells from the second instar larval stage onward, cells continued to proliferate. In contrast to the embryonic lethality of another Drosophila lamDm(0) allele, lam(PM15), reported previously, lethality did not occur until late pupal stages. Chromosomal structure and the overall nuclear shape remained normal even at these late pupal stages, although obviously abnormal nuclear pore complex distribution was observed concomitant with the loss of lamin Dm(0) protein. Compensating expression of lamin C was not induced in the absence of lamin Dm(0). Thus, no lamin-containing nuclear structures were found in proliferating larval neuroblasts. We did find that developmental abnormalities appeared in specific organs during the late pupal stage, preceding lethality. Surprisingly, coordinated size increase (hypertrophy) of the ventriculus was observed accompanied by cell division and muscle layer formation. Hypertrophy of the ventriculus correlated with a decrease in ecdysteroid hormone receptor B1 (EcRB1) protein, and furthermore could be suppressed by a heat-inducible EcRB1 transgene. In contrast, both gonadal and CNS tissues exhibited underdevelopment.
Collapse
Affiliation(s)
- Shinichi Osouda
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Baumann O. Spatial pattern of nonmuscle myosin-II distribution during the development of the Drosophila compound eye and implications for retinal morphogenesis. Dev Biol 2004; 269:519-33. [PMID: 15110717 DOI: 10.1016/j.ydbio.2004.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Revised: 11/24/2003] [Accepted: 01/27/2004] [Indexed: 01/03/2023]
Abstract
Nonmuscle myosin-II is a motor protein that drives cell movement and changes in cell shape during tissue and organ development. This study has determined the dynamic changes in myosin-II distribution during Drosophila compound eye morphogenesis. In photoreceptor neurons, myosin-II is undetectable at the apical domain throughout the first half of pupal life, at which time this membrane domain is involuted into the epithelium and progresses toward the retinal floor. Myosin-II is deployed at the apical surface at about 60% of pupal development, once the developing rhabdomeres reach the retinal floor. Subsequently, myosin-II becomes restricted to two stripes at the sides of the developing rhabdomere, adopting its final position within the visual cells R1-6; here, myosin-II is associated with a set of actin filaments that extend alongside the rhabdomeres. At the midpupal stage, myosin-II is also incorporated into stress-fiber-like arrays within the basal endfeet of the pigment cells that then change their shape. This spatiotemporal pattern of myosin-II localization and the morphological defects observed in the eyes of a myosin-II mutant suggest that the myosin-II/F-actin system is involved in the alignment of the rhabdomeres within the retina and in the flattening of the retinal floor. The observation that the myosin-II/F-actin arrays are incomplete or disorganized in R7/R8 and in rhodopsin-1-null R1-6 suggests further that the establishment and stability of this cytoskeletal system depend on rhodopsin-1 expression.
Collapse
Affiliation(s)
- Otto Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, D-14415 Potsdam, Germany.
| |
Collapse
|
32
|
Genova JL, Fehon RG. Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila. J Cell Biol 2003; 161:979-89. [PMID: 12782686 PMCID: PMC2172966 DOI: 10.1083/jcb.200212054] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One essential function of epithelia is to form a barrier between the apical and basolateral surfaces of the epithelium. In vertebrate epithelia, the tight junction is the primary barrier to paracellular flow across epithelia, whereas in invertebrate epithelia, the septate junction (SJ) provides this function. In this study, we identify new proteins that are required for a functional paracellular barrier in Drosophila. In addition to the previously known components Coracle (COR) and Neurexin (NRX), we show that four other proteins, Gliotactin, Neuroglian (NRG), and both the alpha and beta subunits of the Na+/K+ ATPase, are required for formation of the paracellular barrier. In contrast to previous reports, we demonstrate that the Na pump is not localized basolaterally in epithelial cells, but instead is concentrated at the SJ. Data from immunoprecipitation and somatic mosaic studies suggest that COR, NRX, NRG, and the Na+/K+ ATPase form an interdependent complex. Furthermore, the observation that NRG, a Drosophila homologue of vertebrate neurofascin, is an SJ component is consistent with the notion that the invertebrate SJ is homologous to the vertebrate paranodal SJ. These findings have implications not only for invertebrate epithelia and barrier functions, but also for understanding of neuron-glial interactions in the mammalian nervous system.
Collapse
Affiliation(s)
- Jennifer L Genova
- Department of Biology, Developmental, Cell, and Molecular Biology Group, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
33
|
Vitavska O, Wieczorek H, Merzendorfer H. A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J Biol Chem 2003; 278:18499-505. [PMID: 12606563 DOI: 10.1074/jbc.m212844200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary proton transport by V-ATPases is regulated via the reversible dissociation of the V(1)V(0) holoenzyme into its V(1) and V(0) subcomplexes. Laser scanning microscopy of different tissues from the tobacco hornworm revealed co-localization of the holoenzyme and F-actin close to the apical membranes of the epithelial cells. In midgut goblet cells, no co-localization was observed under conditions where the V(1) complex detaches from the apical membrane. Binding studies, however, demonstrated that both the V(1) complex and the holoenzyme interact with F-actin, the latter with an apparently higher affinity. To identify F-actin binding subunits, we performed overlay blots that revealed two V(1) subunits as binding partners, namely subunit B, resembling the situation in the osteoclast V-ATPase (Holliday, L. S., Lu, M., Lee, B. S., Nelson, R. D., Solivan, S., Zhang, L., and Gluck, S. L. (2000) J. Biol. Chem. 275, 32331-32337), but, in addition, subunit C, which gets released during reversible dissociation of the holoenzyme. Overlay blots and co-pelleting assays showed that the recombinant subunit C also binds to F-actin. When the V(1) complex was reconstituted with recombinant subunit C, enhanced binding to F-actin was observed. Thus, subunit C may function as an anchor protein regulating the linkage between V-ATPase and the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Olga Vitavska
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|