1
|
Kim DH, Lee H, Kim MY, Hwangbo H, Ji SY, Bang E, Hong SH, Kim GY, Leem SH, Ryu D, Cheong J, Choi YH. Particulate matter 2.5 stimulates pyroptosis and necroptosis via the p38 MAPK/Akt/NF-κB signaling pathway in human corneal epithelial cells. Toxicology 2025; 515:154138. [PMID: 40199452 DOI: 10.1016/j.tox.2025.154138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Particulate matter 2.5 (PM2.5) exposure poses significant health risks, particularly to the eyes. This study aimed to investigate the cytotoxic effects of PM2.5 on human corneal epithelial cells (HCECs) and to elucidate the mechanisms involved in pyroptosis and necroptosis. HCECs were exposed to PM2.5, and cytotoxicity, reactive oxygen species (ROS) levels, and the expression of pyroptosis- and necroptosis-related proteins were assessed. The roles of nuclear factor-kappa B (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signaling pathways were also investigated. Exposure to PM2.5 caused a dose-dependent decrease in cell viability, accompanied by significant NLRP3 inflammasome activation, leading to pyroptosis and the release of pro-inflammatory cytokines. Enhanced ROS generation and mitochondrial dysfunction have also been observed, along with indicators of necroptosis, such as increased levels of mixed-lineage kinase domain-like proteins. Importantly, activation of the NF-κB signaling pathway was crucial for these responses. The suppression of p38 mitogen-activated protein kinase (MAPK) and activation of protein kinase B (Akt) using pharmacological modulators SB203580 and SC79, respectively, significantly reduced PM2.5-mediated cellular damage. These findings indicate that p38 MAPK inhibition and Akt activation are key regulatory mechanisms that help attenuate the deleterious effects of PM2.5 on HCECs. In conclusion, our findings offer new insights into the mechanisms by which PM2.5 induces pyroptosis and necroptosis in HCECs, especially by activating the NLRP3 inflammasome and NF-κB signaling pathways. The critical regulatory roles of p38 MAPK and Akt underscore their potential as therapeutic targets to alleviate PM-induced ocular damage.
Collapse
Affiliation(s)
- Da Hye Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Integrated Biological Science, The Graduate School of Pusan National University, Busan 46241, Republic of Korea.
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.
| | - Min Yeong Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Seon Yeong Ji
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Gi Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Sciences, Dong-A University, Busan 49315, Republic of Korea; Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - JaeHun Cheong
- Department of Integrated Biological Science, The Graduate School of Pusan National University, Busan 46241, Republic of Korea; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| |
Collapse
|
2
|
Rajaiya J, Saha A, Zhou X, Chodosh J. Human Adenovirus Species D Interactions with Corneal Stromal Cells. Viruses 2021; 13:2505. [PMID: 34960773 PMCID: PMC8709199 DOI: 10.3390/v13122505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Notable among the many communicable agents known to infect the human cornea is the human adenovirus, with less than ten adenoviruses having corneal tropism out of more than 100 known types. The syndrome of epidemic keratoconjunctivitis (EKC), caused principally by human adenovirus, presents acutely with epithelial keratitis, and later with stromal keratitis that can be chronic and recurrent. In this review, we discuss the current state of knowledge regarding the molecular biology of adenovirus infection of corneal stromal cells, among which the fibroblast-like keratocyte is the most predominant, in order to elucidate basic pathophysiologic mechanisms of stromal keratitis in the human patient with EKC.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| | | | | | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| |
Collapse
|
3
|
Wu CW, Lin PJ, Tsai JS, Lin CY, Lin LY. Arsenite-induced apoptosis can be attenuated via depletion of mTOR activity to restore autophagy. Toxicol Res (Camb) 2018; 8:101-111. [PMID: 30713663 DOI: 10.1039/c8tx00238j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Arsenic and its compounds are toxic environmental pollutants and known carcinogens. We investigated here the mechanism of arsenite-induced damage in renal cells. Treating human embryonic kidney cells (HEK293) with sodium arsenite reduces cell viability in a dose- and time-dependent manner. The decline of cell viability is due to apoptotic death since arsenite treatment reduces Akt activity and the Bcl2 level but increases caspase 3 activity and the cytochrome c level. These effects can be reverted by the addition of an apoptosis inhibitor. PTEN, the upstream negative regulator of Akt activity, was also reduced with arsenite treatment. Noticeably, PTEN markedly increased in the insoluble fraction of the cells, suggesting a cell failure in removing the damaged proteins. Arsenite treatment activates a variety of signaling factors. Among them, ERK and JNK are associated with autophagy via regulating the levels of LC3 and p62. With arsenite administration, the LC3 and p62 levels increased. However, lysosomal activity was decreased and led to the decline of autophagic activity. The addition of rapamycin, the mTOR inhibitor, activated the autophagic pathway that accelerated the removal of damaged proteins. The recovery of autophagy increased the viability of arsenite-treated cells. Similar to rapamycin treatment, the knockdown of mTOR expression also enhanced the viability of arsenite-treated cells. Both rapamycin treatment and mTOR knockdown enhanced ERK activity further, but reduced JNK activity and the p62 level in arsenite-treated cells. Lysosomal activity increased with the depletion of mTOR, indicating an increase of autophagic activity. These results reveal the critical role of mTOR in regulating the cell fate of arsenite-exposed renal cells.
