1
|
Huang J, Lu M, Ding C. Na(+)/K(+)-ATPase expression changes in the rabbit lacrimal glands during pregnancy. Curr Eye Res 2012; 38:18-26. [PMID: 23009595 DOI: 10.3109/02713683.2012.725797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the expressional changes of Na(+)/K(+)-ATPase subunits in the lacrimal glands (LG) of term pregnant rabbits. METHODS LG were obtained from term pregnant rabbits and age-matched female control rabbits for laser capture microdissection (LCM), real time RT-PCR, western blot, and immunofluorescence. The mRNA and proteins of α1, α2, β1, β2, and β3 subunits of Na(+)/K(+)-ATPase were detected and quantified. RESULTS Although only the mRNA for β3 from whole LG of pregnant rabbits was significantly different from that of normal controls, many mRNA levels for α1, α2, β1, β2, and β3 from acini and epithelial cells from various duct segments that were collected by LCM were significantly different from those of normal control rabbits. Western blots demonstrated that the expressions of all three β subunits were significantly higher in pregnant rabbits, while both α subunits remained unchanged during pregnancy. Interestingly, immunofluorescence results showed that the distribution patterns of all Na(+)/K(+)-ATPase subunits during pregnancy were similar to those of the control rabbits. CONCLUSIONS Changes were found in mRNA and protein expressions of Na(+)/K(+)-ATPase subunits in LG from term pregnant rabbits and these changes suggest a role in the pregnancy-related LG secretion changes and dry eye symptoms observed in these animals.
Collapse
Affiliation(s)
- Jianyan Huang
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9112, USA
| | | | | |
Collapse
|
2
|
Schechter JE, Warren DW, Mircheff AK. A Lacrimal Gland is a Lacrimal Gland, But Rodent's and Rabbit's Are Not Human. Ocul Surf 2010; 8:111-34. [DOI: 10.1016/s1542-0124(12)70222-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Lacritin and other new proteins of the lacrimal functional unit. Exp Eye Res 2008; 88:848-58. [PMID: 18840430 DOI: 10.1016/j.exer.2008.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 12/21/2022]
Abstract
The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as 'an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them'. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over 200 new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin's low nanomolar mitogenic activity. The lacritin-binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction.
Collapse
|
4
|
Dartt DA. Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocul Surf 2007; 2:76-91. [PMID: 17216081 DOI: 10.1016/s1542-0124(12)70146-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Tears are a complex fluid consisting of three layers, each of which is secreted by a different set of tissues or glands. The aqueous portion of the tear film is produced predominantly by the lacrimal gland. Dry eye syndromes are diseases in which the amount and composition of tears are altered, which can lead to ocular surface damage. There are many causes for dry eye syndromes. One such cause is the alteration in the functions of nerves innervating the lacrimal gland and the ocular surface. The autoimmune disease Sjogren syndrome can deleteriously affect the innervation of the lacrimal gland. Damage to the sensory nerves in the ocular surface, specifically the cornea, as a result of refractive surgery and normal aging, prevents the normal reflex arc to the lacrimal gland. Both defects can result in decreased tear secretion and dry eye syndromes. This review will discuss the current information regarding neurally-stimulated protein, water, and electrolyte secretion from the lacrimal gland and delineate how nerve dysfunction resulting from a variety of causes decreases secretion from this gland.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
5
|
Mircheff AK. Sjogrens syndrome as failed local immunohomeostasis: prospects for cell-based therapy. Ocul Surf 2007; 1:160-79. [PMID: 17075648 DOI: 10.1016/s1542-0124(12)70012-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sjogrens syndrome has been estimated to affect between 0.2% and 2% or more of the population. It is an autoimmune disease with the hallmark histopathology of focal, periductal, and perivascular CD4(+) cell infiltration of the lacrimal and salivary glands. The immunohistopathology is typically associated with severe lacrimal and salivary dysfunctions, which contribute to debilitating ocular surface and oral symptoms. The quality of life of patients with Sjogrens syndrome often is degraded further by serious, multisystemic manifestations, and they are subject to