1
|
Ogata G, Partida GJ, Fasoli A, Ishida AT. Calcium/calmodulin-dependent protein kinase II associates with the K + channel isoform Kv4.3 in adult rat optic nerve. Front Neuroanat 2022; 16:958986. [PMID: 36172564 PMCID: PMC9512010 DOI: 10.3389/fnana.2022.958986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Spikes are said to exhibit "memory" in that they can be altered by spikes that precede them. In retinal ganglion cell axons, for example, rapid spiking can slow the propagation of subsequent spikes. This increases inter-spike interval and, thus, low-pass filters instantaneous spike frequency. Similarly, a K+ ion channel blocker (4-aminopyridine, 4AP) increases the time-to-peak of compound action potentials recorded from optic nerve, and we recently found that reducing autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) does too. These results would be expected if CaMKII modulates spike propagation by regulating 4AP-sensitive K+ channels. As steps toward identifying a possible substrate, we test whether (i) 4AP alters optic nerve spike shape in ways consistent with reducing K+ current, (ii) 4AP alters spike propagation consistent with effects of reducing CaMKII activation, (iii) antibodies directed against 4AP-sensitive and CaMKII-regulated K+ channels bind to optic nerve axons, and (iv) optic nerve CaMKII co-immunoprecipitates with 4AP-sensitive K+ channels. We find that, in adult rat optic nerve, (i) 4AP selectively slows spike repolarization, (ii) 4AP slows spike propagation, (iii) immunogen-blockable staining is achieved with anti-Kv4.3 antibodies but not with antibodies directed against Kv1.4 or Kv4.2, and (iv) CaMKII associates with Kv4.3. Kv4.3 may thus be a substrate that underlies activity-dependent spike regulation in adult visual system pathways.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Gloria J. Partida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Anna Fasoli
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Andrew T. Ishida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology and Vision Science, University of California, Sacramento, Sacramento, CA, United States
| |
Collapse
|
2
|
Sasaoka M, Ota T, Kageyama M. Rotenone-induced inner retinal degeneration via presynaptic activation of voltage-dependent sodium and L-type calcium channels in rats. Sci Rep 2020; 10:969. [PMID: 31969611 PMCID: PMC6976703 DOI: 10.1038/s41598-020-57638-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023] Open
Abstract
Rotenone, a mitochondrial complex I inhibitor, causes retinal degeneration via unknown mechanisms. To elucidate the molecular mechanisms of its action, we further characterized a rat model of rotenone-induced retinal degeneration. Intravitreal injection of rotenone (2 nmol/eye) damaged mainly the inner retinal layers, including cell loss in the ganglion cell and inner nuclear layers, which were very similar to those induced by 10 nmol/eye N-methyl-D-aspartate (NMDA). These morphological changes were accompanied by the reduced b-wave amplitude of electroretinogram, and increased immunostaining of 2,4-dinitrophenyl, an oxidative stress marker. Rotenone also downregulated expression of neurofilament light-chain gene (Nfl) as a retinal ganglion cell (RGC) marker. This effect was prevented by simultaneous injection of rotenone with antioxidants or NMDA receptor antagonists. More importantly, voltage-dependent sodium and L-type calcium channel blockers and intracellular calcium signaling modulators remarkably suppressed rotenone-induced Nfl downregulation, whereas none of these agents modified NMDA-induced Nfl downregulation. These results suggest that rotenone-induced inner retinal degeneration stems from indirect postsynaptic NMDA stimulation that is triggered by oxidative stress-mediated presynaptic intracellular calcium signaling via activation of voltage-dependent sodium and L-type calcium channels.
Collapse
Affiliation(s)
- Masaaki Sasaoka
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Takashi Ota
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Masaaki Kageyama
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan.
| |
Collapse
|
3
|
Kageyama M, Ota T, Sasaoka M, Katsuta O, Shinomiya K. Chemical proteasome inhibition as a novel animal model of inner retinal degeneration in rats. PLoS One 2019; 14:e0217945. [PMID: 31150519 PMCID: PMC6544319 DOI: 10.1371/journal.pone.0217945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Chemical proteasome inhibition has been a valuable animal model of neurodegeneration to uncover roles for the ubiquitin-proteasome system in the central nervous system. However, little is known about the effects of chemical proteasome inhibitors on retinal integrity. Therefore, we characterized the effects of structurally different chemical proteasome inhibitors on the retinal morphology and the mechanisms of their action in the normal adult rat eyes. Intravitreal injection of MG-262 and other proteasome inhibitors led to inner retinal degeneration. MG-262-induced inner retinal degeneration was accompanied by reduced proteasome activity, increased poly-ubiquitinated protein levels, and increased positive immunostaining of ubiquitin, 20S proteasome subunit and GADD153/CHOP in the retina. Its retinal degenerative effect was also associated with reduced retinal neurofilament light chain gene expression, reflecting retinal ganglion cell death. MG-262-induced neurofilament light chain downregulation was largely resistant to pharmacological modulation including endoplasmic reticulum stress, apoptosis or MAP kinase inhibitors. Thus, this study provides further evidence of roles for the ubiquitin-proteasome system in the maintenance of the retinal structural integrity. Chemical proteasome inhibition may be used as a novel animal model of inner retinal degeneration, including retinal ganglion cell loss, which warrants further analysis of the molecular mechanisms underlying its retinal degenerative effect.