Collapse
Affiliation(s)
- Chien-Wei Wu
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Pei-Jung Lin
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Jia-Shiuan Tsai
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Chih-Ying Lin
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| |
Collapse
|
4
|
Bestwick CS, Milne L, Dance AM, Cochennec G, Cruickshank G, Allain E, Constable L, Duthie SJ, Thoo Lin PK. Caspase-independence and characterization of bisnaphthalimidopropyl spermidine induced cytotoxicity in HL60 cells. Toxicol In Vitro 2018; 52:342-350. [PMID: 29966682 DOI: 10.1016/j.tiv.2018.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Bisnaphthalimides are DNA intercalators of potential use as chemotherapeutics but for which the range of mechanism of action is only gradually being elucidated. Using human promyelocytic HL-60 cells, we extend characterization of the cytotoxicity of bisnaphthalimidopropylspermidine (BNIPSpd) and examine the relationship with caspase-activity. Within 4 h exposure, BNIPSpd (1-10 μM) induced significant DNA strand breakage. Evidence of apoptosis was progressive through the experimental period. Within 6 h, BNIPSpd increased the proportion of cells exhibiting plasma membrane phosphatidylserine exposure. Within 12 h, active caspase expression increased and was sustained with 5 and 10 μM BNIPSpd. Flow cytometric analysis revealed caspase activity in cells with and without damaged membranes. By 24 h, 5 and 10 μM BNIPSpd increased hypodiploid DNA content and internucleosomal DNA fragmentation (DNA ladders) typical of the later stages of apoptosis. 1 μM BNIPSpd exposure also increased hypodiploid DNA content by 48 h. Polyamine levels decreased by 24 h BNIPSpd exposure. The pan-caspase inhibitor, z-VAD-fmk, significantly decreased DNA degradation (hypodiploid DNA and DNA ladders) and cytotoxicity. Despite this, cell growth and viability remained significantly impaired. We propose that BNIPSpd cytotoxicity arises through DNA damage and not polyamine depletion and that cytotoxicity is dominated by but not dependent upon caspase driven apoptosis.
Collapse
Affiliation(s)
- Charles S Bestwick
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Lesley Milne
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne-Marie Dance
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gaela Cochennec
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gillian Cruickshank
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Eflamm Allain
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lynda Constable
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Susan J Duthie
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Paul Kong Thoo Lin
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| |
Collapse
|
5
|
Dong K, Zhu H, Song Z, Gong Y, Wang F, Wang W, Zheng Z, Yu Z, Gu Q, Xu X, Sun X. Necrostatin-1 protects photoreceptors from cell death and improves functional outcome after experimental retinal detachment. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1634-41. [PMID: 22940440 DOI: 10.1016/j.ajpath.2012.07.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/26/2012] [Accepted: 07/18/2012] [Indexed: 02/08/2023]
Abstract
Necroptosis is a recently discovered programmed necrosis. Evidence demonstrated the importance of necroptosis in neuronal cell death. Necrostatin-1 is a specific inhibitor of necroptosis. In this study, we investigated the role of necrostatin-1 on photoreceptor survival and functional protection after experimental retinal detachment (RD) in rats. Necrostatin-1/inactive analogue of necrostatin-1 was introduced into the subretinal space at RD induction and 6 hours afterward, respectively. We found that necrostatin-1 attenuated retinal histopathological damage and reduced plasma membrane breakdown (a morphological hallmark of necroptosis) in outer retinal layers. Transmission electron microscopy showed that necrostatin-1 directly protected neurons by inhibiting necroptotic, not apoptotic, cell death. Treatment with necrostatin-1 inhibited the induction of receptor-interacting protein kinase phosphorylation after RD (a biomarker of necroptosis). Finally, electroretinographic recording proved that necrostatin-1 contributed to objective functional improvement after RD. These findings indicate that necrostatin-1 is a promising therapeutic agent that protects photoreceptors from necroptosis and improves functional outcome.