a forty-fold increased risk of developing B cell lymphomas. In normal lacrimal glands, secretory epithelial cells, autoimmune effector lymphocytes, and regulatory lymphocytes can be seen as collaborating to maintain a local immunohomeostasis. The epithelium contributes by secreting immunomodulatory paracrine factors and also by continuously exposing autoantigens, which thereby become available for uptake by professional antigen presenting cells (APCs). Local or systemic perturbations may initiate autoimmune pathophysiology by impairing the replacement of normally-turning-over regulatory cells, by altering epithelial production of immunomodulatory paracrine factors, by inducing intact epithelial cells to begin secreting previously cryptic epitopes (epitopes that previously were not available to bind to major histocompatibility complex (MHC) molecules and so could not be recognized by T cell antigen receptors), and by inducing epithelial cells to begin expressing MHC Class II molecules and presenting formerly cryptic epitopes directly to CD4(+) cells. This process has been modeled ex vivo with mixed cell reactions comprised of isolated epithelial cells and autologous lymphocytes. This development has occurred as studies of anterior chamber-associated immune deviation (ACAID) and other immunoregulatory phenomena have elucidated the origins and functions of several different kinds of regulatory lymphocytes and shown that regulatory lymphocytes can be generated ex vivo. It now is possible to envision strategies for exploiting each possible mode of epithelial autoantigen exposure to produce therapeutic regulatory cells that might be capable of re-establishing normal immunohomeostasis. Consideration of the hypothetical therapies identifies a number of basic questions that warrant investigation.
Collapse
Affiliation(s)
- Austin K Mircheff
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
6
|
Andersson SV, Edman MC, Bekmezian A, Holmberg J, Mircheff AK, Gierow JP. Characterization of β-hexosaminidase secretion in rabbit lacrimal gland. Exp Eye Res 2006; 83:1081-8. [PMID: 16839547 DOI: 10.1016/j.exer.2006.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/23/2006] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
The present study was aimed at validating the use of the lysosomal enzyme beta-hexosaminidase as a marker of secretory function in cultured rabbit lacrimal gland acinar cells. The secretory response and morphological characteristics of isolated acinar cells cultured in a serum-free medium supplemented with an extracellular matrix extract were monitored over time as part of optimization of our culturing protocol. Secreted beta-hexosaminidase activity was analyzed and compared with that of another lysosomal enzyme, cathepsin B, as well as protein secreted into the media, w or w/o the presence of secretagogues or protein kinase C activators and inhibitors. Lacrimal gland fluid was obtained from pilocarpine stimulated rabbits, and the activities of beta-hexosaminidase and cathepsin B were measured. A membrane fraction and a soluble fraction were obtained from isolated acinar cells and used for kinetic studies of beta-hexosaminidase in comparison with that released from cultured cells, in the lacrimal gland fluid and in serum. Optimal secretory response was obtained when the cells had been in culture for 2-3 days, coinciding with the formation of acinus-like structures. Stimulation of the cultured cells by carbachol or phorbol esters resulted in a more than 3-fold increase of beta-hexosaminidase release over basal, whereas no effect on cathepsin B release could be detected. Treatment with the protein kinase C inhibitor, chelerythrine chloride, significantly decreased the carbachol and phorbol ester-stimulated secretion. Cathepsin B could not be detected in rabbit lacrimal fluid, but beta-hexosaminidase was easily measured in quantities corresponding to as low as 0.4 microl of tear fluid. Using 4-methylumbelliferyl N-acetyl-beta-D-glucosaminide as a substrate for beta-hexosaminidase, the K(m) in lacrimal gland fluid (1.22+/-0.15 mM) was not significantly different from that of the membrane-associated fraction, the soluble fraction, rabbit serum or activity secreted from cultured cells. Beta-hexosaminidase is secreted by rabbit lacrimal gland, in vivo, and by acinar cells in primary culture, whereas cathepsin B is not secreted under the conditions described. Beta-hexosaminidase therefore provides a versatile marker for secretion in studies of tear production utilizing the rabbit as a model. Our results also indicate that PKC is an important regulator of rabbit lacrimal gland secretion.