Collapse
Affiliation(s)
- Masaaki Kageyama
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Nara, Japan
- * E-mail:
| | - Takashi Ota
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Masaaki Sasaoka
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Osamu Katsuta
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Katsuhiko Shinomiya
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Nara, Japan
| |
Collapse
|
4
|
Autophosphorylated CaMKII Facilitates Spike Propagation in Rat Optic Nerve. J Neurosci 2018; 38:8087-8105. [PMID: 30076212 DOI: 10.1523/jneurosci.0078-18.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/14/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022] Open
Abstract
Repeated spike firing can transmit information at synapses and modulate spike timing, shape, and conduction velocity. These latter effects have been found to result from voltage-induced changes in ion currents and could alter the signals carried by axons. Here, we test whether Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates spike propagation in adult rat optic nerve. We find that small-, medium-, and large-diameter axons bind anti-Thr286-phosphorylated CaMKII (pT286) antibodies and that, in isolated optic nerves, electrical stimulation reduces pT286 levels, spike propagation is hastened by CaMKII autophosphorylation and slowed by CaMKII dephosphorylation, single and multiple spikes slow propagation of subsequently activated spikes, and more frequent stimulation produces greater slowing. Likewise, exposing freely moving animals to flickering illumination reduces pT286 levels in optic nerves and electrically eliciting spikes in vivo in either the optic nerve or optic chiasm slows subsequent spike propagation in the optic nerve. By increasing the time that elapses between successive spikes as they propagate, pT286 dephosphorylation and activity-induced spike slowing reduce the frequency of propagated spikes below the frequency at which they were elicited and would thus limit the frequency at which axons synaptically drive target neurons. Consistent with this, the ability of retinal ganglion cells to drive at least some lateral geniculate neurons has been found to increase when presented with light flashes at low and moderate temporal frequencies but less so at high frequencies. Activity-induced decreases in spike frequency may also reduce the energy required to maintain normal intracellular Na+ and Ca2+ levels.SIGNIFICANCE STATEMENT By propagating along axons at constant velocities, spikes could drive synapses as frequently as they are initiated. However, the onset of spiking has been found to alter the conduction velocity of subsequent ("follower") spikes in various preparations. Here, we find that spikes reduce spike frequency in rat optic nerve by slowing follower spike propagation and that electrically stimulated spiking ex vivo and spike-generating flickering illumination in vivo produce net decreases in axonal Ca2+/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation. Consistent with these effects, propagation speed increases and decreases, respectively, with CaMKII autophosphorylation and dephosphorylation. Lowering spike frequency by CaMKII dephosphorylation is a novel consequence of axonal spiking and light adaptation that could decrease synaptic gain as stimulus frequency increases and may also reduce energy use.
Collapse
|
5
|
Wang JH, Ling D, Tu L, van Wijngaarden P, Dusting GJ, Liu GS. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol Ther 2017; 173:1-18. [PMID: 28132907 DOI: 10.1016/j.pharmthera.2017.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is a sight-threatening disease characterized in the early stages by neuronal and vascular dysfunction in the retina, and later by neovascularization that further damages vision. A major contributor to the pathology is excess production of vascular endothelial growth factor (VEGF), a growth factor that induces formation of new blood vessels and increases permeability of existing vessels. Despite the recent availability of effective treatments for the disease, including laser photocoagulation and therapeutic VEGF antibodies, DR remains a significant cause of vision loss worldwide. Existing anti-VEGF agents, though generally effective, are limited by their short therapeutic half-lives, necessitating frequent intravitreal injections and the risk of attendant adverse events. Management of DR with gene therapies has been proposed for several years, and pre-clinical studies have yielded enticing findings. Gene therapy holds several advantages over conventional treatments for DR, such as a longer duration of therapeutic effect, simpler administration, the ability to intervene at an earlier stage of the disease, and potentially fewer side-effects. In this review, we summarize the current understanding of the pathophysiology of DR and provide an overview of research into DR gene therapies. We also examine current barriers to the clinical application of gene therapy for DR and evaluate future prospects for this approach.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Damien Ling