Collapse
Affiliation(s)
- Kai Dong
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gao N, Yin J, Yoon GS, Mi QS, Yu FSX. Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial wound repair. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2243-53. [PMID: 21924232 DOI: 10.1016/j.ajpath.2011.07.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 12/21/2022]
Abstract
The functions of intraepithelial dendritic cells (DCs) are critical for mucosal innate and adaptive immunity, but little is known about the role of tissue-specific DCs in epithelial homeostasis and tissue repair. By using the epithelial debridement wound model and CD11c-diphtheria toxin receptor mice that express a CD11c promoter-driven diphtheria toxin receptor, we showed that DCs migrate along with the epithelial sheet to cover the wound and that local depletion of DCs resulted in a significant delay in epithelial wound closure. In response to wounding, migratory epithelia produce CXCL10, thymic stromal lymphopoietin, and IL-1β and its antagonist soluble IL-1 receptor antagonist (sIL-1Ra); depletion of corneal DCs reversed their elevated expressions to a different extent, suggesting a DC-mediated positive feedback loop in epithelial gene expression. Furthermore, both CXCL10 and thymic stromal lymphopoietin were localized in migratory epithelia, suggesting that epithelial cells play a key role in DC infiltration and activation in injured corneas. On the other hand, DC depletion resulted in suppressed epithelial AKT activation, increased cell apoptosis, and decreased polymorphonuclear leukocyte infiltration in the healing cornea. These results indicate that DCs and epithelium form a functional entity at mucosal surfaces for maintaining corneal homeostasis and for tissue repair.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
7
|
Apoptosis-inducing action of two products from oxidation of sesamol, an antioxidative constituent of sesame oil: a possible cytotoxicity of oxidized antioxidant. Toxicol In Vitro 2010; 24:1720-6. [PMID: 20510349 DOI: 10.1016/j.tiv.2010.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 04/19/2010] [Accepted: 05/19/2010] [Indexed: 11/22/2022]
Abstract
Many effects of sesamol, an antioxidative constituent of sesame oil, have been reported for human health benefits due to its antioxidative action. However, we recently isolated two cytotoxic products, trimer and tetramer of sesamol, from oxidation of sesamol by an assay-guided purification. In this study, we have revealed some cytotoxic characteristics of these products in rat thymocytes and human leukemia K562 cells. Incubation of cells with trimer or tetramer at 10-30 microM for 24h significantly increased cell lethality and population of rat thymocytes containing hypodiploid DNA, suggesting cell death with DNA fragmentation, while it was not the case for 30 microM sesamol. The cytotoxic action of tetramer was more potent than that of trimer in rat thymocytes when their concentrations were 10-30 microM. The incubation of cells with 10 microM tetramer for 24h increased the population of cells with exposed phosphatidylserine, the activity of caspases, and the nick of DNA. These results indicate tetramer-induced apoptosis. In K562 cells, the incubation with tetramer at 10 microM for 72 h significantly inhibited the growth without affecting the lethality. However, tetramer at 30 microM significantly increased cell lethality. It is likely that tetramer exerts more cytotoxic action on normal non-proliferative cells (rat thymocytes) rather than proliferative cancer cells (human leukemia K562 cells). It may be necessary to consider the condition for preservation of sesamol and the safety of products from in vivo oxidation of sesamol for human health.
Collapse
|
8
|
Bisabololoxide A, one of the main constituents in German chamomile extract, induces apoptosis in rat thymocytes. Arch Toxicol 2009; 84:45-52. [DOI: 10.1007/s00204-009-0472-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
|
9
|
Xing D, Sun X, Li J, Cui M, Tan-Allen K, Bonanno JA. Hypoxia preconditioning protects corneal stromal cells against induced apoptosis. Exp Eye Res 2006; 82:780-7. [PMID: 16364292 PMCID: PMC3085538 DOI: 10.1016/j.exer.2005.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 09/21/2005] [Accepted: 09/27/2005] [Indexed: 11/25/2022]
Abstract
The purpose of this study, was to determine whether hypoxia preconditioning can protect corneal stromal cells from UV stress and cytokine mediated apoptosis. Two models were implemented. First, primary cultured bovine corneal fibroblasts were preconditioned with 0.5-1.5% O2 for 4 hr and stressed with UV-irradiation or stimulation of Fas receptor. Second, bovine eyes were preconditioned with 0.5% O2 for 4 hr and stressed by epithelial scraping to induce anterior keratocyte apoptosis. Cell fate was analyzed at 4 hr after stress using quantitative TUNEL or condensed nuclei assays. Cell apoptotic rates in hypoxia preconditioned groups were significantly lower (50-80%) than that of normoxia control groups. Hypoxia prevented the degradation of the transcription factor HIF-1alpha. CoCl2 (100-200 microM), a chemical inducer of HIF-1alpha, also produced strong protection against UV and Fas induced apoptosis. Moreover, hypoxia preconditioned media protected cells against UV-induced apoptosis. These findings demonstrate that hypoxia preconditioning has a generalized protective effect against stromal fibroblast and keratocyte apoptosis and suggest that HIF-1alpha mediated expression and secretion of protective factors is involved.