Collapse
Affiliation(s)
- Sofia V Andersson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, Smalandsgatan 24, SE-39182 Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Andersson SV, Hamm-Alvarez SF, Gierow JP. Integrin adhesion in regulation of lacrimal gland acinar cell secretion. Exp Eye Res 2006; 83:543-53. [PMID: 16631165 DOI: 10.1016/j.exer.2006.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/18/2006] [Accepted: 02/08/2006] [Indexed: 01/24/2023]
Abstract
The extracellular microenvironment regulates lacrimal gland acinar cell secretion. Culturing isolated rabbit lacrimal gland acinar cells on different extracellular matrix proteins revealed that laminin enhances carbachol-stimulated secretion to a greater extent than other extracellular matrix proteins investigated. Furthermore, immunofluorescence indicated that integrin subunits, potentially functioning as laminin receptors are present in acinar cells. Among these, the integrin alpha6 and beta1 subunit mRNA expression was also confirmed by RT-PCR and sequence analysis. Secretion assays, which measured beta-hexosaminidase activity released in the culture media, demonstrated that function-blocking integrin alpha6 and beta1 monoclonal antibodies (mAbs) induce a rapid, transient and dose-dependent secretory response in cultured cells. To determine the intracellular pathways by which integrin alpha6 and beta1 mAbs could induce secretion, selected second messenger molecules were inhibited. Although inhibitors of protein kinase C and IP(3)-induced Ca(2+) mobilization attenuated carbachol-stimulated secretion, no effect on integrin mAb-induced release was observed. In addition, protein tyrosine kinases do not appear to have a role in transducing signals arising from mAb interactions. Our data clearly demonstrate, though, that cell adhesion through integrins regulates secretion from lacrimal gland acinar cells. The fact that the integrin mAbs affect the cholinergic response differently and that the integrin beta1 mAb secretion, but not the alpha6, was attenuated by the phosphatase inhibitor, sodium orthovanadate, suggests that each subunit utilizes separate intracellular signaling pathways to induce exocytosis. The results also indicate that the secretory response triggered by the beta1 integrin mAb is generated through dephosphorylation events.
Collapse
Affiliation(s)
- Sofia V Andersson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | |
Collapse
|
8
|
Mircheff AK, Wang Y, Jean MDS, Ding C, Trousdale MD, Hamm-Alvarez SF, Schechter JE. Mucosal Immunity and Self-Tolerance in the Ocular Surface System. Ocul Surf 2005; 3:182-92. [PMID: 17131026 DOI: 10.1016/s1542-0124(12)70204-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper articulates a new working hypothesis that explains many of the pathophysiological conditions described under the common rubric "dry eye" as altered states of mucosal immune regulation. A central principle of mucosal immune physiology is that the parenchymal tissues at the effector sites, i.e., the sites at which secretory antibodies are produced, maintain local signaling milieus that support differentiation of IgA+ plasmablasts and survival of IgA+ plasmacytes. These local signaling milieus also support robust regulatory networks that maintain tolerance to commensual microbes, benign antigens, and parenchymal autoantigens. The regulatory networks are mediated by cycles of interactions between successive generations of dendritic cells, which normally mature with tolerogenic functions, and regulatory T cells, which normally reinforce the system's ability to generate new tolerogenic dendritic cells. The systemic endocrine environment controls expression of the local signaling milieu in the mammary gland and in the prostate and male urethral glands. Emerging evidence indicates that the local signaling milieu in the lacrimal gland also is determined, in part, by the systemic endocrine environment. This working hypothesis suggests explanations for the excess incidence of Sjogren syndrome among women and for the mechanisms of several different immunophysiological states in addition to Sjogren syndrome that, like Sjogren syndrome, are associated with the classical symptoms and signs of dry eye. It also comprises a promising rationale for specific new approaches to therapy.