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Leilei Tu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
6
|
Goetze JP, Eiland S, Svendsen LB, Vainer B, Hannibal J, Rehfeld JF. Characterization of gastrins and their receptor in solid human gastric adenocarcinomas. Scand J Gastroenterol 2013; 48:688-95. [PMID: 23544442 DOI: 10.3109/00365521.2013.783101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The gastrin and the gastrin/CCK-B receptor genes are co-expressed in several carcinomas. The primary translational product, progastrin, however, is processed to several peptides of which only those that are α-amidated at their C-terminus are receptor ligands. So far, characterization of the progastrin-derived peptides in gastric cancer has not been reported. The authors therefore examined the molecular nature of gastrin and its receptor in human gastric carcinomas. MATERIALS AND METHODS Twenty patients with adenocarcinoma underwent partial or total gastrectomy. In samples from each carcinoma, gastrin peptides were characterized, using a library of sequence-specific immunoassays. Expression was also demonstrated by immunohistochemistry. In addition, the gastrin and gastrin/CCK-B receptor gene expression was quantitated using real-time PCR, and the receptor protein demonstrated by western blotting. RESULTS α-Amidated gastrins were detectable in 16 of 20 carcinomas (median concentration 2.1 pmol/g tissue; range 0-386 pmol/g tissue). The tissue concentrations correlated closely to the gastrin mRNA contents (r = 0.75, p < 0.0001). Moreover, progastrin and non-amidated processing intermediates, including glycine-extended gastrins, were detected in 19 carcinomas. Immunohistochemistry corroborated gastrin expression in carcinoma cells. Chromatography revealed extensive progastrin processing with α-amidated gastrin-34 and -17 (tyrosyl-sulfated as well as non-sulfated) as major products. Finally, gastrin/CCK-B receptor mRNA and protein were detected in all tumors. CONCLUSIONS The results show that the elements for a local loop of α-amidated gastrins and their receptor are detectable in 80% of human gastric adenocarcinomas. Therefore, the results support the contention that locally expressed gastrin may be involved in the tumorigenesis of gastric adenocarcinomas.
Collapse
Affiliation(s)
- Jens Peter Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
7
|
Hannibal J, Georg B, Fahrenkrug J. Differential expression of melanopsin mRNA and protein in Brown Norwegian rats. Exp Eye Res 2013. [DOI: 10.1016/j.exer.2012.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig. Exp Eye Res 2011; 94:117-27. [PMID: 22154552 DOI: 10.1016/j.exer.2011.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 09/30/2011] [Accepted: 11/22/2011] [Indexed: 11/22/2022]
Abstract
Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance.
Collapse
|
9
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
10
|
Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52:1156-63. [PMID: 21357409 DOI: 10.1167/iovs.10-6293] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The most striking features of diabetic retinopathy are the vascular abnormalities that are apparent by fundus examination. There is also strong evidence that diabetes causes apoptosis of neural and vascular cells in the retina. Thus, there is good reason to define diabetic retinopathy as a form of chronic neurovascular degeneration. In keeping with the gradual onset of retinopathy in humans, the rate of cell loss in the animal models is insidious, even in uncontrolled diabetes. This is not surprising given that a sustained high rate of cell loss without regeneration would soon lead to catastrophic tissue destruction. The consequences of ongoing cell death are difficult to detect, and even the quantification of cumulative cell loss requires painstaking histology and microscopy. This subtle cell loss raises the issue of the relevance of the phenomenon to the progression of diabetic retinopathy and the ultimate loss of vision. Neuronal function may be compromised in advance of apoptosis, contributing to an early deterioration of vision. Here we review some of the evidence supporting apoptotic cell death as a contributing mechanism of diabetic retinopathy, explore some of the potential causes, and discuss the potential links between apoptosis and loss of visual function in diabetic retinopathy.
Collapse
Affiliation(s)
- Alistair J Barber
- Department of Ophthalmology, Penn State Hershey Eye Center, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
11
|
Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol 2010; 6:55-78. [PMID: 19305788 PMCID: PMC2645549 DOI: 10.2174/157015908783769671] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/10/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023] Open
Abstract
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer s disease (AD) in Europe on 17(th) May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.