Collapse
Affiliation(s)
- Dongmei Xing
- School of Optometry, Indiana University, 800 East Atwater Avenue, , Bloomington, IN 47405, USA
| | - Xingcai Sun
- School of Optometry, Indiana University, 800 East Atwater Avenue, , Bloomington, IN 47405, USA
| | - Jinhua Li
- School of Optometry, Indiana University, 800 East Atwater Avenue, , Bloomington, IN 47405, USA
| | - Miao Cui
- School of Optometry, Indiana University, 800 East Atwater Avenue, , Bloomington, IN 47405, USA
| | - Kah Tan-Allen
- School of Optometry, Indiana University, 800 East Atwater Avenue, , Bloomington, IN 47405, USA
| | - Joseph A. Bonanno
- School of Optometry, Indiana University, 800 East Atwater Avenue, , Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Netto MV, Mohan RR, Ambrósio R, Hutcheon AEK, Zieske JD, Wilson SE. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 2005; 24:509-22. [PMID: 15968154 DOI: 10.1097/01.ico.0000151544.23360.17] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The corneal wound healing response is of particular relevance for refractive surgical procedures since it is a major determinant of efficacy and safety. The purpose of this review is to provide an overview of the healing response in refractive surgery procedures. METHODS Literature review. RESULTS LASIK and PRK are the most common refractive procedures; however, alternative techniques, including LASEK, PRK with mitomycin C, and Epi-LASIK, have been developed in an attempt to overcome common complications. Clinical outcomes and a number of common complications are directly related to the healing process and the unpredictable nature of the associated corneal cellular response. These complications include overcorrection, undercorrection, regression, corneal stroma opacification, and many other side effects that have their roots in the biologic response to surgery. The corneal epithelium, stroma, nerves, inflammatory cells, and lacrimal glands are the main tissues and organs involved in the wound healing response to corneal surgical procedures. Complex cellular interactions mediated by cytokines and growth factors occur among the cells of the cornea, resulting in a highly variable biologic response. Among the best characterized processes are keratocyte apoptosis, keratocyte necrosis, keratocyte proliferation, migration of inflammatory cells, and myofibroblast generation. These cellular interactions are involved in extracellular matrix reorganization, stromal remodeling, wound contraction, and several other responses to surgical injury. CONCLUSIONS A better understanding of the complete cascade of events involved in the corneal wound healing process and anomalies that lead to complications is critical to improve the efficacy and safety of refractive surgical procedures. Recent advances in understanding the biologic and molecular processes that contribute to the healing response bring hope that safe and effective pharmacologic modulators of the corneal wound healing response may soon be developed.
Collapse
Affiliation(s)
- Marcelo V Netto
- The Cole Eye Institute, The Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE To evaluate the effect of various ceramides on the apoptosis of corneal fibroblasts and to determine the pathway on which they act. METHOD Corneal fibroblasts isolated and cultured from New Zealand white rabbits were exposed to various concentrations of ceramide types II and VI and phytoceramide types II and VI, and their apoptotic response was evaluated using an LDH assay and Hoechst and Annexin V staining. Corneal fibroblasts were preincubated with various concentrations of the CPP32-like protease inhibitor Z-VAD-FMK, the caspase-8 inhibitor IETD-CHO, and the caspase-9 inhibitor Z-LEHD-FMK before treatment with ceramide, and apoptotic response was assayed by LDH assay. In addition, cells treated with ceramide or phytoceramide were stained with an antibody to cytochrome c. RESULTS At concentrations of 20 microM and higher, all 4 ceramides increased fibroblast apoptotic response significantly after 12 hours. Hoechst staining showed shrinkage of the cytoplasm, formation of apoptotic bodies, and nuclear fragmentation after ceramide exposure, and Annexin V staining showed small vesicles around the cell membrane. The CPP32-like protease inhibitor reduced the apoptotic response to all 4 ceramides. The specific caspase-8 inhibitor reduced the apoptotic response to ceramide type VI and phytoceramide types II and VI, whereas the specific caspase-9 inhibitor significantly reduced the apoptotic response to phytoceramide types II and VI. Following exposure to ceramides, corneal fibroblasts stained positively with antibody to cytochrome c. CONCLUSION Ceramide induced apoptosis in cultured corneal fibroblasts. This apoptosis involved the caspase cascade and the mitochondrial pathway.