Collapse
Affiliation(s)
- Austin K Mircheff
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Rose CM, Qian L, Hakim L, Wang Y, Jerdeva GY, Marchelletta R, Nakamura T, Hamm-Alvarez SF, Mircheff AK. Accumulation of catalytically active proteases in lacrimal gland acinar cell endosomes during chronic ex vivo muscarinic receptor stimulation. Scand J Immunol 2005; 61:36-50. [PMID: 15644121 DOI: 10.1111/j.0300-9475.2005.01527.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic muscarinic stimulation induces functional quiescence (Scand J Immunol 2003;58:550-65) and alters the traffic of immature cathepsin B (Exp Eye Res 2004;79:665-75) in lacrimal acinar cells. To test whether active proteases aberrantly accumulate in the endosomes, cell samples were cultured 20 h with and without 10-microm carbachol (CCh), incubated with [125I]-bovine serum albumin and then lysed and analysed by subcellular fractionation. CCh decreased total cysteine protease and cathepsin S activities in the isolated lysosome, redistributing them to early endocytic and biosynthetic compartments. CCh decreased [125I] accumulation in all compartments of cells loaded in the absence of protease inhibitors; the cysteine protease inhibitor, leupeptin, prevented the endosomal decrease but not the lysosomal decrease. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography demonstrated [125I]-labelled proteolytic products in endomembrane compartments of both control and CCh-stimulated cells, even in the presence of leupeptin, but analysis indicated that CCh increased the amount in endosomes. Two-dimensional fractionation analyses suggest that the CCh-induced redistributions result from blocks in traffic to the late endosome from both the early endosome and the trans-Golgi network. Therefore, we conjecture that chronic muscarinic acetylcholine receptor stimulation leads to aberrant proteolytic processing of autoantigens in endosomes, from whence previously cryptic epitopes may be secreted to the underlying interstitial space.
Collapse
Affiliation(s)
- C M Rose
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Qian L, Xie J, Rose CM, Sou E, Zeng H, Hamm-Alvarez SF, Mircheff AK. Altered traffic to the lysosome in an ex vivo lacrimal acinar cell model for chronic muscarinic receptor stimulation. Exp Eye Res 2004; 79:665-75. [PMID: 15500825 DOI: 10.1016/j.exer.2004.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
Evidence suggests that lacrimal and salivary epithelial cells constitutively expose potentially pathogenic autoantigens, but that active regulatory networks normally suppress pathological autoimmune responses . Events that potentially disrupt the regulatory networks include increased exposure of constitutive autoantigens and induced exposure of previously cryptic autoantigen epitopes. Chronic muscarinic receptor (MAChR) stimulation in an ex vivo rabbit lacrimal acinar cell model induces functional and biochemical alterations reminiscent of the functional quiescence associated with Sjogren's syndrome . Chronic MAChR stimulation also elicits changes in the compartmental distribution of beta-hexosaminidase, a product that normally is dually targeted into the lysosomal pathway and the regulated apical secretory pathway. Here, we use subcellular fractionation analyses to further explore the nature of the stimulation-induced traffic changes and to identify effectors that might mediate this change. Overnight stimulation of primary cultured rabbit lacrimal gland acinar cells with 10 microM carbachol (CCh) significantly decreased the abundance of mature cathepsin B in the pre-lysosome and lysosome; decreased the abundance of preprocathepsin B in fractions containing the TGN and late endosome; increased the abundance of procathepsin B in fractions containing the basal-lateral membrane; and increased the accumulation of endocytosed [(125)I]-EGF in the recycling endosome. Alterations in distribution or abundance of traffic effectors included: increased abundances of rab5A and rab6 in the TGN; decreased overall abundance of gamma-adaptin; remarkably increased relative abundance of membrane phase-associated actin; redistribution of cytoplasmic dynein from biosynthetic and proximal endocytic compartments to the lysosome; and redistribution of p150(Glued) from the lysosome to biosynthetic or proximal endocytic compartments. We conclude that chronic MAChR stimulation blocks traffic from the early endosome and the TGN to the lysosome, causing lysosomal proteins to reflux to the TGN, endosomes, and basal-lateral membrane. These traffic alterations may be mediated through action on one or more of the effectors noted.