Collapse
Affiliation(s)
- G Rammes
- Clinical Neuropharmacology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | |
Collapse
|
12
|
Higo N, Nishimura Y, Murata Y, Oishi T, Yoshino-Saito K, Takahashi M, Tsuboi F, Isa T. Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of the macaque monkey after lesioning the lateral corticospinal tract. J Comp Neurol 2009; 516:493-506. [DOI: 10.1002/cne.22121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Fahrenkrug J, Falktoft B, Georg B, Rask L. N-linked deglycosylated melanopsin retains its responsiveness to light. Biochemistry 2009; 48:5142-8. [PMID: 19413349 DOI: 10.1021/bi900249n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanopsin is an opsin expressed in the plasma membrane of retinal ganglion cells that mainly project to the circadian clock and thus is important for nonvisual responses to light. Rat melanopsin contains two potential sites (Asn31 and Asn35) for N-linked glycosylation in the N-terminal extracellular part. To investigate if melanopsin is N-linked glycosylated and whether N-bound glycans influence the response of melanopsin to light as evidenced by Fos mRNA induction, we transfected PC12 cells to stably express rat wild-type melanopsin or mutant melanopsin lacking both N-linked glycosylation sites. Immunoblotting for membrane-bound melanopsin from the PC12 cells transfected to express wild-type melanopsin disclosed two immunoreactive bands of 62 and 49 kDa. Removal of N-linked glycosylation by tunicamycin or PNGase F changed the 62 kDa band to a 55 kDa band, while the 49 kDa band corresponding to the core melanopsin protein was unaffected. Likewise, mutation of the two extracellular N-linked glycosylation sites gave a melanopsin size comparable to that of PNGase F or tunicamycin treatment (55 kDa). Further in vitro O-linked deglycosylation of wild-type or mutant melanopsin with O-glycosidase and neuraminidase converted the 55 kDa band to a 49 kDa band. Finally, neither in vivo N-linked deglycosylation nor mutations of the two N-linked glycosylation sites significantly affected melanopsin function measured by Fos induction after light stimulation. In conclusion, we have shown that heterologously expressed rat melanopsin is both N-linked and O-linked glycosylated and that N-linked glycosylation is not crucial for the melanopsin response to light.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, Faculty of Health Sciences, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| | | | | | | |
Collapse
|
14
|
Sivilia S, Giuliani A, Fernández M, Turba ME, Forni M, Massella A, De Sordi N, Giardino L, Calzà L. Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat. BMC Neurosci 2009; 10:52. [PMID: 19473529 PMCID: PMC2699342 DOI: 10.1186/1471-2202-10-52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 05/27/2009] [Indexed: 01/19/2023] Open
Abstract
Background The neurotrophin nerve growth factor (NGF) is produced by different cell types in the anterior and posterior eye, exerting a neuroprotective role in the adult life. The visual system is highly sensitive to NGF and the retina and optic nerve provides suitable subjects for the study of central nervous system degeneration. The model of bilateral carotid occlusion (two-vessel occlusion, 2VO) is a well-established model for chronic brain hypoperfusion leading to brain capillary pathology, to retina and optic nerve degeneration. In order to study if a single intravitreal injection of NGF protects the retina and the optic nerve from degeneration during systemic circulatory diseases, we investigated morphological and molecular changes occurring in the retina and optic nerve of adult rats at different time-points (8, 30 and 75 days) after bilateral carotid occlusion. Results We demonstrated that a single intravitreal injection of NGF (5 μg/3 μl performed 24 hours after 2VO ligation) has a long-lasting protective effect on retina and optic nerve degeneration. NGF counteracts retinal ganglion cells degeneration by early affecting Bax/Bcl-2 balance- and c-jun- expression (at 8 days after 2VO). A single intravitreal NGF injection regulates the demyelination/remyelination balance after ischemic injury in the optic nerve toward remyelination (at 75 days after 2VO), as indicated by the MBP expression regulation, thus preventing optic nerve atrophy and ganglion cells degeneration. At 8 days, NGF does not modify 2VO-induced alteration in VEFG and related receptors mRNA expression. Conclusion The protective effect of exogenous NGF during this systemic circulatory disease seems to occur also by strengthening the effect of endogenous NGF, the synthesis of which is increased by vascular defect and also by the mechanical lesion associated with NGF or even vehicle intraocular delivery.
Collapse
|
15
|
Cooper NGF, Laabich A, Fan W, Wang X. The relationship between neurotrophic factors and CaMKII in the death and survival of retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2008; 173:521-40. [PMID: 18929132 DOI: 10.1016/s0079-6123(08)01136-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.
Collapse
Affiliation(s)
- N G F Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
16
|
Ciolofan C, Lynn BD, Wellershaus K, Willecke K, Nagy JI. Spatial relationships of connexin36, connexin57 and zonula occludens-1 in the outer plexiform layer of mouse retina. Neuroscience 2007; 148:473-88. [PMID: 17681699 DOI: 10.1016/j.neuroscience.2007.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/29/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
Horizontal cells form gap junctions with each other in mammalian retina, and lacZ reporter analyses have recently indicated that these cells express the Cx57 gene, which codes for the corresponding gap junctional protein. Using anti-connexin57 antibodies, we detected connexin57 protein in immunoblots of mouse retina, and found punctate immunolabeling of this connexin co-distributed with calbindin-positive horizontal cells in the retinal outer plexiform layer. Double immunofluorescence labeling was conducted to determine the spatial relationships of connexin36, connexin57, the gap junction-associated protein zonula occludens-1 and the photoreceptor ribbon synapse-associated protein bassoon in the outer plexiform layer. Connexin36 was substantially co-localized with zonula occludens-1 in the outer plexiform layer, and both of these proteins were frequently located in close spatial proximity to bassoon-positive ribbon synapses. Connexin57 was often found adjacent to, but not overlapping with, connexin36-positive and zonula occludens-1-positive puncta, and was also located adjacent to bassoon-positive ribbon synapses at rod spherules, and intermingled with such synapses at cone pedicles. These results suggest zonula occludens-1 interaction with connexin36 but not with Cx57 in the outer plexiform layer, and an absence of connexin57/connexin36 heterotypic gap junctional coupling in mouse retina. Further, an arrangement of synaptic contacts within rod spherules is suggested whereby gap junctions between horizontal cell terminals containing connexin57 occur in very close proximity to ribbon synapses formed by rod photoreceptors, as well as in close proximity to Cx36-containing gap junctions between rods and cones.