Collapse
Affiliation(s)
- Tae-im Kim
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-040, Korea
| | | | | | | | | |
Collapse
|
12
|
Mohan RR, Hutcheon AEK, Choi R, Hong J, Lee J, Mohan RR, Ambrósio R, Zieske JD, Wilson SE. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res 2003; 76:71-87. [PMID: 12589777 DOI: 10.1016/s0014-4835(02)00251-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to semi-quantitatively analyze stromal cell apoptosis, stromal cell proliferation, and myofibroblast generation over time points from 4hr to 3 months in rabbit eyes having photorefractive keratectomy (PRK) or laser in situ keratomeliusis (LASIK). Stromal cell necrosis and inflammatory cell infiltration were also studied. PRK for low myopia (-4.5diopters [D]), PRK for high myopia (-9.0D), and LASIK for high myopia (-9.0D) were performed in rabbit eyes, and corneas were obtained for examination at 4, 24, and 72hr, 1 and 4 weeks, and 3 months after surgery. A total of 144 rabbits were included in the study. Stromal cell apoptosis, proliferation, and myofibroblast generation were evaluated semi-quantitatively by TUNEL assay, immunocytochemical analysis of Ki67, and immunocytochemical analysis of alpha-smooth muscle actin, respectively. Stromal cell necrosis and characteristics of other cell types in the stroma were evaluated by electron microscopy. Keratocyte apoptosis and the subsequent proliferation and generation of myofibroblasts were qualitatively and quantitatively different in PRK for high myopia compared to either PRK for low myopia or LASIK for high myopia. Stromal cell necrosis becomes a significant form of cell death by 24hr after injury and may involve corneal fibroblasts, myofibroblasts, and inflammatory cells. Large numbers of polymorphonuclear cells and monocytes invade the cornea by 24hr after surgery and persist for over 1 week. The qualitative and quantitative differences in the cellular wound healing response after PRK for high and low myopia and LASIK for high myopia are likely determinants of the clinical differences in refractive outcome and some of the complications, such as regression and haze, seen after these procedures.
Collapse
Affiliation(s)
- Rahul R Mohan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98195-6485, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Belmokhtar CA, Hillion J, Ségal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 2001; 20:3354-62. [PMID: 11423986 DOI: 10.1038/sj.onc.1204436] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2000] [Revised: 02/20/2001] [Accepted: 03/06/2001] [Indexed: 01/06/2023]
Abstract
Sensitivity of tumor cells to anticancer therapy depends on the ability of the drug to induce apoptosis. However, multiple signaling pathways control this induction and thus determine this sensitivity. We report here that staurosporine, a well known inducer of apoptosis in a wide range of cell lines, displays distinct ability to trigger apoptosis in two different L1210 sublines (termed L1210/S and L1210/0). Staurosporine treatment resulted in an early cell death (within 3 h) in L1210/S cells, while in L1210/0 cells, death occurred only after 12 h. In both instances, death occurred by apoptosis. A broad spectrum caspase inhibitor, Z-VAD-fmk, blocked early apoptosis in L1210/S cells but did not confer any protection on late apoptosis in L1210/0 cells. Protection by Z-VAD-fmk observed in L1210/S cells was not lasting and unmasked a secondary process of cell death that also exhibited characteristics of apoptosis. Thus, staurosporine induces apoptotic cell death through at least two redundant parallel pathways. These two pathways normally coexist in L1210/S cells. However, the early cell death mechanism depending on caspase activation disguises the late caspase-independent apoptotic process. Staurosporine-induced apoptosis in L1210/0 cells develops only by the caspase-independent mechanism due to a general defect in caspase activation.
Collapse
Affiliation(s)
- C A Belmokhtar
- INSERM U496, Centre G Hayem, Hôpital Saint-Louis, 1, Avenue Claude Vellefaux, 75010 Paris, France
| | | | | |
Collapse
|