Collapse
Affiliation(s)
- Limin Qian
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, MMR 626, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Xie J, Qian L, Wang Y, Hamm-Alvarez SF, Mircheff AK. Role of the microtubule cytoskeleton in traffic of EGF through the lacrimal acinar cell endomembrane network. Exp Eye Res 2004; 78:1093-106. [PMID: 15109916 DOI: 10.1016/j.exer.2004.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 01/28/2004] [Indexed: 11/17/2022]
Abstract
We have previously documented a novel biphasic traffic pattern for epidermal growth factor (EGF) in the acinar epithelial cell of the lacrimal gland. Different from the typical paradigm observed in many other cell types, EGF initially accumulates in the acinar basal-lateral recycling endosome, then is re-directed to the prelysosomes and lysosomes and degraded. While the cellular content of intact EGF decreases by 40% between 20 and 120 m of continuous incubation at 37 degrees C, the EGF receptor (EGFR) content decreases only modestly [J. Cell Physiol. 199 (2004) 108]. The purpose of the present study was to investigate the role of the microtubule cytoskeleton in this traffic. Primary cultured rabbit lacrimocytes were incubated with [(125)I]-EGF, lysed, and analyzed by subcellular fractionation on sorbitol density gradients. Nocodazole treatment appeared to slightly decrease the initial uptake rate but to have no significant effect on the total amount of [(125)I] accumulation. However, it enhanced accumulation of [(125)I]-EGF and EGFR in the basal-lateral recycling endosome, and it enhanced accumulation of prepro- and pro- cathepsin B in fractions containing late endosomes and prelysosomes. Nocodazole permitted the time-dependent release of [(125)I]-EGF from the recycling endosome, but it partially inhibited [(125)I]-EGF degradation and decreased accumulation of [(125)I]-labeled degradation products in the lysosome. The microtubule-based molecular motors, cytoplasmic dynein and kinesin, were localized in compartments containing the late endosomes, prelysosomes, and lysosomes, consistent with the suggestion that microtubule-based molecular motors play important roles in traffic within the lysosomal pathway. Confocal fluorescence microscopy imaging of FITC-EGF substantiated the effects observed in biochemical studies by demonstrating that nocodazole increased accumulation in a peripheral compartment and decreased traffic to a perinuclear compartment. These data suggest that initial accumulation in the basal-lateral recycling endosome and subsequent release from the recycling endosome to the late endosomes and prelysosome are not microtubule-dependent. On the other hand, microtubule-based motors are more critical for traffic from the prelysosome to the lysosome.
Collapse
Affiliation(s)
- Jiansong Xie
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
12
|
Xie J, Qian L, Wang Y, Rose CM, Yang T, Nakamura T, Hamm-Alvarez SF, Mircheff AK. Novel biphasic traffic of endocytosed EGF to recycling and degradative compartments in lacrimal gland acinar cells. J Cell Physiol 2004; 199:108-25. [PMID: 14978740 DOI: 10.1002/jcp.10458] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to delineate the traffic patterns of EGF and EGF receptors (EGFR) in primary cultured acinar epithelial cells from rabbit lacrimal glands. Uptake of [(125)I]-EGF exhibited saturable and non-saturable, temperature-dependent components, suggesting both receptor-mediated and fluid phase endocytosis. Accumulation of [(125)I] was time-dependent over a 120-min period, but the content of intact [(125)I]-EGF decreased after reaching a maximum at 20 min. Analytical fractionation by sorbitol density gradient centrifugation and phase partitioning indicated that within 20 min at 37 degrees C [(125)I] reached an early endosome, basal-lateral recycling endosome, pre-lysosome, and lysosome. Small components of the label also appeared to reach the Golgi complex and trans-Golgi network. Intact [(125)I]-EGF initially accumulated in the recycling endosome; the content in the recycling endosome subsequently decreased, and by 120 min increased amounts of [(125)I]-labeled degradation products appeared in the pre-lysosomes and lysosomes. Confocal microscopy imaging of FITC-EGF and LysoTrackerRed revealed FITC enriched in a dispersed system of non-acidic compartments at 20 min and in acidic compartments at 120 min. Both confocal immunofluorescence microscopy and analytical fractionation indicated that the intracellular EGFR pool was much larger than the plasma membrane-expressed pool at all times. Cells loaded with [(125)I]-EGF released a mixture of intact EGF and [(125)I]-labeled degradation products. The observations indicate that in lacrimal acinar cells, EGFR and EGF-EGFR complexes continually traffic between the plasma membranes and a system of endomembrane compartments; EGF-stimulation generates time-dependent signals that initially decrease, then increase, EGF-EGFR traffic to degradative compartments.