Collapse
Affiliation(s)
- C Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | |
Collapse
|
17
|
Hannibal J, Georg B, Fahrenkrug J. Melanopsin changes in neonatal albino rat independent of rods and cones. Neuroreport 2007; 18:81-5. [PMID: 17259866 DOI: 10.1097/wnr.0b013e328010ff56] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells employ the photopigment melanopsin and provide light information to brain areas responsible for the regulation of circadian rhythms. The expression of melanopsin is regulated by environmental illumination, but it remains to be clarified whether the rods and cones are involved. Here, we examined the influence of 5 days of constant light and dark conditions on melanopsin mRNA and protein expression in newborn albino rats, in which functional rods and cones have not yet been developed. We found that the melanopsin mRNA level was unaffected, whereas the melanopsin protein level was more than two-fold higher in the darkness-adapted group than in pups raised in constant light. In pups raised during 12 : 12 h light/dark cycles, the melanopsin protein level was significantly higher during the day than at night. Our findings indicate that melanopsin protein changes are independent of input from the rods and cones.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark.
| | | | | |
Collapse
|
18
|
Paes-de-Carvalho R, Dias BV, Martins RA, Pereira MR, Portugal CC, Lanfredi C. Activation of glutamate receptors promotes a calcium-dependent and transporter-mediated release of purines in cultured avian retinal cells: possible involvement of calcium/calmodulin-dependent protein kinase II. Neurochem Int 2005; 46:441-51. [PMID: 15769546 DOI: 10.1016/j.neuint.2004.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 11/19/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
Calcium-dependent release of purines was previously demonstrated in cultures of chick retinal cells stimulated with high potassium concentrations but there is no evidence for an exocytotic mechanism of adenosine release from presynaptic terminals. Here we show that activation of NMDA or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate glutamate ionotropic receptors promotes a two- to three-fold increase in the release of purines from these cultures. Approximately 96% of intracellular radioactivity is found as nucleotides after incubation with [(3)H]adenosine, but more than 85% of glutamate-stimulated released material is found as inosine (60%), hypoxanthine (19.9%) and adenosine (7.8%). The release is prevented by removal of extracellular calcium, by the transporter blocker nitrobenzylthioinosine, or inhibitors of calcium/calmodulin-dependent protein kinase II (CAMK II). The uptake of [(3)H]adenosine, but not of [(3)H]GABA or [(3)H]choline, is also blocked by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN62), N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl)phenyl-N-[2-hydroxiethyl]-4-methoxybenzenesulfonamide (KN93) or the myristoylated autocamtide-2-related inhibitory peptide, suggesting that the enzyme modulates the nucleoside transporter. The distribution of intracellular purines was not affected by KN62. These results indicate that activation of glutamate receptors triggers the release of purines from retinal cells by a mechanism involving calcium influx, CAMK II and the nitrobenzylthioinosine-sensitive nucleoside transporter. The regulation of adenosine release by glutamate receptors and CAMK II could have important consequences in the presynaptic control of glutamate release.
Collapse
Affiliation(s)
- Roberto Paes-de-Carvalho
- Program of Neuroimmunology and Department of Neurobiology, Institute of Biology, Federal Fluminense University, Caixa Postal 100180, Niterói, Rio de Janeiro 24001-970, Brazil.
| | | | | | | | | | | |
Collapse
|
19
|
Xue J, Li G, Bharucha E, Cooper NGF. Developmentally regulated expression of CaMKII and iGluRs in the rat retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 138:61-70. [PMID: 12234658 DOI: 10.1016/s0165-3806(02)00460-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and the ionotropic glutamate receptors (iGluRs) have been shown to be pivotal in the maturation of synapses during development of the central nervous system. The purpose of the current study was to assay the expression profiles of these molecules during the development of the rat retina. The mRNA levels of CaMKII were determined by the semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method. The protein levels of CaMKII were assayed in slot blots. The CaMKII enzyme activity was also measured. In addition, the protein levels of iGluRs in a retinal membrane-enriched fraction were evaluated in Western blots. The results show that the levels of CaMKII (mRNA, protein, and activity) and distinct subunits of iGluR proteins increased during the first 2 weeks after birth. The highest level of CaMKII was reached during the second postnatal week, coincident with the peak of synaptogenesis in the inner plexiform layer of the rat retina. The expressions of NMDAR-NR1 and -NR2A were relatively low in the first postnatal week but rose quickly thereafter. However, NMDAR-NR2B was relatively high at postnatal day 5 (P5) and increased steadily during the postnatal period. Thus, the subunit compositional profile of the retinal NMDARs was altered during retinal maturation. The developmental pattern of AMPAR-GluR1 was similar to that of NMDAR-NR2B, with high expression at P5, and modest increases thereafter. The patterns of CaMKII and NR1/NR2A were better correlated than were CaMKII and NR2B, or CaMKII and GluR1. The temporal differences in subunit expression of these synaptically relevant molecules suggest that they play distinct roles during the development of the retina.
Collapse
Affiliation(s)
- Jin Xue
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 500 South Preston Street, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
20
|
Xue J, Li G, Laabich A, Cooper NG. Visual-mediated regulation of retinal CaMKII and its GluR1 substrate is age-dependent. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:95-104. [PMID: 11532343 DOI: 10.1016/s0169-328x(01)00168-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) and one of its substrates, the glutamate receptor, are key players in experience-driven synaptic plasticity in several areas of the central nervous system (CNS). To determine if CaMKII and the glutamate receptor are regulated by visual activity in the retina, we compared dark-reared (DR; 1 week) rats with control rats raised in a diurnal light-dark cycle (LD), at the following ages: postnatal day 12 (P12d), 2-month (2m) and 6-month (6m) old. The mRNA levels of CaMKIIalpha and beta were determined by a competitive reverse transcription polymerase chain reaction (competitive RT-PCR) method. The protein levels of these two subunits were evaluated by immunoblots. The data show that the mRNAs for CaMKIIalpha and beta were increased about 8-fold and 10-fold, respectively, in the retinae of DR P12d rats. As for the proteins, 2- and 2.6-fold elevations for CaMKIIalpha and beta, respectively, were evident. The GluR1 subunit of the AMPAR (AMPAR-GluR1) was also evaluated in antibody-treated blots and found to be increased about 2-fold after 1 week of dark rearing in the retinae of P12d rats. This type of experience-driven molecular change was age-dependent, showing less increase in 2m old rats and not present in 6m old rats. Returning DR 2m old rats to the LD environment for 1 week was sufficient to restore the dark-induced changes to the levels of the age-matched LD controls. Based on the data, a theoretical model for activity-dependent modulation of the developing retinal synapses is proposed.
Collapse
Affiliation(s)
- J Xue
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 500 South Preston Street, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
21
|
Xue J, Cooper NG. The modification of NMDA receptors by visual experience in the rat retina is age dependent. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:196-203. [PMID: 11457510 DOI: 10.1016/s0169-328x(01)00141-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Extensive studies have shown that the activation of N-methyl-D-aspartate receptors (NMDARs) and the subsequent rise in the levels of postsynaptic calcium are critical events in the initiation of synaptic plasticity. Modification of the amount, or of the subunit composition of NMDARs, alters receptor function thereby affecting the development and/or efficacy of synaptic transmission. In the present study, a Western blot analysis was employed to investigate the effects of visual experience and age on the differential expression of NMDARs in the rat retina. A crude synaptic membrane fraction (SPM) was prepared and assayed with antibodies specific for either the NR1, NR2A or NR2B subunits. Relative to control animals raised in a diurnal light-dark cycle, a period of 1 week of dark-rearing caused an increase in the relative amount of NR1, a decrease in the level of NR2A, and no change in the level of NR2B subunit expression in postnatal day 12 rats. At 2 months of age, 1 week of dark-rearing had less effect, and at 6 months of age there was no difference between dark-reared and control animals. The effect of light exposure on dark-reared animals was tested for the 2-month-old animals. Light exposure for long periods (days), but not short periods (h), could reverse the dark-rearing effects. These data provide evidence for a developmentally regulated plasticity of NMDAR subunits in the retina.
Collapse
Affiliation(s)
- J Xue
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|
22
|
Liu LO, Laabich A, Hardison A, Cooper NGF. Expression of ionotropic glutamate receptors in the retina of the rdta transgenic mouse. BMC Neurosci 2001; 2:7. [PMID: 11389773 PMCID: PMC32198 DOI: 10.1186/1471-2202-2-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2001] [Accepted: 05/23/2001] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The expression of retinal CaMKII is up-regulated in the retina of the rdta mouse in which rod photoreceptors are genetically ablated. As ionotropic glutamate receptors are known substrates of CAMKII, this study set out to determine if the protein levels of ionotropic glutamate receptors in the rdta mouse retina are also affected. RESULTS The NMDA receptor subunits (NR1, NR2A/B) and the GluR1; AMPA receptor subunit (GluR1) were examined in immunolabeled western blots. The results demonstrate that the amounts of NR1 and NR2A/B receptor subunits are significantly increased in crude synaptic membrane fractions isolated from retinae of the rdta mice when compared to their normal, littermate controls. The GluR1 receptor subunit and its phosphorylation are simultaneously increased in retinae of the rdta mice. CONCLUSIONS These data indicate that the NMDA receptors and AMPA (GluR1) receptors are altered in the retinae of rdta mice that lack rod photoreceptors. Because the rods are lost at an early stage in development, it is likely that these results are indicative of synaptic reorganization in the retina.