Collapse
Affiliation(s)
- Jiansong Xie
- Department of Physiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Qian L, Wang Y, Xie J, Rose CM, Yang T, Nakamura T, Sandberg M, Zeng H, Schechter JE, Chow RH, Hamm-Alvarez SF, Mircheff AK. Biochemical changes contributing to functional quiescence in lacrimal gland acinar cells after chronic ex vivo exposure to a muscarinic agonist. Scand J Immunol 2003; 58:550-65. [PMID: 14629627 DOI: 10.1046/j.1365-3083.2003.01343.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Profound secretory dysfunction can be associated with relatively modest lymphocytic infiltration of the lacrimal and salivary glands of Sjögren's syndrome (SjS) patients. SjS patients' sera contain autoantibodies to M3 muscarinic acetylcholine receptors (MAChR) that have variously been reported to have agonistic and antagonistic effects. We sought to identify consequences of chronic agonist stimulation by maintaining acinar cells from rabbit lacrimal glands for 20 h in the presence or absence of 10 microM carbachol (CCh). Exposure to CCh diminished the cells' ability to elevate cytosolic Ca2+ and secrete beta-hexosaminidase in response to acute stimulation with 100 microM CCh, but it enhanced their secretory responses to phenylephrine and ionomycin. Secretory vesicles appeared normal by electron microscopy, but confocal fluorescence microscopy revealed depletion of the secretory vesicle membrane marker, rab3D, and decreased ability to recruit secretory transport vesicles in response to acute 100 microM CCh. Additionally, the apical cortical actin cytoskeleton was disrupted and diminished compared to the basal-lateral cortical network. Subcellular fractionation analyses revealed that total membrane phase protein content was increased. The contents of beta-hexosaminidase and MAChR relative to total protein were not significantly altered, and MAChR abundance in the plasma membrane fraction was increased as the result of redistribution from endomembrane pools. However, relative cellular contents of the heterotrimeric guanosine triphosphate (GTP)-binding proteins, Gq and G11, were decreased. Additional biochemical changes included decreased contents of 47 kDa Gs and Gi3, protein kinase Calpha and rab3D and polymeric immunoglobulin (Ig) receptors; internalization of Na,K-ATPase from the plasma membranes to endomembrane compartments and decreased content of beta-hexosaminidase in the lysosomes. The observations demonstrate that chronic exposure to a MAChR agonist induces refractoriness to optimal stimulation, without causing receptor downregulation, by downregulating postreceptor-signalling mediators and effectors. The cells' secretory mechanisms for IgA and electrolytes also appear to be impaired, as does their ability to properly sort proteins to the lysosomes.