Collapse
Affiliation(s)
- Ling O Liu
- Department of Ophthalmology and Visual Science, University of Louisville School of Medicine, Louisville, Kentucky USA
| | - Aicha Laabich
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky USA
| | | | - Nigel GF Cooper
- Department of Ophthalmology and Visual Science, University of Louisville School of Medicine, Louisville, Kentucky USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky USA
| |
Collapse
|
23
|
Akopian A, Witkovsky P. Intracellular calcium reduces light-induced excitatory post-synaptic responses in salamander retinal ganglion cells. J Physiol 2001; 532:43-53. [PMID: 11283224 PMCID: PMC2278530 DOI: 10.1111/j.1469-7793.2001.0043g.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The whole-cell patch clamp technique was used to study the effect of intracellular Ca2+ on light-evoked EPSCs in on-off ganglion cells in salamander retinal slices. Both AMPA and NMDA receptors contributed to the light-evoked responses. In the presence of strychnine and picrotoxin, ganglion cells responded to light onset and offset with transient inward currents at -70 mV. These currents were reduced by 35 +/- 3 % when the light stimulus was preceded by a depolarizing step from -70 to 0 mV. The inhibitory effect of depolarization on light-evoked EPSCs was strongly reduced in the presence of 10 mM BAPTA. The degree of EPSC inhibition by the prepulse holding potential followed the current-voltage relationship of the Ca2+ current found in the ganglion cell. In the presence of the NMDA receptor antagonist AP-7, glutamate-dependent current was nearly abolished when high Ca2+ was substituted for high Na+ solution. The release of Ca2+ from internal stores by caffeine or inositol trisphosphate reduced the EPSCs by 36 +/- 5 and 38 +/- 11 %, respectively, and abolished the inhibitory effect of depolarization. The inhibitory effect of depolarization on EPSCs was reduced 5-fold in the presence of AP-7, but was not reduced by the AMPA receptor antagonist CNQX. Neither inhibition of Ca2+-calmodulin-dependent enzymes, nor inhibition of protein kinase A or C had any significant effect on the depolarization-induced inhibition of EPSCs. Our data suggest that elevation of [Ca2+]i, through voltage-gated channels or by release from intracellular stores, reduced primarily the NMDA component of the light-evoked EPSCs.
Collapse
Affiliation(s)
- A Akopian
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
24
|
Chen L, Yang C, Mower GD. Developmental changes in the expression of GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3)) in the cat visual cortex and the effects of dark rearing. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:135-43. [PMID: 11295239 DOI: 10.1016/s0169-328x(01)00042-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study used Western blots and Northern slot blots to determine changes in the level of expression of GABA(A) receptor subunits alpha(1), alpha(2), and alpha(3), in relation to the "critical period" in cat visual cortex. Levels of the GABA(A) alpha(1) subunit were lowest at 1 week, increased four-fold to a maximum at 10 weeks, and declined slightly (35%) into adulthood. Levels of the GABA(A) alpha(2) and alpha(3) subunits were highest at 1 week of age, decreased two-fold by 10 weeks of age and were constant thereafter. Comparison between visual cortex from normal and dark-reared cats at 5 weeks and 20 weeks showed that alpha(1) and alpha(3) subunit expression was elevated in dark-reared animals by approximately 50% at both ages. alpha(2) expression was not affected. These results implicate the importance of a shift from putative immature to mature GABA(A) receptor subunits during the critical period of visual cortex and in conjunction with parallel analysis of NMDA receptor subunit maturation, further support the notion that a changing excitatory/inhibitory balance is critical for neuronal plasticity.
Collapse
Affiliation(s)
- L Chen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
25
|
Liu LO, Li G, McCall MA, Cooper NG. Photoreceptor regulated expression of Ca(2+)/calmodulin-dependent protein kinase II in the mouse retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:150-66. [PMID: 11042368 DOI: 10.1016/s0169-328x(00)00203-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this investigation is to determine mechanisms for regulation of retinal calmodulin kinase II (CaMKII). To this end, the expression and activity of CaMKII are examined in the retina of the rdta mouse, in which rod photoreceptors have been genetically ablated [47]. CaMKII levels are compared between rdta mice and the normal, littermate control mice. It is demonstrated that retinal CaMKII protein, enzyme activity and mRNA are significantly increased in response to the genetic ablation of rod photoreceptors. The data indicate that CaMKII expression/activity in amacrine and ganglion cells is negatively regulated by the rod photoreceptor-mediated visual input. The regulation appears to occur primarily at the transcriptional level. It is shown that the cytoplasmic polyadenylation element binding protein (CPEB), a regulatory factor for translation that is known to promote CaMKIIalpha translation in dendrites [83], is also present in the mouse retina. However, the polyadenylation-mediated translational control mechanism is not activated in this experimental paradigm.
Collapse
Affiliation(s)
- L O Liu
- Department of Ophthalmology and Visual Sciences, School of Medicine University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
26
|
Chen L, Cooper NG, Mower GD. Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 78:196-200. [PMID: 10891601 DOI: 10.1016/s0169-328x(00)00076-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study used Western blots to determine changes in the level of expression of the three major NMDA receptor subunits, NR1, NR2A, and NR2B, in relation to the 'critical period' in cat visual cortex. NR2A rose dramatically (10-fold) from very low levels at 1 week to a peak at 5 weeks and gradually declined into adulthood (twofold). NR2B showed a similar time course to NR2A, but the rise from 1 to 5 weeks was of lesser magnitude (twofold). NR1 was expressed at comparable levels at 1, 5, 10 weeks and declined markedly (fivefold) in older animals. No significant effects of dark rearing on the levels of NR2B and NR1 were found. However, NR2A expression was significantly elevated in normal compared to dark reared visual cortex (twofold) at 5 weeks and significantly elevated in dark reared compared to normal visual cortex at 20 weeks (twofold). The close agreement between NR2A expression and both the time course of the critical period and the effects of dark rearing on that time course further indicates a role of this subunit in visual cortical critical period plasticity.
Collapse
Affiliation(s)
- L Chen
- Department of Ophthalmology and Visual Sciences, Health Sciences Center, University of Louisville, School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
27
|
Xu TL, Dong XP, Wang DS. N-methyl-D-aspartate enhancement of the glycine response in the rat sacral dorsal commissural neurons. Eur J Neurosci 2000; 12:1647-53. [PMID: 10792442 DOI: 10.1046/j.1460-9568.2000.00065.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of N-methyl-D-aspartate (NMDA) on the glycine (Gly) response was examined in neurons acutely dissociated from the rat sacral dorsal commissural nucleus (SDCN) using the nystatin-perforated patch-recording configuration under voltage-clamp conditions. The application of 100 microM NMDA to SDCN neurons reversibly potentiated Gly-activated Cl- currents (IGly) without affecting the Gly binding affinity and the reversal potential of IGly. A selective NMDA receptor antagonist, APV (100 microM), blocked the NMDA-induced potentiation of IGly, whereas 50 microM CNQX, a non-NMDA receptor antagonist, did not. The potentiation effect was reduced when NMDA was applied in a Ca2+-free extracellular solution or in the presence of BAPTA AM, and was independent of the activation of voltage-dependent Ca2+ channels. Pretreatment with KN-62, a selective Ca2+-calmodulin-dependent protein kinase II (CaMKII) inhibitor, abolished the NMDA action. Inhibition of calcineurin (CaN) further enhanced the NMDA-induced potentiation of IGly. In addition, the GABAA receptor-mediated currents were suppressed by NMDA receptor activation in the SDCN neurons. The present results show that Ca2+ entry through NMDA receptors modulates the Gly receptor function via coactivation of CaMKII and CaN in the rat SDCN neurons. This interaction may represent one of the important regulatory mechanisms of spinal nociception. The results also suggest that GABAA and Gly receptors may be subject to different intracellular modulatory pathways.
Collapse
Affiliation(s)
- T L Xu
- Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, PO Box 4, Hefei 230027, P. R. China.
| | | | | |
Collapse
|
28
|
Laabich A, Li G, Cooper NG. Calcium/calmodulin-dependent protein kinase II containing a nuclear localizing signal is altered in retinal neurons exposed to N-methyl-D-aspartate. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:253-65. [PMID: 10762700 DOI: 10.1016/s0169-328x(00)00006-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study investigated N-methyl-D-aspartate (NMDA) mediated cell death and its possible regulation by calcium/calmodulin-dependent protein kinase II (CaMKII) in the adult rat retina. To investigate cell death, the terminal deoxyribonucleotidyltransferase (TdT)-mediated biotin-16-dUTP nick-end labelling (TUNEL) method was used to detect fragmented DNA in fixed tissue sections of rat retina. The TUNEL assay confirmed that apoptosis occurs in the inner nuclear layer (INL) and ganglion cell layer (GCL) following NMDA injection. The level of antibody binding to CaMKII-alpha, the activity of CaMKII, and the mRNA level for the alpha(B) subunit of CaMKII were found to be elevated for short time periods (30 min, 2 h) after a single intravitreal injection of NMDA. In contrast to this, there was a decrease in CaMKII activity and in the CaMKII-alpha(B) mRNA levels at longer time periods (24 h) following injection of NMDA. These effects were specific for the mRNA for the alpha(B) subunit, an alternatively spliced product of the CaMKII-alpha gene, that contains a nuclear localizing signal (NLS) known to target this protein to the nucleus. It is suggested that regulated expression of CaMKII-alpha(B) could be involved in the NMDA-mediated cell death in retinal neurons.
Collapse
Affiliation(s)
- A Laabich
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | |
Collapse
|