Collapse
Affiliation(s)
- L Qian
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qian L, Xie J, Mircheff AK. Glycolipid-rich membrane microdomains in lacrimal acinar cell endomembrane compartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:207-11. [PMID: 12613909 DOI: 10.1007/978-1-4615-0717-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Limin Qian
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
15
|
Mircheff AK, Qian L, Xie J, Wang Y, Hamm-Alvarez SF. M3 receptor autoimmunity: losing tolerance to a familiar protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:51-8. [PMID: 12613888 DOI: 10.1007/978-1-4615-0717-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Austin K Mircheff
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
16
|
Dickinson DP. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 13:238-75. [PMID: 12090464 DOI: 10.1177/154411130201300304] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cysteine peptidases (CPs) are phylogenetically ubiquitous enzymes that can be classified into clans of evolutionarily independent proteins based on the structural organization of the active site. In mammals, two of the major clans represented in the genome are: the CA clan, whose members share a structure and evolutionary history with papain; and the CD clan, which includes the legumains and caspases. This review focuses on the properties of these enzymes, with an emphasis on their potential roles in the oral cavity. The human genome encodes at least (but possibly no more than) 11 distinct enzymes, called cathepsins, that are members of the papain family C1A. Ten of these are present in rodents, which also carry additional genes encoding other cathepsins and cathepsin-like proteins. Human cathepsins are best known from the ubiquitously expressed lysosomal cathepsins B, H, and L, and dipeptidyl peptidase I (DPP I), which until recently were considered to mediate primarily "housekeeping" functions in the cell. However, mutations in DPP I have now been shown to underlie Papillon-Lefevre syndrome and pre-pubertal periodontitis. Other cathepsins are involved in tissue-specific functions such as bone remodeling, but relatively little is known about the functions of several recently discovered enzymes. Collectively, CPs participate in multiple host systems that are active in health and in disease. They are involved in tissue remodeling and turnover of the extracellular matrix, immune system function, and modulation and alteration of cell function. Intracellularly, CPs function in diverse processes including normal protein turnover, antigen and proprotein processing, and apoptosis. Extracellularly, they can contribute directly to the degradation of foreign proteins and the extracellular matrix. However, CPs can also participate in proteolytic cascades that amplify the degradative capacity, potentially leading to pathological damage, and facilitating the penetration of tissues by cancer cells. We know relatively little regarding the role of human CPs in the oral cavity in health or disease. Most studies to date have focused on the potential use of the lysosomal enzymes as markers for periodontal disease activity. Human saliva contains high levels of cystatins, which are potent CP inhibitors. Although these proteins are presumed to serve a protective function, their in vivo targets are unknown, and it remains to be discovered whether they serve to control any human CP activity.
Collapse
Affiliation(s)
- D P Dickinson
- Medical College of Georgia, School of Dentistry, Department of Oral Biology, and Maxillofacial Pathology, Augusta 30912, USA.
| |
Collapse
|
17
|
Mircheff AK, Xie J, Qian L, Hamm-Alvarez SF. Diverse perturbations may alter the lacrimal acinar cell autoantigenic spectra. DNA Cell Biol 2002; 21:435-42. [PMID: 12167246 DOI: 10.1089/10445490260099728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lacrimal gland acinar cell autoantigens in Sjögren's syndrome include both intracellular proteins and plasma membrane proteins, to which the immune system normally must be tolerant. Attention has largely focused on the roles apoptotic cell death may play in exposing sequestered autoantigens and novel surface epitopes. We hypothesize that perturbations of ongoing membrane traffic in intact, functioning cells may also increase autoantigen exposure. We review the vesicular traffic between acinar cell basal-lateral plasma membranes (blm) and endomembrane compartments, then describe experiments in which isolated acinar cells were stimulated with epidermal growth factor (EGF), lysed, and analyzed by sorbitol gradient centrifugation. Whereas the cholinergic agonist, carbachol, impairs traffic from the trans-Golgi network to prelysosomes, causing Golgi, secretory, and lysosomal proteins to reflux into domains of the trans-Golgi network that communicate with the blm and to accumulate in the blm, EGF specifically causes a 2.6-fold (P < 0.05) increase in the beta-hexosaminidase content of the blm fraction, apparently by impairing traffic from early endosomes to prelysosome. We, therefore, suggest that a variety of physiologic stimuli may alter the spectra of autoantigens acinar cells secrete to the interstitium, express in their blm, and present via MHC Class II molecules after proteolytic processing.
Collapse
Affiliation(s)
- Austin K Mircheff
- Department of Physiology & Biophysics, and Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
18
|
Qian L, Yang T, Chen H, Xie J, Zeng H, Warren DW, MacVeigh M, Meneray MA, Hamm-Alvarez SF, Mircheff AK. Heterotrimeric GTP-binding proteins in the lacrimal acinar cell endomembrane system. Exp Eye Res 2002; 74:7-22. [PMID: 11878814 DOI: 10.1006/exer.2001.1108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretagogues accelerate traffic in the lysosomal and basal-lateral pathways, as well as in the regulated apical secretory pathway, of lacrimal acinar cells. It has been proposed that alterations of protein segregation in compartments where these traffic pathways intersect may influence autoimmune responses. Heterotrimeric GTP-binding proteins couple secretagogue receptor ligand binding to activation of intracellular signaling cascades, but they are also suggested to participate in endomembrane traffic phenomena. Distributions of G(o), G(i3), G(q), G(11), and two G(s)isoforms were mapped in reconstituted lacrimal acini by confocal immunofluorescence microscopy and in lysates of the reconstituted acini by analytical subcellular fractionation. All G proteins examined were detected at low levels in isolated compartments (blm(i,j)) believed to represent the basal-lateral plasma membrane. G(i3), G(11), and the G(s)isoforms were concentrated in a series of isolated compartments believed to be related to domains of a basal-lateral endosome with sorting and recycling functions (ble-s/r(i,j,k)), a distinct endosomal compartment with basal-lateral membrane-like composition (e-blml), and domains of the trans-Golgi network believed to be involved in traffic to and from the basal-lateral membrane (tgn-blmr). G(o)and G(q)were concentrated in compartments believed to represent a mixture of immature and mature secretory vesicle membranes (isvm and svm) and domains of the trans-Golgi network compartment believed to mediate traffic to secretory vesicles (tgn-svr) and to pre-lysosomes (tgn-lr). Confocal fluorescence microscopy confirmed the presence of both basal-lateral membrane and intracellular pools of the G proteins. Stimulation with 10 microM carbachol for 20min caused a component of the G(o)to redistribute away from the isvm+svm; components of the G(i3), G(q), and G(s)to redistribute away from the tgn-svr+tgn-lr; and a component of the G(i3)to redistribute away from the ble-blml+tgn-blmr. Thus, these proteins may participate in endomembrane traffic steps activated by cholinergic stimulation in addition to playing their classical roles in plasma membrane signal transduction.
Collapse
Affiliation(s)
- Limin Qian
- Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Sjögren syndrome (SS), the second most common autoimmune rheumatic disease, refers to keratoconjunctivitis sicca and xerostomia resulting from immune lymphocytes that infiltrate the lacrimal and salivary glands. However, differential diagnosis remains confusing due to the high prevalence of vague symptoms of dryness, fatigue, and myalgias in the general population. The problems of diagnosis are further compounded by the finding of "positive" antinuclear antibodies in a high percent of the general population. Unless minor salivary gland biopsies are read by experienced observers, nonspecific changes of sialadenitis are frequently confused with the focal lymphocytic infiltrates that are characteristic of SS. The distinction between fibromyalgia patients with low titer antinuclear antibodies and primary SS remains difficult. Even in patients fulfilling strict criteria for SS, the genomic search for critical genes has proven difficult due to the multigenic pattern of inheritance and strong role of currently undefined environmental factors. No single environmental factor has been detected in the majority of SS patients. SS-like syndrome has been detected in certain patients with HTLV-1 and hepatitis C infection, providing clues to pathogenesis. Even in SS patients with marked sicca symptoms, minor salivary gland biopsy shows that almost 50% of glandular cells are still detected on biopsy. These results imply the importance of immune factors such as cytokines and autoantibodies in decreasing neuro-secretory circuits and induction of glandular dysfunction. Of potential importance, an antibody against muscarinic M3 receptor that can decrease secretory function when injected into rodents is frequently found in the sera of SS patients. Newly developed topical and oral therapies can ease the oral and ocular dryness. Orally administered agonists of the muscarinic M3 receptor (pilocarpine and cevimeline) have recently been approved by the US Food and Drug Administration to increase salivary secretion. Topical ocular use of low-dose corticosteroids or cyclosporin may decrease conjunctival surface inflammation. In a Phase II double-blind study, orally administered interferon alpha (150 U) led to improved saliva flow and symptoms. In pregnant patients with evidence of fetal distress, oral dexamethasone is preferred because this agent crosses the placenta effectively. In animal models, antagonists of tumor necrosis factor and inhibitors of de novo pyrimidine synthesis appear promising.
Collapse
Affiliation(s)
- R I Fox
- Allergy and Rheumatology Clinic, Scripps Memorial Hospital and Research Foundation, La Jolla, California 92037, USA.
| | | | | |
Collapse
|